blob: ad4c0a332343110901e8b451cf93db5d9d78c807 [file] [log] [blame]
/*
* Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/usb/phy.h>
#include <linux/reset.h>
#include <linux/nvmem-consumer.h>
#include <linux/debugfs.h>
#include <linux/hrtimer.h>
/* QUSB2PHY_PWR_CTRL1 register related bits */
#define PWR_CTRL1_POWR_DOWN BIT(0)
/* QUSB2PHY_PLL_COMMON_STATUS_ONE register related bits */
#define CORE_READY_STATUS BIT(0)
/* Get TUNE value from efuse bit-mask */
#define TUNE_VAL_MASK(val, pos, mask) ((val >> pos) & mask)
/* QUSB2PHY_INTR_CTRL register related bits */
#define DMSE_INTR_HIGH_SEL BIT(4)
#define DPSE_INTR_HIGH_SEL BIT(3)
#define CHG_DET_INTR_EN BIT(2)
#define DMSE_INTR_EN BIT(1)
#define DPSE_INTR_EN BIT(0)
/* QUSB2PHY_PLL_CORE_INPUT_OVERRIDE register related bits */
#define CORE_PLL_RATE BIT(0)
#define CORE_PLL_RATE_MUX BIT(1)
#define CORE_PLL_EN BIT(2)
#define CORE_PLL_EN_MUX BIT(3)
#define CORE_PLL_EN_FROM_RESET BIT(4)
#define CORE_RESET BIT(5)
#define CORE_RESET_MUX BIT(6)
#define QUSB2PHY_1P8_VOL_MIN 1800000 /* uV */
#define QUSB2PHY_1P8_VOL_MAX 1800000 /* uV */
#define QUSB2PHY_1P8_HPM_LOAD 30000 /* uA */
#define QUSB2PHY_3P3_VOL_MIN 3075000 /* uV */
#define QUSB2PHY_3P3_VOL_MAX 3200000 /* uV */
#define QUSB2PHY_3P3_HPM_LOAD 30000 /* uA */
#define LINESTATE_DP BIT(0)
#define LINESTATE_DM BIT(1)
#define BIAS_CTRL_2_OVERRIDE_VAL 0x28
#define SQ_CTRL1_CHIRP_DISABLE 0x20
#define SQ_CTRL2_CHIRP_DISABLE 0x80
#define DEBUG_CTRL1_OVERRIDE_VAL 0x09
/* PERIPH_SS_PHY_REFGEN_NORTH_BG_CTRL register bits */
#define BANDGAP_BYPASS BIT(0)
enum qusb_phy_reg {
PORT_TUNE1,
PLL_COMMON_STATUS_ONE,
PWR_CTRL1,
INTR_CTRL,
PLL_CORE_INPUT_OVERRIDE,
TEST1,
BIAS_CTRL_2,
SQ_CTRL1,
SQ_CTRL2,
DEBUG_CTRL1,
USB2_PHY_REG_MAX,
};
struct qusb_phy {
struct usb_phy phy;
struct mutex lock;
void __iomem *base;
void __iomem *efuse_reg;
void __iomem *refgen_north_bg_reg;
struct clk *ref_clk_src;
struct clk *ref_clk;
struct clk *cfg_ahb_clk;
struct reset_control *phy_reset;
struct regulator *vdd;
struct regulator *vdda33;
struct regulator *vdda18;
int vdd_levels[3]; /* none, low, high */
int init_seq_len;
int *qusb_phy_init_seq;
int host_init_seq_len;
int *qusb_phy_host_init_seq;
unsigned int *phy_reg;
int qusb_phy_reg_offset_cnt;
u32 tune_val;
int efuse_bit_pos;
int efuse_num_of_bits;
int power_enabled_ref;
bool clocks_enabled;
bool cable_connected;
bool suspended;
bool dpdm_enable;
struct regulator_desc dpdm_rdesc;
struct regulator_dev *dpdm_rdev;
u32 sq_ctrl1_default;
u32 sq_ctrl2_default;
bool chirp_disable;
struct pinctrl *pinctrl;
struct pinctrl_state *atest_usb13_suspend;
struct pinctrl_state *atest_usb13_active;
/* emulation targets specific */
void __iomem *emu_phy_base;
bool emulation;
int *emu_init_seq;
int emu_init_seq_len;
int *phy_pll_reset_seq;
int phy_pll_reset_seq_len;
int *emu_dcm_reset_seq;
int emu_dcm_reset_seq_len;
/* override TUNEX registers value */
struct dentry *root;
u8 tune[5];
struct hrtimer timer;
int soc_min_rev;
};
#ifdef CONFIG_NVMEM
/* Parse qfprom data for deciding on errata work-arounds */
static long qfprom_read(struct device *dev, const char *name)
{
struct nvmem_cell *cell;
ssize_t len = 0;
u32 *buf, val = 0;
long err = 0;
cell = nvmem_cell_get(dev, name);
if (IS_ERR(cell)) {
err = PTR_ERR(cell);
dev_err(dev, "failed opening nvmem cell err : %ld\n", err);
/* If entry does not exist, then that is not an error */
if (err == -ENOENT)
err = 0;
return err;
}
buf = (u32 *)nvmem_cell_read(cell, &len);
if (IS_ERR(buf) || !len) {
dev_err(dev, "Failed reading nvmem cell, err: %u, bytes fetched: %zd\n",
*buf, len);
if (!IS_ERR(buf)) {
kfree(buf);
err = -EINVAL;
} else {
err = PTR_ERR(buf);
