| /* |
| * MTD map driver for AMD compatible flash chips (non-CFI) |
| * |
| * Author: Jonas Holmberg <jonas.holmberg@axis.com> |
| * |
| * $Id: amd_flash.c,v 1.28 2005/11/07 11:14:22 gleixner Exp $ |
| * |
| * Copyright (c) 2001 Axis Communications AB |
| * |
| * This file is under GPL. |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/mtd/map.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/flashchip.h> |
| |
| /* There's no limit. It exists only to avoid realloc. */ |
| #define MAX_AMD_CHIPS 8 |
| |
| #define DEVICE_TYPE_X8 (8 / 8) |
| #define DEVICE_TYPE_X16 (16 / 8) |
| #define DEVICE_TYPE_X32 (32 / 8) |
| |
| /* Addresses */ |
| #define ADDR_MANUFACTURER 0x0000 |
| #define ADDR_DEVICE_ID 0x0001 |
| #define ADDR_SECTOR_LOCK 0x0002 |
| #define ADDR_HANDSHAKE 0x0003 |
| #define ADDR_UNLOCK_1 0x0555 |
| #define ADDR_UNLOCK_2 0x02AA |
| |
| /* Commands */ |
| #define CMD_UNLOCK_DATA_1 0x00AA |
| #define CMD_UNLOCK_DATA_2 0x0055 |
| #define CMD_MANUFACTURER_UNLOCK_DATA 0x0090 |
| #define CMD_UNLOCK_BYPASS_MODE 0x0020 |
| #define CMD_PROGRAM_UNLOCK_DATA 0x00A0 |
| #define CMD_RESET_DATA 0x00F0 |
| #define CMD_SECTOR_ERASE_UNLOCK_DATA 0x0080 |
| #define CMD_SECTOR_ERASE_UNLOCK_DATA_2 0x0030 |
| |
| #define CMD_UNLOCK_SECTOR 0x0060 |
| |
| /* Manufacturers */ |
| #define MANUFACTURER_AMD 0x0001 |
| #define MANUFACTURER_ATMEL 0x001F |
| #define MANUFACTURER_FUJITSU 0x0004 |
| #define MANUFACTURER_ST 0x0020 |
| #define MANUFACTURER_SST 0x00BF |
| #define MANUFACTURER_TOSHIBA 0x0098 |
| |
| /* AMD */ |
| #define AM29F800BB 0x2258 |
| #define AM29F800BT 0x22D6 |
| #define AM29LV800BB 0x225B |
| #define AM29LV800BT 0x22DA |
| #define AM29LV160DT 0x22C4 |
| #define AM29LV160DB 0x2249 |
| #define AM29BDS323D 0x22D1 |
| |
| /* Atmel */ |
| #define AT49xV16x 0x00C0 |
| #define AT49xV16xT 0x00C2 |
| |
| /* Fujitsu */ |
| #define MBM29LV160TE 0x22C4 |
| #define MBM29LV160BE 0x2249 |
| #define MBM29LV800BB 0x225B |
| |
| /* ST - www.st.com */ |
| #define M29W800T 0x00D7 |
| #define M29W160DT 0x22C4 |
| #define M29W160DB 0x2249 |
| |
| /* SST */ |
| #define SST39LF800 0x2781 |
| #define SST39LF160 0x2782 |
| |
| /* Toshiba */ |
| #define TC58FVT160 0x00C2 |
| #define TC58FVB160 0x0043 |
| |
| #define D6_MASK 0x40 |
| |
| struct amd_flash_private { |
| int device_type; |
| int interleave; |
| int numchips; |
| unsigned long chipshift; |
| struct flchip chips[0]; |
| }; |
| |
| struct amd_flash_info { |
| const __u16 mfr_id; |
| const __u16 dev_id; |
| const char *name; |
| const u_long size; |
| const int numeraseregions; |
| const struct mtd_erase_region_info regions[4]; |
| }; |
| |
| |
| |
| static int amd_flash_read(struct mtd_info *, loff_t, size_t, size_t *, |
| u_char *); |
| static int amd_flash_write(struct mtd_info *, loff_t, size_t, size_t *, |
| const u_char *); |
| static int amd_flash_erase(struct mtd_info *, struct erase_info *); |
| static void amd_flash_sync(struct mtd_info *); |
| static int amd_flash_suspend(struct mtd_info *); |
| static void amd_flash_resume(struct mtd_info *); |
| static void amd_flash_destroy(struct mtd_info *); |
| static struct mtd_info *amd_flash_probe(struct map_info *map); |
| |
| |
| static struct mtd_chip_driver amd_flash_chipdrv = { |
| .probe = amd_flash_probe, |
| .destroy = amd_flash_destroy, |
| .name = "amd_flash", |
| .module = THIS_MODULE |
| }; |
| |
| static inline __u32 wide_read(struct map_info *map, __u32 addr) |
| { |
| if (map->buswidth == 1) { |
