| /* |
| * linux/arch/arm/vfp/vfp.h |
| * |
| * Copyright (C) 2004 ARM Limited. |
| * Written by Deep Blue Solutions Limited. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) |
| { |
| if (shift) { |
| if (shift < 32) |
| val = val >> shift | ((val << (32 - shift)) != 0); |
| else |
| val = val != 0; |
| } |
| return val; |
| } |
| |
| static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) |
| { |
| if (shift) { |
| if (shift < 64) |
| val = val >> shift | ((val << (64 - shift)) != 0); |
| else |
| val = val != 0; |
| } |
| return val; |
| } |
| |
| static inline u32 vfp_hi64to32jamming(u64 val) |
| { |
| u32 v; |
| |
| asm( |
| "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t" |
| "movcc %0, %R1\n\t" |
| "orrcs %0, %R1, #1" |
| : "=r" (v) : "r" (val) : "cc"); |
| |
| return v; |
| } |
| |
| static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) |
| { |
| asm( "adds %Q0, %Q2, %Q4\n\t" |
| "adcs %R0, %R2, %R4\n\t" |
| "adcs %Q1, %Q3, %Q5\n\t" |
| "adc %R1, %R3, %R5" |
| : "=r" (nl), "=r" (nh) |
| : "0" (nl), "1" (nh), "r" (ml), "r" (mh) |
| : "cc"); |
| *resh = nh; |
| *resl = nl; |
| } |
| |
| static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) |
| { |
| asm( "subs %Q0, %Q2, %Q4\n\t" |
| "sbcs %R0, %R2, %R4\n\t" |
| "sbcs %Q1, %Q3, %Q5\n\t" |
| "sbc %R1, %R3, %R5\n\t" |
| : "=r" (nl), "=r" (nh) |
| : "0" (nl), "1" (nh), "r" (ml), "r" (mh) |
| : "cc"); |
| *resh = nh; |
| *resl = nl; |
| } |
| |
| static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m) |
| { |
| u32 nh, nl, mh, ml; |
| u64 rh, rma, rmb, rl; |
| |
| nl = n; |
| ml = m; |
| rl = (u64)nl * ml; |
| |
| nh = n >> 32; |
| rma = (u64)nh * ml; |
| |
| mh = m >> 32; |
| rmb = (u64)nl * mh; |
| rma += rmb; |
| |
| rh = (u64)nh * mh; |
| rh += ((u64)(rma < rmb) << 32) + (rma >> 32); |
| |
| rma <<= 32; |
| rl += rma; |
| rh += (rl < rma); |
| |
| *resl = rl; |
| *resh = rh; |
| } |
| |
| static inline void shift64left(u64 *resh, u64 *resl, u64 n) |
| { |
| *resh = n >> 63; |
| *resl = n << 1; |
| } |
| |
| static inline u64 vfp_hi64multiply64(u64 n, u64 m) |
| { |
| u64 rh, rl; |
| mul64to128(&rh, &rl, n, m); |
| return rh | (rl != 0); |
| } |
| |
| static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) |
| { |
| u64 mh, ml, remh, reml, termh, terml, z; |
| |
| if (nh >= m) |
| return ~0ULL; |
| mh = m >> 32; |
| if (mh << 32 <= nh) { |
| z = 0xffffffff00000000ULL; |
| } else { |
| z = nh; |
| do_div(z, mh); |
| z <<= 32; |
| } |
| mul64to128(&termh, &terml, m, z); |
| sub128(&remh, &reml, nh, nl, termh, terml); |
| ml = m << 32; |
| while ((s64)remh < 0) { |
| z -= 0x100000000ULL; |
| add128(&remh, &reml, remh, reml, mh, ml); |
| } |
| remh = (remh << 32) | (reml >> 32); |
| if (mh << 32 <= remh) { |
| z |= 0xffffffff; |
| } else { |
| do_div(remh, mh); |
| z |= remh; |
| } |
| return z; |
| } |
| |
| /* |
| * Operations on unpacked elements |
| */ |
| #define vfp_sign_negate(sign) (sign ^ 0x8000) |
| |
| /* |
| * Single-precision |
| */ |
| struct vfp_single { |
| s16 exponent; |
| u16 sign; |
| u32 significand; |
| }; |
| |
| extern s32 vfp_get_float(unsigned int reg); |
| extern void vfp_put_float(s32 val, unsigned int reg); |
| |
| /* |
| * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa |
| * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent |
| * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand |
| * which are not propagated to the float upon packing. |
| */ |
| #define VFP_SINGLE_MANTISSA_BITS (23) |
| #define VFP_SINGLE_EXPONENT_BITS (8) |
| #define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2) |
| #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1) |
| |
| /* |
| * The bit in an unpacked float which indicates that it is a quiet NaN |
| */ |
| #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) |
| |
| /* |
| * Operations on packed single-precision numbers |
| */ |
| #define vfp_single_packed_sign(v) ((v) & 0x80000000) |
| #define vfp_single_packed_negate(v) ((v) ^ 0x80000000) |
| #define vfp_single_packed_abs(v) ((v) & ~0x80000000) |
| #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) |
| #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) |
| |
| /* |
| * Unpack a single-precision float. Note that this returns the magnitude |
| * of the single-precision float mantissa with the 1. if necessary, |
| * aligned to bit 30. |
| */ |
| static inline void vfp_single_unpack(struct vfp_single *s, s32 val) |
| { |
| u32 significand; |
| |
| s->sign = vfp_single_packed_sign(val) >> 16, |
| s->exponent = vfp_single_packed_exponent(val); |
| |
| significand = (u32) val; |
| significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; |
| if (s->exponent && s->exponent != 255) |
| significand |= 0x40000000; |
| s->significand = significand; |
| } |
| |
| /* |
| * Re-pack a single-precision float. This assumes that the float is |
| * already normalised such that the MSB is bit 30, _not_ bit 31. |
| */ |
| static inline s32 vfp_single_pack(struct vfp_single *s) |
| { |
| u32 val; |
| val = (s->sign << 16) + |