}
} else {
/*
* The bits are read from bit-0 to bit-29
* We're interested in bits 28:29
*/
val = (*buf >> 28) & 0x3;
kfree(buf);
}
nvmem_cell_put(cell);
return err ? err : (long) val;
}
/* Reads the SoC version */
static int qusb_phy_get_socrev(struct device *dev, struct qusb_phy *qphy)
{
qphy->soc_min_rev = qfprom_read(dev, "minor_rev");
if (qphy->soc_min_rev < 0)
dev_err(dev, "failed getting soc_min_rev, err : %d\n",
qphy->soc_min_rev);
return qphy->soc_min_rev;
};
#else
/* Reads the SoC version */
static int qusb_phy_get_socrev(struct device *dev, struct qusb_phy *qphy)
{
return 0;
}
#endif
static void qusb_phy_enable_clocks(struct qusb_phy *qphy, bool on)
{
dev_dbg(qphy->phy.dev, "%s(): clocks_enabled:%d on:%d\n",
__func__, qphy->clocks_enabled, on);
if (!qphy->clocks_enabled && on) {
clk_prepare_enable(qphy->ref_clk_src);
if (qphy->ref_clk)
clk_prepare_enable(qphy->ref_clk);
if (qphy->cfg_ahb_clk)
clk_prepare_enable(qphy->cfg_ahb_clk);
qphy->clocks_enabled = true;
}
if (qphy->clocks_enabled && !on) {
if (qphy->cfg_ahb_clk)
clk_disable_unprepare(qphy->cfg_ahb_clk);
if (qphy->ref_clk)
clk_disable_unprepare(qphy->ref_clk);
clk_disable_unprepare(qphy->ref_clk_src);
qphy->clocks_enabled = false;
}
dev_dbg(qphy->phy.dev, "%s(): clocks_enabled:%d\n", __func__,
qphy->clocks_enabled);
}
static int qusb_phy_config_vdd(struct qusb_phy *qphy, int high)
{
int min, ret;
min = high ? 1 : 0; /* low or none? */
ret = regulator_set_voltage(qphy->vdd, qphy->vdd_levels[min],
qphy->vdd_levels[2]);
if (ret) {
dev_err(qphy->phy.dev, "unable to set voltage for qusb vdd\n");
return ret;
}
dev_dbg(qphy->phy.dev, "min_vol:%d max_vol:%d\n",
qphy->vdd_levels[min], qphy->vdd_levels[2]);
return ret;
}
static int qusb_phy_enable_power(struct qusb_phy *qphy, bool on)
{
int ret = 0;
mutex_lock(&qphy->lock);
dev_dbg(qphy->phy.dev,
"%s:req to turn %s regulators. power_enabled_ref:%d\n",
__func__, on ? "on" : "off", qphy->power_enabled_ref);
if (on && ++qphy->power_enabled_ref > 1) {
dev_dbg(qphy->phy.dev, "PHYs' regulators are already on\n");
goto done;
}
if (!on) {
if (on == qphy->power_enabled_ref) {
dev_dbg(qphy->phy.dev,
"PHYs' regulators are already off\n");
goto done;
}
qphy->power_enabled_ref--;
if (!qphy->power_enabled_ref)
goto disable_vdda33;
dev_dbg(qphy->phy.dev, "Skip turning off PHYs' regulators\n");
goto done;
}
ret = qusb_phy_config_vdd(qphy, true);
if (ret) {
dev_err(qphy->phy.dev, "Unable to config VDD:%d\n",
ret);
goto err_vdd;
}
ret = regulator_enable(qphy->vdd);
if (ret) {
dev_err(qphy->phy.dev, "Unable to enable VDD\n");
goto unconfig_vdd;
}
ret = regulator_set_load(qphy->vdda18, QUSB2PHY_1P8_HPM_LOAD);
if (ret < 0) {
dev_err(qphy->phy.dev, "Unable to set HPM of vdda18:%d\n", ret);
goto disable_vdd;
}
ret = regulator_set_voltage(qphy->vdda18, QUSB2PHY_1P8_VOL_MIN,
QUSB2PHY_1P8_VOL_MAX);
if (ret) {
dev_err(qphy->phy.dev,
"Unable to set voltage for vdda18:%d\n", ret);
goto put_vdda18_lpm;
}
ret = regulator_enable(qphy->vdda18);
if (ret) {
dev_err(qphy->phy.dev, "Unable to enable vdda18:%d\n", ret);
goto unset_vdda18;
}
ret = regulator_set_load(qphy->vdda33, QUSB2PHY_3P3_HPM_LOAD);
if (ret < 0) {
dev_err(qphy->phy.dev, "Unable to set HPM of vdda33:%d\n", ret);
goto disable_vdda18;
}
ret = regulator_set_voltage(qphy->vdda33, QUSB2PHY_3P3_VOL_MIN,
QUSB2PHY_3P3_VOL_MAX);
if (ret) {
dev_err(qphy->phy.dev,
"Unable to set voltage for vdda33:%d\n", ret);
goto put_vdda33_lpm;
}
ret = regulator_enable(qphy->vdda33);
if (ret) {
dev_err(qphy->phy.dev, "Unable to enable vdda33:%d\n", ret);
goto unset_vdd33;
}
pr_debug("%s(): QUSB PHY's regulators are turned ON.\n", __func__);
mutex_unlock(&qphy->lock);