| return map_read8(map, addr); |
| } else if (map->buswidth == 2) { |
| return map_read16(map, addr); |
| } else if (map->buswidth == 4) { |
| return map_read32(map, addr); |
| } |
| |
| return 0; |
| } |
| |
| static inline void wide_write(struct map_info *map, __u32 val, __u32 addr) |
| { |
| if (map->buswidth == 1) { |
| map_write8(map, val, addr); |
| } else if (map->buswidth == 2) { |
| map_write16(map, val, addr); |
| } else if (map->buswidth == 4) { |
| map_write32(map, val, addr); |
| } |
| } |
| |
| static inline __u32 make_cmd(struct map_info *map, __u32 cmd) |
| { |
| const struct amd_flash_private *private = map->fldrv_priv; |
| if ((private->interleave == 2) && |
| (private->device_type == DEVICE_TYPE_X16)) { |
| cmd |= (cmd << 16); |
| } |
| |
| return cmd; |
| } |
| |
| static inline void send_unlock(struct map_info *map, unsigned long base) |
| { |
| wide_write(map, (CMD_UNLOCK_DATA_1 << 16) | CMD_UNLOCK_DATA_1, |
| base + (map->buswidth * ADDR_UNLOCK_1)); |
| wide_write(map, (CMD_UNLOCK_DATA_2 << 16) | CMD_UNLOCK_DATA_2, |
| base + (map->buswidth * ADDR_UNLOCK_2)); |
| } |
| |
| static inline void send_cmd(struct map_info *map, unsigned long base, __u32 cmd) |
| { |
| send_unlock(map, base); |
| wide_write(map, make_cmd(map, cmd), |
| base + (map->buswidth * ADDR_UNLOCK_1)); |
| } |
| |
| static inline void send_cmd_to_addr(struct map_info *map, unsigned long base, |
| __u32 cmd, unsigned long addr) |
| { |
| send_unlock(map, base); |
| wide_write(map, make_cmd(map, cmd), addr); |
| } |
| |
| static inline int flash_is_busy(struct map_info *map, unsigned long addr, |
| int interleave) |
| { |
| |
| if ((interleave == 2) && (map->buswidth == 4)) { |
| __u32 read1, read2; |
| |
| read1 = wide_read(map, addr); |
| read2 = wide_read(map, addr); |
| |
| return (((read1 >> 16) & D6_MASK) != |
| ((read2 >> 16) & D6_MASK)) || |
| (((read1 & 0xffff) & D6_MASK) != |
| ((read2 & 0xffff) & D6_MASK)); |
| } |
| |
| return ((wide_read(map, addr) & D6_MASK) != |
| (wide_read(map, addr) & D6_MASK)); |
| } |
| |
| static inline void unlock_sector(struct map_info *map, unsigned long sect_addr, |
| int unlock) |
| { |
| /* Sector lock address. A6 = 1 for unlock, A6 = 0 for lock */ |
| int SLA = unlock ? |
| (sect_addr | (0x40 * map->buswidth)) : |
| (sect_addr & ~(0x40 * map->buswidth)) ; |
| |
| __u32 cmd = make_cmd(map, CMD_UNLOCK_SECTOR); |
| |
| wide_write(map, make_cmd(map, CMD_RESET_DATA), 0); |
| wide_write(map, cmd, SLA); /* 1st cycle: write cmd to any address */ |
| wide_write(map, cmd, SLA); /* 2nd cycle: write cmd to any address */ |
| wide_write(map, cmd, SLA); /* 3rd cycle: write cmd to SLA */ |
| } |
| |
| static inline int is_sector_locked(struct map_info *map, |
| unsigned long sect_addr) |
| { |
| int status; |
| |
| wide_write(map, CMD_RESET_DATA, 0); |
| send_cmd(map, sect_addr, CMD_MANUFACTURER_UNLOCK_DATA); |
| |
| /* status is 0x0000 for unlocked and 0x0001 for locked */ |
| status = wide_read(map, sect_addr + (map->buswidth * ADDR_SECTOR_LOCK)); |
| wide_write(map, CMD_RESET_DATA, 0); |
| return status; |
| } |
| |
| static int amd_flash_do_unlock(struct mtd_info *mtd, loff_t ofs, size_t len, |
| int is_unlock) |
| { |
| struct map_info *map; |
| struct mtd_erase_region_info *merip; |
| int eraseoffset, erasesize, eraseblocks; |
| int i; |
| int retval = 0; |
| int lock_status; |
| |
| map = mtd->priv; |
| |
| /* Pass the whole chip through sector by sector and check for each |