| (s->exponent << VFP_SINGLE_MANTISSA_BITS) + |
| (s->significand >> VFP_SINGLE_LOW_BITS); |
| return (s32)val; |
| } |
| |
| #define VFP_NUMBER (1<<0) |
| #define VFP_ZERO (1<<1) |
| #define VFP_DENORMAL (1<<2) |
| #define VFP_INFINITY (1<<3) |
| #define VFP_NAN (1<<4) |
| #define VFP_NAN_SIGNAL (1<<5) |
| |
| #define VFP_QNAN (VFP_NAN) |
| #define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL) |
| |
| static inline int vfp_single_type(struct vfp_single *s) |
| { |
| int type = VFP_NUMBER; |
| if (s->exponent == 255) { |
| if (s->significand == 0) |
| type = VFP_INFINITY; |
| else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) |
| type = VFP_QNAN; |
| else |
| type = VFP_SNAN; |
| } else if (s->exponent == 0) { |
| if (s->significand == 0) |
| type |= VFP_ZERO; |
| else |
| type |= VFP_DENORMAL; |
| } |
| return type; |
| } |
| |
| #ifndef DEBUG |
| #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) |
| u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions); |
| #else |
| u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func); |
| #endif |
| |
| /* |
| * Double-precision |
| */ |
| struct vfp_double { |
| s16 exponent; |
| u16 sign; |
| u64 significand; |
| }; |
| |
| /* |
| * VFP_REG_ZERO is a special register number for vfp_get_double |
| * which returns (double)0.0. This is useful for the compare with |
| * zero instructions. |
| */ |
| #ifdef CONFIG_VFPv3 |
| #define VFP_REG_ZERO 32 |
| #else |
| #define VFP_REG_ZERO 16 |
| #endif |
| extern u64 vfp_get_double(unsigned int reg); |
| extern void vfp_put_double(u64 val, unsigned int reg); |
| |
| #define VFP_DOUBLE_MANTISSA_BITS (52) |
| #define VFP_DOUBLE_EXPONENT_BITS (11) |
| #define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) |
| #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) |
| |
| /* |
| * The bit in an unpacked double which indicates that it is a quiet NaN |
| */ |
| #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) |
| |
| /* |
| * Operations on packed single-precision numbers |
| */ |
| #define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) |
| #define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) |
| #define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) |
| #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) |
| #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) |
| |
| /* |
| * Unpack a double-precision float. Note that this returns the magnitude |
| * of the double-precision float mantissa with the 1. if necessary, |
| * aligned to bit 62. |
| */ |
| static inline void vfp_double_unpack(struct vfp_double *s, s64 val) |
| { |
| u64 significand; |
| |
| s->sign = vfp_double_packed_sign(val) >> 48; |
| s->exponent = vfp_double_packed_exponent(val); |
| |
| significand = (u64) val; |
| significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; |
| if (s->exponent && s->exponent != 2047) |
| significand |= (1ULL << 62); |
| s->significand = significand; |
| } |
| |
| /* |
| * Re-pack a double-precision float. This assumes that the float is |
| * already normalised such that the MSB is bit 30, _not_ bit 31. |
| */ |
| static inline s64 vfp_double_pack(struct vfp_double *s) |
| { |
| u64 val; |
| val = ((u64)s->sign << 48) + |
| ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + |
| (s->significand >> VFP_DOUBLE_LOW_BITS); |
| return (s64)val; |
| } |
| |
| static inline int vfp_double_type(struct vfp_double *s) |
| { |
| int type = VFP_NUMBER; |
| if (s->exponent == 2047) { |
| if (s->significand == 0) |
| type = VFP_INFINITY; |
| else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) |
| type = VFP_QNAN; |
| else |
| type = VFP_SNAN; |
| } else if (s->exponent == 0) { |
| if (s->significand == 0) |
| type |= VFP_ZERO; |
| else |
| type |= VFP_DENORMAL; |
| } |
| return type; |
| } |
| |
| u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); |
| |
| u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); |
| |
| /* |
| * A special flag to tell the normalisation code not to normalise. |
| */ |
| #define VFP_NAN_FLAG 0x100 |
| |
| /* |
| * A bit pattern used to indicate the initial (unset) value of the |
| * exception mask, in case nothing handles an instruction. This |
| * doesn't include the NAN flag, which get masked out before |
| * we check for an error. |
| */ |
| #define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG) |
| |
| /* |
| * A flag to tell vfp instruction type. |
| * OP_SCALAR - this operation always operates in scalar mode |
| * OP_SD - the instruction exceptionally writes to a single precision result. |
| * OP_DD - the instruction exceptionally writes to a double precision result. |
| * OP_SM - the instruction exceptionally reads from a single precision operand. |
| */ |
| #define OP_SCALAR (1 << 0) |
| #define OP_SD (1 << 1) |
| #define OP_DD (1 << 1) |
| #define OP_SM (1 << 2) |
| |
| struct op { |
| u32 (* const fn)(int dd, int dn, int dm, u32 fpscr); |
| u32 flags; |
| }; |
| |
| #ifdef CONFIG_SMP |
| extern void vfp_save_state(void *location, u32 fpexc); |
| #endif |