return ret;
disable_vdda33:
ret = regulator_disable(qphy->vdda33);
if (ret)
dev_err(qphy->phy.dev, "Unable to disable vdda33:%d\n", ret);
unset_vdd33:
ret = regulator_set_voltage(qphy->vdda33, 0, QUSB2PHY_3P3_VOL_MAX);
if (ret)
dev_err(qphy->phy.dev,
"Unable to set (0) voltage for vdda33:%d\n", ret);
put_vdda33_lpm:
ret = regulator_set_load(qphy->vdda33, 0);
if (ret < 0)
dev_err(qphy->phy.dev, "Unable to set (0) HPM of vdda33\n");
disable_vdda18:
ret = regulator_disable(qphy->vdda18);
if (ret)
dev_err(qphy->phy.dev, "Unable to disable vdda18:%d\n", ret);
unset_vdda18:
ret = regulator_set_voltage(qphy->vdda18, 0, QUSB2PHY_1P8_VOL_MAX);
if (ret)
dev_err(qphy->phy.dev,
"Unable to set (0) voltage for vdda18:%d\n", ret);
put_vdda18_lpm:
ret = regulator_set_load(qphy->vdda18, 0);
if (ret < 0)
dev_err(qphy->phy.dev, "Unable to set LPM of vdda18\n");
disable_vdd:
ret = regulator_disable(qphy->vdd);
if (ret)
dev_err(qphy->phy.dev, "Unable to disable vdd:%d\n",
ret);
unconfig_vdd:
ret = qusb_phy_config_vdd(qphy, false);
if (ret)
dev_err(qphy->phy.dev, "Unable unconfig VDD:%d\n",
ret);
err_vdd:
dev_dbg(qphy->phy.dev, "QUSB PHY's regulators are turned OFF.\n");
/* in case of error in turning on regulators */
if (qphy->power_enabled_ref)
qphy->power_enabled_ref--;
done:
mutex_unlock(&qphy->lock);
return ret;
}
static void qusb_phy_get_tune1_param(struct qusb_phy *qphy)
{
u8 reg;
u32 bit_mask = 1;
pr_debug("%s(): num_of_bits:%d bit_pos:%d\n", __func__,
qphy->efuse_num_of_bits,
qphy->efuse_bit_pos);
/* get bit mask based on number of bits to use with efuse reg */
bit_mask = (bit_mask << qphy->efuse_num_of_bits) - 1;
/*
* if efuse reg is updated (i.e non-zero) then use it to program
* tune parameters
*/
qphy->tune_val = readl_relaxed(qphy->efuse_reg);
pr_debug("%s(): bit_mask:%d efuse based tune1 value:%d\n",
__func__, bit_mask, qphy->tune_val);
qphy->tune_val = TUNE_VAL_MASK(qphy->tune_val,
qphy->efuse_bit_pos, bit_mask);
reg = readb_relaxed(qphy->base + qphy->phy_reg[PORT_TUNE1]);
if (qphy->tune_val) {
reg = reg & 0x0f;
reg |= (qphy->tune_val << 4);
}
qphy->tune_val = reg;
}
static void qusb_phy_write_seq(void __iomem *base, u32 *seq, int cnt,
unsigned long delay)
{
int i;
pr_debug("Seq count:%d\n", cnt);
for (i = 0; i < cnt; i = i+2) {
pr_debug("write 0x%02x to 0x%02x\n", seq[i], seq[i+1]);
writel_relaxed(seq[i], base + seq[i+1]);
if (delay)
usleep_range(delay, (delay + 2000));
}
}
static void qusb_phy_reset(struct qusb_phy *qphy)
{
int ret;
ret = reset_control_assert(qphy->phy_reset);
if (ret)
dev_err(qphy->phy.dev, "%s: phy_reset assert failed\n",
__func__);
usleep_range(100, 150);
ret = reset_control_deassert(qphy->phy_reset);
if (ret)
dev_err(qphy->phy.dev, "%s: phy_reset deassert failed\n",
__func__);
}
static void qusb_phy_host_init(struct usb_phy *phy)
{
u8 reg;
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
dev_dbg(phy->dev, "%s\n", __func__);
qusb_phy_reset(qphy);
qusb_phy_write_seq(qphy->base, qphy->qusb_phy_host_init_seq,
qphy->host_init_seq_len, 0);
/* Ensure above write is completed before turning ON ref clk */
wmb();
/* Require to get phy pll lock successfully */
usleep_range(150, 160);
reg = readb_relaxed(qphy->base + qphy->phy_reg[PLL_COMMON_STATUS_ONE]);
dev_dbg(phy->dev, "QUSB2PHY_PLL_COMMON_STATUS_ONE:%x\n", reg);
if (!(reg & CORE_READY_STATUS)) {
dev_err(phy->dev, "QUSB PHY PLL LOCK fails:%x\n", reg);
WARN_ON(1);
}
}
static int qusb_phy_init(struct usb_phy *phy)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
int ret, p_index;
u8 reg;
dev_dbg(phy->dev, "%s\n", __func__);
ret = qusb_phy_enable_power(qphy, true);
if (ret)
return ret;
qusb_phy_enable_clocks(qphy, true);