| sector if the sector and the given interval overlap */ |
| for(i = 0; i < mtd->numeraseregions; i++) { |
| merip = &mtd->eraseregions[i]; |
| |
| eraseoffset = merip->offset; |
| erasesize = merip->erasesize; |
| eraseblocks = merip->numblocks; |
| |
| if (ofs > eraseoffset + erasesize) |
| continue; |
| |
| while (eraseblocks > 0) { |
| if (ofs < eraseoffset + erasesize && ofs + len > eraseoffset) { |
| unlock_sector(map, eraseoffset, is_unlock); |
| |
| lock_status = is_sector_locked(map, eraseoffset); |
| |
| if (is_unlock && lock_status) { |
| printk("Cannot unlock sector at address %x length %xx\n", |
| eraseoffset, merip->erasesize); |
| retval = -1; |
| } else if (!is_unlock && !lock_status) { |
| printk("Cannot lock sector at address %x length %x\n", |
| eraseoffset, merip->erasesize); |
| retval = -1; |
| } |
| } |
| eraseoffset += erasesize; |
| eraseblocks --; |
| } |
| } |
| return retval; |
| } |
| |
| static int amd_flash_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) |
| { |
| return amd_flash_do_unlock(mtd, ofs, len, 1); |
| } |
| |
| static int amd_flash_lock(struct mtd_info *mtd, loff_t ofs, size_t len) |
| { |
| return amd_flash_do_unlock(mtd, ofs, len, 0); |
| } |
| |
| |
| /* |
| * Reads JEDEC manufacturer ID and device ID and returns the index of the first |
| * matching table entry (-1 if not found or alias for already found chip). |
| */ |
| static int probe_new_chip(struct mtd_info *mtd, __u32 base, |
| struct flchip *chips, |
| struct amd_flash_private *private, |
| const struct amd_flash_info *table, int table_size) |
| { |
| __u32 mfr_id; |
| __u32 dev_id; |
| struct map_info *map = mtd->priv; |
| struct amd_flash_private temp; |
| int i; |
| |
| temp.device_type = DEVICE_TYPE_X16; // Assume X16 (FIXME) |
| temp.interleave = 2; |
| map->fldrv_priv = &temp; |
| |
| /* Enter autoselect mode. */ |
| send_cmd(map, base, CMD_RESET_DATA); |
| send_cmd(map, base, CMD_MANUFACTURER_UNLOCK_DATA); |
| |
| mfr_id = wide_read(map, base + (map->buswidth * ADDR_MANUFACTURER)); |
| dev_id = wide_read(map, base + (map->buswidth * ADDR_DEVICE_ID)); |
| |
| if ((map->buswidth == 4) && ((mfr_id >> 16) == (mfr_id & 0xffff)) && |
| ((dev_id >> 16) == (dev_id & 0xffff))) { |
| mfr_id &= 0xffff; |
| dev_id &= 0xffff; |
| } else { |
| temp.interleave = 1; |
| } |
| |
| for (i = 0; i < table_size; i++) { |
| if ((mfr_id == table[i].mfr_id) && |
| (dev_id == table[i].dev_id)) { |
| if (chips) { |
| int j; |
| |
| /* Is this an alias for an already found chip? |
| * In that case that chip should be in |
| * autoselect mode now. |
| */ |
| for (j = 0; j < private->numchips; j++) { |
| __u32 mfr_id_other; |
| __u32 dev_id_other; |
| |
| mfr_id_other = |
| wide_read(map, chips[j].start + |
| (map->buswidth * |
| ADDR_MANUFACTURER |
| )); |
| dev_id_other = |
| wide_read(map, chips[j].start + |
| (map->buswidth * |
| ADDR_DEVICE_ID)); |
| if (temp.interleave == 2) { |
| mfr_id_other &= 0xffff; |
| dev_id_other &= 0xffff; |
| } |
| if ((mfr_id_other == mfr_id) && |
| (dev_id_other == dev_id)) { |
| |
| /* Exit autoselect mode. */ |
| send_cmd(map, base, |
| CMD_RESET_DATA); |
| |
| return -1; |
| } |
| } |
| |
| if (private->numchips == MAX_AMD_CHIPS) { |
| printk(KERN_WARNING |
| "%s: Too many flash chips " |
| "detected. Increase " |
| "MAX_AMD_CHIPS from %d.\n", |
| map->name, MAX_AMD_CHIPS); |
| |
| return -1; |
| } |
| |
| chips[private->numchips].start = base; |
| chips[private->numchips].state = FL_READY; |
| chips[private->numchips].mutex = |
| &chips[private->numchips]._spinlock; |
| private->numchips++; |
| } |
| |
| printk("%s: Found %d x %ldMiB %s at 0x%x\n", map->name, |
| temp.interleave, (table[i].size)/(1024*1024), |
| table[i].name, base); |
| |
| mtd->size += table[i].size * temp.interleave; |
| mtd->numeraseregions += table[i].numeraseregions; |
| |
| break; |
| } |
| } |
| |
| /* Exit autoselect mode. */ |
| send_cmd(map, base, CMD_RESET_DATA); |
| |
| if (i == table_size) { |
| printk(KERN_DEBUG "%s: unknown flash device at 0x%x, " |
| "mfr id 0x%x, dev id 0x%x\n", map->name, |
| base, mfr_id, dev_id); |
| map->fldrv_priv = NULL; |
| |
| return -1; |
| } |
| |
| private->device_type = temp.device_type; |
| private->interleave = temp.interleave; |
| |
| return i; |
| } |
| |
| |
| |
| static struct mtd_info *amd_flash_probe(struct map_info *map) |
| { |
| static const struct amd_flash_info table[] = { |
| { |
| .mfr_id = MANUFACTURER_AMD, |
| .dev_id = AM29LV160DT, |
| .name = "AMD AM29LV160DT", |
| .size = 0x00200000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, |
| { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_AMD, |
| .dev_id = AM29LV160DB, |
| .name = "AMD AM29LV160DB", |
| .size = 0x00200000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, |
| { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_TOSHIBA, |
| .dev_id = TC58FVT160, |
| .name = "Toshiba TC58FVT160", |
| .size = 0x00200000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, |
| { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_FUJITSU, |
| .dev_id = MBM29LV160TE, |
| .name = "Fujitsu MBM29LV160TE", |
| .size = 0x00200000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, |
| { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_TOSHIBA, |
| .dev_id = TC58FVB160, |
| .name = "Toshiba TC58FVB160", |
| .size = 0x00200000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, |
| { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_FUJITSU, |
| .dev_id = MBM29LV160BE, |
| .name = "Fujitsu MBM29LV160BE", |
| .size = 0x00200000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, |
| { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_AMD, |
| .dev_id = AM29LV800BB, |
| .name = "AMD AM29LV800BB", |
| .size = 0x00100000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, |
| { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_AMD, |
| .dev_id = AM29F800BB, |
| .name = "AMD AM29F800BB", |
| .size = 0x00100000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, |
| { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_AMD, |
| .dev_id = AM29LV800BT, |
| .name = "AMD AM29LV800BT", |
| .size = 0x00100000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, |
| { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_AMD, |
| .dev_id = AM29F800BT, |
| .name = "AMD AM29F800BT", |
| .size = 0x00100000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, |
| { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_AMD, |
| .dev_id = AM29LV800BB, |
| .name = "AMD AM29LV800BB", |
| .size = 0x00100000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, |
| { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_FUJITSU, |
| .dev_id = MBM29LV800BB, |
| .name = "Fujitsu MBM29LV800BB", |
| .size = 0x00100000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, |
| { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_ST, |
| .dev_id = M29W800T, |
| .name = "ST M29W800T", |