qusb_phy_reset(qphy);
if (qphy->emulation) {
if (qphy->emu_init_seq)
qusb_phy_write_seq(qphy->emu_phy_base + 0x8000,
qphy->emu_init_seq,
qphy->emu_init_seq_len, 10000);
if (qphy->qusb_phy_init_seq)
qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq,
qphy->init_seq_len, 0);
/* Wait for 5ms as per QUSB2 RUMI sequence */
usleep_range(5000, 7000);
if (qphy->phy_pll_reset_seq)
qusb_phy_write_seq(qphy->base, qphy->phy_pll_reset_seq,
qphy->phy_pll_reset_seq_len, 10000);
if (qphy->emu_dcm_reset_seq)
qusb_phy_write_seq(qphy->emu_phy_base,
qphy->emu_dcm_reset_seq,
qphy->emu_dcm_reset_seq_len, 10000);
return 0;
}
/* Disable the PHY */
writel_relaxed(readl_relaxed(qphy->base + qphy->phy_reg[PWR_CTRL1]) |
PWR_CTRL1_POWR_DOWN,
qphy->base + qphy->phy_reg[PWR_CTRL1]);
if (qphy->qusb_phy_init_seq)
qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq,
qphy->init_seq_len, 0);
if (qphy->efuse_reg) {
if (!qphy->tune_val)
qusb_phy_get_tune1_param(qphy);
pr_debug("%s(): Programming TUNE1 parameter as:%x\n", __func__,
qphy->tune_val);
writel_relaxed(qphy->tune_val,
qphy->base + qphy->phy_reg[PORT_TUNE1]);
}
/* if debugfs based tunex params are set, use that value. */
for (p_index = 0; p_index < 5; p_index++) {
if (qphy->tune[p_index])
writel_relaxed(qphy->tune[p_index],
qphy->base + qphy->phy_reg[PORT_TUNE1] +
(4 * p_index));
}
if (qphy->refgen_north_bg_reg)
if (readl_relaxed(qphy->refgen_north_bg_reg) & BANDGAP_BYPASS)
writel_relaxed(BIAS_CTRL_2_OVERRIDE_VAL,
qphy->base + qphy->phy_reg[BIAS_CTRL_2]);
/* if soc revision is mentioned override DEBUG_CTRL1 value */
if (qphy->soc_min_rev)
writel_relaxed(DEBUG_CTRL1_OVERRIDE_VAL,
qphy->base + qphy->phy_reg[DEBUG_CTRL1]);
/* ensure above writes are completed before re-enabling PHY */
wmb();
/* Enable the PHY */
writel_relaxed(readl_relaxed(qphy->base + qphy->phy_reg[PWR_CTRL1]) &
~PWR_CTRL1_POWR_DOWN,
qphy->base + qphy->phy_reg[PWR_CTRL1]);
/* Ensure above write is completed before turning ON ref clk */
wmb();
/* Require to get phy pll lock successfully */
usleep_range(150, 160);
reg = readb_relaxed(qphy->base + qphy->phy_reg[PLL_COMMON_STATUS_ONE]);
dev_dbg(phy->dev, "QUSB2PHY_PLL_COMMON_STATUS_ONE:%x\n", reg);
if (!(reg & CORE_READY_STATUS)) {
dev_err(phy->dev, "QUSB PHY PLL LOCK fails:%x\n", reg);
WARN_ON(1);
}
return 0;
}
static enum hrtimer_restart qusb_dis_ext_pulldown_timer(struct hrtimer *timer)
{
struct qusb_phy *qphy = container_of(timer, struct qusb_phy, timer);
int ret = 0;
if (qphy->pinctrl && qphy->atest_usb13_suspend) {
ret = pinctrl_select_state(qphy->pinctrl,
qphy->atest_usb13_suspend);
if (ret < 0)
dev_err(qphy->phy.dev,
"pinctrl state suspend select failed\n");
}
return HRTIMER_NORESTART;
}
static void qusb_phy_enable_ext_pulldown(struct usb_phy *phy)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
int ret = 0;
dev_dbg(phy->dev, "%s\n", __func__);
if (qphy->pinctrl && qphy->atest_usb13_active) {
ret = pinctrl_select_state(qphy->pinctrl,
qphy->atest_usb13_active);
if (ret < 0) {
dev_err(phy->dev,
"pinctrl state active select failed\n");
return;
}
hrtimer_start(&qphy->timer, ms_to_ktime(10), HRTIMER_MODE_REL);
}
}
static void qusb_phy_shutdown(struct usb_phy *phy)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
dev_dbg(phy->dev, "%s\n", __func__);
qusb_phy_enable_power(qphy, false);
}
static u32 qusb_phy_get_linestate(struct qusb_phy *qphy)
{
u32 linestate = 0;
if (qphy->cable_connected) {
if (qphy->phy.flags & PHY_HSFS_MODE)
linestate |= LINESTATE_DP;
else if (qphy->phy.flags & PHY_LS_MODE)
linestate |= LINESTATE_DM;
}
return linestate;
}
/**
* Performs QUSB2 PHY suspend/resume functionality.
*
* @uphy - usb phy pointer.
* @suspend - to enable suspend or not. 1 - suspend, 0 - resume
*
*/
static int qusb_phy_set_suspend(struct usb_phy *phy, int suspend)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
u32 linestate = 0, intr_mask = 0;
if (qphy->suspended && suspend) {
dev_dbg(phy->dev, "%s: USB PHY is already suspended\n",
__func__);
return 0;
}
if (suspend) {
/* Bus suspend case */
if (qphy->cable_connected ||
(qphy->phy.flags & PHY_HOST_MODE)) {
/* Disable all interrupts */
writel_relaxed(0x00,
qphy->base + qphy->phy_reg[INTR_CTRL]);
linestate = qusb_phy_get_linestate(qphy);
/*
* D+/D- interrupts are level-triggered, but we are
* only interested if the line state changes, so enable
* the high/low trigger based on current state. In
* other words, enable the triggers _opposite_ of what
* the current D+/D- levels are.
* e.g. if currently D+ high, D- low (HS 'J'/Suspend),
* configure the mask to trigger on D+ low OR D- high
*/
intr_mask = DPSE_INTR_EN | DMSE_INTR_EN;
if (!(linestate & LINESTATE_DP)) /* D+ low */
intr_mask |= DPSE_INTR_HIGH_SEL;
if (!(linestate & LINESTATE_DM)) /* D- low */
intr_mask |= DMSE_INTR_HIGH_SEL;
writel_relaxed(intr_mask,
qphy->base + qphy->phy_reg[INTR_CTRL]);
/* hold core PLL into reset */
writel_relaxed(CORE_PLL_EN_FROM_RESET |
CORE_RESET | CORE_RESET_MUX,
qphy->base +
qphy->phy_reg[PLL_CORE_INPUT_OVERRIDE]);
if (linestate & (LINESTATE_DP | LINESTATE_DM)) {
/* enable phy auto-resume */
writel_relaxed(0x91,
qphy->base + qphy->phy_reg[TEST1]);
/* flush the previous write before next write */
wmb();
writel_relaxed(0x90,
qphy->base + qphy->phy_reg[TEST1]);
}
dev_dbg(phy->dev, "%s: intr_mask = %x\n",
__func__, intr_mask);
/* Makes sure that above write goes through */
wmb();
qusb_phy_enable_clocks(qphy, false);
} else { /* Cable disconnect case */
/* Disable all interrupts */
writel_relaxed(0x00,
qphy->base + qphy->phy_reg[INTR_CTRL]);
qusb_phy_reset(qphy);
qusb_phy_enable_clocks(qphy, false);
qusb_phy_enable_power(qphy, false);
}
qphy->suspended = true;
} else {
/* Bus resume case */
if (qphy->cable_connected ||
(qphy->phy.flags & PHY_HOST_MODE)) {
qusb_phy_enable_clocks(qphy, true);
/* Clear all interrupts on resume */
writel_relaxed(0x00,
qphy->base + qphy->phy_reg[INTR_CTRL]);
/* bring core PLL out of reset */
writel_relaxed(CORE_PLL_EN_FROM_RESET, qphy->base +
qphy->phy_reg[PLL_CORE_INPUT_OVERRIDE]);
/* Makes sure that above write goes through */
wmb();
} else { /* Cable connect case */
qusb_phy_enable_clocks(qphy, true);
}
qphy->suspended = false;
}
return 0;
}
static int qusb_phy_notify_connect(struct usb_phy *phy,
enum usb_device_speed speed)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
qphy->cable_connected = true;
if (qphy->qusb_phy_host_init_seq && qphy->phy.flags & PHY_HOST_MODE)
qusb_phy_host_init(phy);
dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n",
qphy->cable_connected);
return 0;
}
static int qusb_phy_notify_disconnect(struct usb_phy *phy,
enum usb_device_speed speed)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
qphy->cable_connected = false;
dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n",
qphy->cable_connected);
return 0;
}
static int qusb_phy_disable_chirp(struct usb_phy *phy, bool disable)
{
struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy);
int ret = 0;
dev_dbg(phy->dev, "%s qphy chirp disable %d disable %d\n", __func__,
qphy->chirp_disable, disable);
mutex_lock(&qphy->lock);
if (qphy->chirp_disable == disable) {
ret = -EALREADY;
goto done;
}
qphy->chirp_disable = disable;
if (disable) {
qphy->sq_ctrl1_default =
readl_relaxed(qphy->base + qphy->phy_reg[SQ_CTRL1]);
qphy->sq_ctrl2_default =
readl_relaxed(qphy->base + qphy->phy_reg[SQ_CTRL2]);
writel_relaxed(SQ_CTRL1_CHIRP_DISABLE,
qphy->base + qphy->phy_reg[SQ_CTRL1]);
readl_relaxed(qphy->base + qphy->phy_reg[SQ_CTRL1]);
writel_relaxed(SQ_CTRL1_CHIRP_DISABLE,
qphy->base + qphy->phy_reg[SQ_CTRL2]);
readl_relaxed(qphy->base + qphy->phy_reg[SQ_CTRL2]);