| .size = 0x00100000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, |
| { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_ST, |
| .dev_id = M29W160DT, |
| .name = "ST M29W160DT", |
| .size = 0x00200000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, |
| { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_ST, |
| .dev_id = M29W160DB, |
| .name = "ST M29W160DB", |
| .size = 0x00200000, |
| .numeraseregions = 4, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, |
| { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, |
| { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, |
| { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_AMD, |
| .dev_id = AM29BDS323D, |
| .name = "AMD AM29BDS323D", |
| .size = 0x00400000, |
| .numeraseregions = 3, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 48 }, |
| { .offset = 0x300000, .erasesize = 0x10000, .numblocks = 15 }, |
| { .offset = 0x3f0000, .erasesize = 0x02000, .numblocks = 8 }, |
| } |
| }, { |
| .mfr_id = MANUFACTURER_ATMEL, |
| .dev_id = AT49xV16x, |
| .name = "Atmel AT49xV16x", |
| .size = 0x00200000, |
| .numeraseregions = 2, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x02000, .numblocks = 8 }, |
| { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } |
| } |
| }, { |
| .mfr_id = MANUFACTURER_ATMEL, |
| .dev_id = AT49xV16xT, |
| .name = "Atmel AT49xV16xT", |
| .size = 0x00200000, |
| .numeraseregions = 2, |
| .regions = { |
| { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, |
| { .offset = 0x1F0000, .erasesize = 0x02000, .numblocks = 8 } |
| } |
| } |
| }; |
| |
| struct mtd_info *mtd; |
| struct flchip chips[MAX_AMD_CHIPS]; |
| int table_pos[MAX_AMD_CHIPS]; |
| struct amd_flash_private temp; |
| struct amd_flash_private *private; |
| u_long size; |
| unsigned long base; |
| int i; |
| int reg_idx; |
| int offset; |
| |
| mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); |
| if (!mtd) { |
| printk(KERN_WARNING |
| "%s: kmalloc failed for info structure\n", map->name); |
| return NULL; |
| } |
| mtd->priv = map; |
| |
| memset(&temp, 0, sizeof(temp)); |
| |
| printk("%s: Probing for AMD compatible flash...\n", map->name); |
| |
| if ((table_pos[0] = probe_new_chip(mtd, 0, NULL, &temp, table, |
| ARRAY_SIZE(table))) |
| == -1) { |
| printk(KERN_WARNING |
| "%s: Found no AMD compatible device at location zero\n", |
| map->name); |
| kfree(mtd); |
| |
| return NULL; |
| } |
| |
| chips[0].start = 0; |
| chips[0].state = FL_READY; |
| chips[0].mutex = &chips[0]._spinlock; |
| temp.numchips = 1; |
| for (size = mtd->size; size > 1; size >>= 1) { |
| temp.chipshift++; |
| } |
| switch (temp.interleave) { |
| case 2: |
| temp.chipshift += 1; |
| break; |
| case 4: |
| temp.chipshift += 2; |
| break; |
| } |
| |
| /* Find out if there are any more chips in the map. */ |
| for (base = (1 << temp.chipshift); |
| base < map->size; |
| base += (1 << temp.chipshift)) { |
| int numchips = temp.numchips; |
| table_pos[numchips] = probe_new_chip(mtd, base, chips, |
| &temp, table, ARRAY_SIZE(table)); |
| } |
| |
| mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * |
| mtd->numeraseregions, GFP_KERNEL); |
| if (!mtd->eraseregions) { |
| printk(KERN_WARNING "%s: Failed to allocate " |
| "memory for MTD erase region info\n", map->name); |
| kfree(mtd); |
| map->fldrv_priv = NULL; |
| return NULL; |
| } |
| |
| reg_idx = 0; |
| offset = 0; |
| for (i = 0; i < temp.numchips; i++) { |
| int dev_size; |
| int j; |
| |