goto done;
}
writel_relaxed(qphy->sq_ctrl1_default,
qphy->base + qphy->phy_reg[SQ_CTRL1]);
readl_relaxed(qphy->base + qphy->phy_reg[SQ_CTRL1]);
writel_relaxed(qphy->sq_ctrl2_default,
qphy->base + qphy->phy_reg[SQ_CTRL2]);
readl_relaxed(qphy->base + qphy->phy_reg[SQ_CTRL2]);
done:
mutex_unlock(&qphy->lock);
return ret;
}
static int qusb_phy_dpdm_regulator_enable(struct regulator_dev *rdev)
{
int ret = 0;
struct qusb_phy *qphy = rdev_get_drvdata(rdev);
dev_dbg(qphy->phy.dev, "%s dpdm_enable:%d\n",
__func__, qphy->dpdm_enable);
if (!qphy->dpdm_enable) {
ret = qusb_phy_enable_power(qphy, true);
if (ret < 0) {
dev_dbg(qphy->phy.dev,
"dpdm regulator enable failed:%d\n", ret);
return ret;
}
qphy->dpdm_enable = true;
qusb_phy_reset(qphy);
}
return ret;
}
static int qusb_phy_dpdm_regulator_disable(struct regulator_dev *rdev)
{
int ret = 0;
struct qusb_phy *qphy = rdev_get_drvdata(rdev);
dev_dbg(qphy->phy.dev, "%s dpdm_enable:%d\n",
__func__, qphy->dpdm_enable);
if (qphy->dpdm_enable) {
ret = qusb_phy_enable_power(qphy, false);
if (ret < 0) {
dev_dbg(qphy->phy.dev,
"dpdm regulator disable failed:%d\n", ret);
return ret;
}
qphy->dpdm_enable = false;
}
return ret;
}
static int qusb_phy_dpdm_regulator_is_enabled(struct regulator_dev *rdev)
{
struct qusb_phy *qphy = rdev_get_drvdata(rdev);
dev_dbg(qphy->phy.dev, "%s qphy->dpdm_enable = %d\n", __func__,
qphy->dpdm_enable);
return qphy->dpdm_enable;
}
static struct regulator_ops qusb_phy_dpdm_regulator_ops = {
.enable = qusb_phy_dpdm_regulator_enable,
.disable = qusb_phy_dpdm_regulator_disable,
.is_enabled = qusb_phy_dpdm_regulator_is_enabled,
};
static int qusb_phy_regulator_init(struct qusb_phy *qphy)
{
struct device *dev = qphy->phy.dev;
struct regulator_config cfg = {};
struct regulator_init_data *init_data;
init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL);
if (!init_data)
return -ENOMEM;
init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS;
qphy->dpdm_rdesc.owner = THIS_MODULE;
qphy->dpdm_rdesc.type = REGULATOR_VOLTAGE;
qphy->dpdm_rdesc.ops = &qusb_phy_dpdm_regulator_ops;
qphy->dpdm_rdesc.name = kbasename(dev->of_node->full_name);
cfg.dev = dev;
cfg.init_data = init_data;
cfg.driver_data = qphy;
cfg.of_node = dev->of_node;
qphy->dpdm_rdev = devm_regulator_register(dev, &qphy->dpdm_rdesc, &cfg);
if (IS_ERR(qphy->dpdm_rdev))
return PTR_ERR(qphy->dpdm_rdev);
return 0;
}
static int qusb_phy_create_debugfs(struct qusb_phy *qphy)
{
struct dentry *file;
int ret = 0, i;
char name[6];
qphy->root = debugfs_create_dir(dev_name(qphy->phy.dev), NULL);
if (IS_ERR_OR_NULL(qphy->root)) {
dev_err(qphy->phy.dev,
"can't create debugfs root for %s\n",
dev_name(qphy->phy.dev));
ret = -ENOMEM;
goto create_err;
}
for (i = 0; i < 5; i++) {
snprintf(name, sizeof(name), "tune%d", (i + 1));
file = debugfs_create_x8(name, 0644, qphy->root,
&qphy->tune[i]);
if (IS_ERR_OR_NULL(file)) {
dev_err(qphy->phy.dev,
"can't create debugfs entry for %s\n", name);
debugfs_remove_recursive(qphy->root);
ret = ENOMEM;
goto create_err;
}
}
create_err:
return ret;
}
static int qusb_phy_probe(struct platform_device *pdev)
{
struct qusb_phy *qphy;
struct device *dev = &pdev->dev;
struct resource *res;
int ret = 0, size = 0;
qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL);
if (!qphy)
return -ENOMEM;
qphy->phy.dev = dev;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"qusb_phy_base");
qphy->base = devm_ioremap_resource(dev, res);
if (IS_ERR(qphy->base))
return PTR_ERR(qphy->base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"emu_phy_base");
if (res) {
qphy->emu_phy_base = devm_ioremap_resource(dev, res);
if (IS_ERR(qphy->emu_phy_base)) {
dev_dbg(dev, "couldn't ioremap emu_phy_base\n");
qphy->emu_phy_base = NULL;
}
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"efuse_addr");
if (res) {
qphy->efuse_reg = devm_ioremap_nocache(dev, res->start,
resource_size(res));
if (!IS_ERR_OR_NULL(qphy->efuse_reg)) {