| dev_size = 0; |
| for (j = 0; j < table[table_pos[i]].numeraseregions; j++) { |
| mtd->eraseregions[reg_idx].offset = offset + |
| (table[table_pos[i]].regions[j].offset * |
| temp.interleave); |
| mtd->eraseregions[reg_idx].erasesize = |
| table[table_pos[i]].regions[j].erasesize * |
| temp.interleave; |
| mtd->eraseregions[reg_idx].numblocks = |
| table[table_pos[i]].regions[j].numblocks; |
| if (mtd->erasesize < |
| mtd->eraseregions[reg_idx].erasesize) { |
| mtd->erasesize = |
| mtd->eraseregions[reg_idx].erasesize; |
| } |
| dev_size += mtd->eraseregions[reg_idx].erasesize * |
| mtd->eraseregions[reg_idx].numblocks; |
| reg_idx++; |
| } |
| offset += dev_size; |
| } |
| mtd->type = MTD_NORFLASH; |
| mtd->writesize = 1; |
| mtd->flags = MTD_CAP_NORFLASH; |
| mtd->name = map->name; |
| mtd->erase = amd_flash_erase; |
| mtd->read = amd_flash_read; |
| mtd->write = amd_flash_write; |
| mtd->sync = amd_flash_sync; |
| mtd->suspend = amd_flash_suspend; |
| mtd->resume = amd_flash_resume; |
| mtd->lock = amd_flash_lock; |
| mtd->unlock = amd_flash_unlock; |
| |
| private = kmalloc(sizeof(*private) + (sizeof(struct flchip) * |
| temp.numchips), GFP_KERNEL); |
| if (!private) { |
| printk(KERN_WARNING |
| "%s: kmalloc failed for private structure\n", map->name); |
| kfree(mtd); |
| map->fldrv_priv = NULL; |
| return NULL; |
| } |
| memcpy(private, &temp, sizeof(temp)); |
| memcpy(private->chips, chips, |
| sizeof(struct flchip) * private->numchips); |
| for (i = 0; i < private->numchips; i++) { |
| init_waitqueue_head(&private->chips[i].wq); |
| spin_lock_init(&private->chips[i]._spinlock); |
| } |
| |
| map->fldrv_priv = private; |
| |
| map->fldrv = &amd_flash_chipdrv; |
| |
| __module_get(THIS_MODULE); |
| return mtd; |
| } |
| |
| |
| |
| static inline int read_one_chip(struct map_info *map, struct flchip *chip, |
| loff_t adr, size_t len, u_char *buf) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| unsigned long timeo = jiffies + HZ; |
| |
| retry: |
| spin_lock_bh(chip->mutex); |
| |
| if (chip->state != FL_READY){ |
| printk(KERN_INFO "%s: waiting for chip to read, state = %d\n", |
| map->name, chip->state); |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| |
| spin_unlock_bh(chip->mutex); |
| |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| |
| if(signal_pending(current)) { |
| return -EINTR; |
| } |
| |
| timeo = jiffies + HZ; |
| |
| goto retry; |
| } |
| |
| adr += chip->start; |
| |
| chip->state = FL_READY; |
| |
| map_copy_from(map, buf, adr, len); |
| |
| wake_up(&chip->wq); |
| spin_unlock_bh(chip->mutex); |
| |
| return 0; |
| } |
| |
| |
| |
| static int amd_flash_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| struct amd_flash_private *private = map->fldrv_priv; |
| unsigned long ofs; |
| int chipnum; |
| int ret = 0; |
| |
| if ((from + len) > mtd->size) { |
| printk(KERN_WARNING "%s: read request past end of device " |
| "(0x%lx)\n", map->name, (unsigned long)from + len); |
| |
| return -EINVAL; |
| } |
| |
| /* Offset within the first chip that the first read should start. */ |
| chipnum = (from >> private->chipshift); |
| ofs = from - (chipnum << private->chipshift); |
| |
| *retlen = 0; |
| |
| while (len) { |
| unsigned long this_len; |
| |
| if (chipnum >= private->numchips) { |
| break; |
| } |
| |
| if ((len + ofs - 1) >> private->chipshift) { |
| this_len = (1 << private->chipshift) - ofs; |
| } else { |
| this_len = len; |
| } |
| |
| ret = read_one_chip(map, &private->chips[chipnum], ofs, |
| this_len, buf); |
| if (ret) { |
| break; |
| } |
| |
| *retlen += this_len; |
| len -= this_len; |
| buf += this_len; |
| |
| ofs = 0; |
| chipnum++; |
| } |
| |
| return ret; |
| } |
| |
| |
| |
| static int write_one_word(struct map_info *map, struct flchip *chip, |
| unsigned long adr, __u32 datum) |
| { |
| unsigned long timeo = jiffies + HZ; |
| struct amd_flash_private *private = map->fldrv_priv; |
| DECLARE_WAITQUEUE(wait, current); |
| int ret = 0; |
| int times_left; |
| |
| retry: |
| spin_lock_bh(chip->mutex); |
| |
| if (chip->state != FL_READY){ |
| printk("%s: waiting for chip to write, state = %d\n", |
| map->name, chip->state); |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| |
| spin_unlock_bh(chip->mutex); |
| |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| printk(KERN_INFO "%s: woke up to write\n", map->name); |
| if(signal_pending(current)) |
| return -EINTR; |
| |
| timeo = jiffies + HZ; |
| |
| goto retry; |
| } |
| |
| chip->state = FL_WRITING; |
| |
| adr += chip->start; |
| ENABLE_VPP(map); |
| send_cmd(map, chip->start, CMD_PROGRAM_UNLOCK_DATA); |
| wide_write(map, datum, adr); |
| |
| times_left = 500000; |
| while (times_left-- && flash_is_busy(map, adr, private->interleave)) { |
| if (need_resched()) { |
| spin_unlock_bh(chip->mutex); |
| schedule(); |
| spin_lock_bh(chip->mutex); |
| } |
| } |
| |
| if (!times_left) { |
| printk(KERN_WARNING "%s: write to 0x%lx timed out!\n", |
| map->name, adr); |
| ret = -EIO; |
| } else { |
| __u32 verify; |
| if ((verify = wide_read(map, adr)) != datum) { |
| printk(KERN_WARNING "%s: write to 0x%lx failed. " |
| "datum = %x, verify = %x\n", |
| map->name, adr, datum, verify); |
| ret = -EIO; |
| } |
| } |
| |
| DISABLE_VPP(map); |
| chip->state = FL_READY; |
| wake_up(&chip->wq); |
| spin_unlock_bh(chip->mutex); |
| |
| return ret; |
| } |
| |
| |
| |
| static int amd_flash_write(struct mtd_info *mtd, loff_t to , size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct map_info *map = mtd->priv; |
| struct amd_flash_private *private = map->fldrv_priv; |
| int ret = 0; |
| int chipnum; |
| unsigned long ofs; |
| unsigned long chipstart; |
| |
| *retlen = 0; |
| if (!len) { |
| return 0; |
| } |
| |
| chipnum = to >> private->chipshift; |
| ofs = to - (chipnum << private->chipshift); |
| chipstart = private->chips[chipnum].start; |
| |
| /* If it's not bus-aligned, do the first byte write. */ |
| if (ofs & (map->buswidth - 1)) { |
| unsigned long bus_ofs = ofs & ~(map->buswidth - 1); |
| int i = ofs - bus_ofs; |
| int n = 0; |
| u_char tmp_buf[4]; |
| __u32 datum; |
| |
| map_copy_from(map, tmp_buf, |
| bus_ofs + private->chips[chipnum].start, |
| map->buswidth); |
| while (len && i < map->buswidth) |
| tmp_buf[i++] = buf[n++], len--; |
| |
| if (map->buswidth == 2) { |
| datum = *(__u16*)tmp_buf; |
| } else if (map->buswidth == 4) { |
| datum = *(__u32*)tmp_buf; |
| } else { |
| return -EINVAL; /* should never happen, but be safe */ |
| } |
| |
| ret = write_one_word(map, &private->chips[chipnum], bus_ofs, |
| datum); |
| if (ret) { |
| return ret; |
| } |
| |
| ofs += n; |
| buf += n; |
| (*retlen) += n; |
| |
| if (ofs >> private->chipshift) { |
| chipnum++; |
| ofs = 0; |
| if (chipnum == private->numchips) { |
| return 0; |
| } |
| } |
| } |
| |
| /* We are now aligned, write as much as possible. */ |
| while(len >= map->buswidth) { |
| __u32 datum; |
| |