ret = of_property_read_u32(dev->of_node,
"qcom,efuse-bit-pos",
&qphy->efuse_bit_pos);
if (!ret) {
ret = of_property_read_u32(dev->of_node,
"qcom,efuse-num-bits",
&qphy->efuse_num_of_bits);
}
if (ret) {
dev_err(dev,
"DT Value for efuse is invalid.\n");
return -EINVAL;
}
}
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"refgen_north_bg_reg_addr");
if (res)
qphy->refgen_north_bg_reg = devm_ioremap(dev, res->start,
resource_size(res));
/* ref_clk_src is needed irrespective of SE_CLK or DIFF_CLK usage */
qphy->ref_clk_src = devm_clk_get(dev, "ref_clk_src");
if (IS_ERR(qphy->ref_clk_src)) {
dev_dbg(dev, "clk get failed for ref_clk_src\n");
ret = PTR_ERR(qphy->ref_clk_src);
return ret;
}
/* ref_clk is needed only for DIFF_CLK case, hence make it optional. */
if (of_property_match_string(pdev->dev.of_node,
"clock-names", "ref_clk") >= 0) {
qphy->ref_clk = devm_clk_get(dev, "ref_clk");
if (IS_ERR(qphy->ref_clk)) {
ret = PTR_ERR(qphy->ref_clk);
if (ret != -EPROBE_DEFER)
dev_dbg(dev,
"clk get failed for ref_clk\n");
return ret;
}
clk_set_rate(qphy->ref_clk, 19200000);
}
if (of_property_match_string(pdev->dev.of_node,
"clock-names", "cfg_ahb_clk") >= 0) {
qphy->cfg_ahb_clk = devm_clk_get(dev, "cfg_ahb_clk");
if (IS_ERR(qphy->cfg_ahb_clk)) {
ret = PTR_ERR(qphy->cfg_ahb_clk);
if (ret != -EPROBE_DEFER)
dev_err(dev,
"clk get failed for cfg_ahb_clk ret %d\n", ret);
return ret;
}
}
qphy->phy_reset = devm_reset_control_get(dev, "phy_reset");
if (IS_ERR(qphy->phy_reset))
return PTR_ERR(qphy->phy_reset);
qphy->emulation = of_property_read_bool(dev->of_node,
"qcom,emulation");
of_get_property(dev->of_node, "qcom,emu-init-seq", &size);
if (size) {
qphy->emu_init_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (qphy->emu_init_seq) {
qphy->emu_init_seq_len =
(size / sizeof(*qphy->emu_init_seq));
if (qphy->emu_init_seq_len % 2) {
dev_err(dev, "invalid emu_init_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,emu-init-seq",
qphy->emu_init_seq,
qphy->emu_init_seq_len);
} else {
dev_dbg(dev,
"error allocating memory for emu_init_seq\n");
}
}
size = 0;
of_get_property(dev->of_node, "qcom,phy-pll-reset-seq", &size);
if (size) {
qphy->phy_pll_reset_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (qphy->phy_pll_reset_seq) {
qphy->phy_pll_reset_seq_len =
(size / sizeof(*qphy->phy_pll_reset_seq));
if (qphy->phy_pll_reset_seq_len % 2) {
dev_err(dev, "invalid phy_pll_reset_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,phy-pll-reset-seq",
qphy->phy_pll_reset_seq,
qphy->phy_pll_reset_seq_len);
} else {
dev_dbg(dev,
"error allocating memory for phy_pll_reset_seq\n");
}
}
size = 0;
of_get_property(dev->of_node, "qcom,emu-dcm-reset-seq", &size);
if (size) {
qphy->emu_dcm_reset_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (qphy->emu_dcm_reset_seq) {
qphy->emu_dcm_reset_seq_len =
(size / sizeof(*qphy->emu_dcm_reset_seq));
if (qphy->emu_dcm_reset_seq_len % 2) {
dev_err(dev, "invalid emu_dcm_reset_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,emu-dcm-reset-seq",
qphy->emu_dcm_reset_seq,
qphy->emu_dcm_reset_seq_len);
} else {
dev_dbg(dev,
"error allocating memory for emu_dcm_reset_seq\n");
}
}
size = 0;
of_get_property(dev->of_node, "qcom,qusb-phy-reg-offset", &size);
if (size) {
qphy->phy_reg = devm_kzalloc(dev, size, GFP_KERNEL);
if (qphy->phy_reg) {
qphy->qusb_phy_reg_offset_cnt =
size / sizeof(*qphy->phy_reg);
if (qphy->qusb_phy_reg_offset_cnt != USB2_PHY_REG_MAX) {
dev_err(dev, "invalid reg offset count\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,qusb-phy-reg-offset",
qphy->phy_reg,
qphy->qusb_phy_reg_offset_cnt);
} else {
dev_err(dev, "err mem alloc for qusb_phy_reg_offset\n");
return -ENOMEM;
}
} else {
dev_err(dev, "err provide qcom,qmp-phy-reg-offset\n");
return -EINVAL;
}
size = 0;
of_get_property(dev->of_node, "qcom,qusb-phy-init-seq", &size);
if (size) {
qphy->qusb_phy_init_seq = devm_kzalloc(dev,
size, GFP_KERNEL);
if (qphy->qusb_phy_init_seq) {
qphy->init_seq_len =
(size / sizeof(*qphy->qusb_phy_init_seq));
if (qphy->init_seq_len % 2) {
dev_err(dev, "invalid init_seq_len\n");
return -EINVAL;
}
of_property_read_u32_array(dev->of_node,
"qcom,qusb-phy-init-seq",
qphy->qusb_phy_init_seq,
qphy->init_seq_len);
} else {
dev_err(dev,
"error allocating memory for phy_init_seq\n");
}
}
qphy->host_init_seq_len = of_property_count_elems_of_size(dev->of_node,
"qcom,qusb-phy-host-init-seq",
sizeof(*qphy->qusb_phy_host_init_seq));
if (qphy->host_init_seq_len > 0) {
qphy->qusb_phy_host_init_seq = devm_kcalloc(dev,
qphy->host_init_seq_len,
sizeof(*qphy->qusb_phy_host_init_seq),
GFP_KERNEL);
if (qphy->qusb_phy_host_init_seq)
of_property_read_u32_array(dev->of_node,
"qcom,qusb-phy-host-init-seq",
qphy->qusb_phy_host_init_seq,
qphy->host_init_seq_len);
else
return -ENOMEM;
}
ret = of_property_read_u32_array(dev->of_node, "qcom,vdd-voltage-level",
(u32 *) qphy->vdd_levels,
ARRAY_SIZE(qphy->vdd_levels));
if (ret) {
dev_err(dev, "error reading qcom,vdd-voltage-level property\n");
return ret;
}
qphy->vdd = devm_regulator_get(dev, "vdd");
if (IS_ERR(qphy->vdd)) {
dev_err(dev, "unable to get vdd supply\n");
return PTR_ERR(qphy->vdd);
}
qphy->vdda33 = devm_regulator_get(dev, "vdda33");
if (IS_ERR(qphy->vdda33)) {
dev_err(dev, "unable to get vdda33 supply\n");
return PTR_ERR(qphy->vdda33);
}
qphy->vdda18 = devm_regulator_get(dev, "vdda18");
if (IS_ERR(qphy->vdda18)) {
dev_err(dev, "unable to get vdda18 supply\n");
return PTR_ERR(qphy->vdda18);
}
ret = qusb_phy_get_socrev(&pdev->dev, qphy);
if (ret == -EPROBE_DEFER) {
dev_err(&pdev->dev, "SoC version rd: fail: defer for now\n");
return ret;
}
qphy->pinctrl = devm_pinctrl_get(dev);
if (IS_ERR(qphy->pinctrl)) {
ret = PTR_ERR(qphy->pinctrl);
if (ret == -EPROBE_DEFER)
return ret;
dev_err(dev, "pinctrl not available\n");
goto skip_pinctrl_config;
}
qphy->atest_usb13_suspend = pinctrl_lookup_state(qphy->pinctrl,
"atest_usb13_suspend");
if (IS_ERR(qphy->atest_usb13_suspend)) {
dev_err(dev, "pinctrl lookup atest_usb13_suspend failed\n");
goto skip_pinctrl_config;
}
qphy->atest_usb13_active = pinctrl_lookup_state(qphy->pinctrl,
"atest_usb13_active");
if (IS_ERR(qphy->atest_usb13_active))
dev_err(dev, "pinctrl lookup atest_usb13_active failed\n");
hrtimer_init(&qphy->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
qphy->timer.function = qusb_dis_ext_pulldown_timer;
skip_pinctrl_config:
mutex_init(&qphy->lock);
platform_set_drvdata(pdev, qphy);
qphy->phy.label = "msm-qusb-phy-v2";
qphy->phy.init = qusb_phy_init;
qphy->phy.set_suspend = qusb_phy_set_suspend;
qphy->phy.shutdown = qusb_phy_shutdown;
qphy->phy.type = USB_PHY_TYPE_USB2;
qphy->phy.notify_connect = qusb_phy_notify_connect;
qphy->phy.notify_disconnect = qusb_phy_notify_disconnect;
/*
* qusb_phy_disable_chirp is not required if soc version is
* mentioned and is not base version.
*/
if (!qphy->soc_min_rev)
qphy->phy.disable_chirp = qusb_phy_disable_chirp;
qphy->phy.start_port_reset = qusb_phy_enable_ext_pulldown;
ret = usb_add_phy_dev(&qphy->phy);
if (ret)
return ret;
ret = qusb_phy_regulator_init(qphy);
if (ret)
usb_remove_phy(&qphy->phy);
qusb_phy_create_debugfs(qphy);
return ret;
}
static int qusb_phy_remove(struct platform_device *pdev)
{
struct qusb_phy *qphy = platform_get_drvdata(pdev);
usb_remove_phy(&qphy->phy);
qusb_phy_enable_clocks(qphy, false);
qusb_phy_enable_power(qphy, false);
debugfs_remove_recursive(qphy->root);
return 0;
}
static const struct of_device_id qusb_phy_id_table[] = {
{ .compatible = "qcom,qusb2phy-v2", },
{ },
};
MODULE_DEVICE_TABLE(of, qusb_phy_id_table);
static struct platform_driver qusb_phy_driver = {
.probe = qusb_phy_probe,
.remove = qusb_phy_remove,
.driver = {
.name = "msm-qusb-phy-v2",
.of_match_table = of_match_ptr(qusb_phy_id_table),
},
};
module_platform_driver(qusb_phy_driver);
MODULE_DESCRIPTION("MSM QUSB2 PHY v2 driver");
MODULE_LICENSE("GPL v2");