| if (map->buswidth == 1) { |
| datum = *(__u8*)buf; |
| } else if (map->buswidth == 2) { |
| datum = *(__u16*)buf; |
| } else if (map->buswidth == 4) { |
| datum = *(__u32*)buf; |
| } else { |
| return -EINVAL; |
| } |
| |
| ret = write_one_word(map, &private->chips[chipnum], ofs, datum); |
| |
| if (ret) { |
| return ret; |
| } |
| |
| ofs += map->buswidth; |
| buf += map->buswidth; |
| (*retlen) += map->buswidth; |
| len -= map->buswidth; |
| |
| if (ofs >> private->chipshift) { |
| chipnum++; |
| ofs = 0; |
| if (chipnum == private->numchips) { |
| return 0; |
| } |
| chipstart = private->chips[chipnum].start; |
| } |
| } |
| |
| if (len & (map->buswidth - 1)) { |
| int i = 0, n = 0; |
| u_char tmp_buf[2]; |
| __u32 datum; |
| |
| map_copy_from(map, tmp_buf, |
| ofs + private->chips[chipnum].start, |
| map->buswidth); |
| while (len--) { |
| tmp_buf[i++] = buf[n++]; |
| } |
| |
| if (map->buswidth == 2) { |
| datum = *(__u16*)tmp_buf; |
| } else if (map->buswidth == 4) { |
| datum = *(__u32*)tmp_buf; |
| } else { |
| return -EINVAL; /* should never happen, but be safe */ |
| } |
| |
| ret = write_one_word(map, &private->chips[chipnum], ofs, datum); |
| |
| if (ret) { |
| return ret; |
| } |
| |
| (*retlen) += n; |
| } |
| |
| return 0; |
| } |
| |
| |
| |
| static inline int erase_one_block(struct map_info *map, struct flchip *chip, |
| unsigned long adr, u_long size) |
| { |
| unsigned long timeo = jiffies + HZ; |
| struct amd_flash_private *private = map->fldrv_priv; |
| DECLARE_WAITQUEUE(wait, current); |
| |
| retry: |
| spin_lock_bh(chip->mutex); |
| |
| if (chip->state != FL_READY){ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| |
| spin_unlock_bh(chip->mutex); |
| |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| |
| if (signal_pending(current)) { |
| return -EINTR; |
| } |
| |
| timeo = jiffies + HZ; |
| |
| goto retry; |
| } |
| |
| chip->state = FL_ERASING; |
| |
| adr += chip->start; |
| ENABLE_VPP(map); |
| send_cmd(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA); |
| send_cmd_to_addr(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA_2, adr); |
| |
| timeo = jiffies + (HZ * 20); |
| |
| spin_unlock_bh(chip->mutex); |
| msleep(1000); |
| spin_lock_bh(chip->mutex); |
| |
| while (flash_is_busy(map, adr, private->interleave)) { |
| |
| if (chip->state != FL_ERASING) { |
| /* Someone's suspended the erase. Sleep */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&chip->wq, &wait); |
| |
| spin_unlock_bh(chip->mutex); |
| printk(KERN_INFO "%s: erase suspended. Sleeping\n", |
| map->name); |
| schedule(); |
| remove_wait_queue(&chip->wq, &wait); |
| |
| if (signal_pending(current)) { |
| return -EINTR; |
| } |
| |
| timeo = jiffies + (HZ*2); /* FIXME */ |
| spin_lock_bh(chip->mutex); |
| continue; |
| } |
| |
| /* OK Still waiting */ |
| if (time_after(jiffies, timeo)) { |
| chip->state = FL_READY; |
| spin_unlock_bh(chip->mutex); |
| printk(KERN_WARNING "%s: waiting for erase to complete " |
| "timed out.\n", map->name); |
| DISABLE_VPP(map); |
| |
| return -EIO; |
| } |
| |
| /* Latency issues. Drop the lock, wait a while and retry */ |
| spin_unlock_bh(chip->mutex); |
| |
| if (need_resched()) |
| schedule(); |
| else |
| udelay(1); |
| |
| spin_lock_bh(chip->mutex); |
| } |
| |
| /* Verify every single word */ |
| { |
| int address; |
| int error = 0; |
| __u8 verify; |
| |
| for (address = adr; address < (adr + size); address++) { |
| if ((verify = map_read8(map, address)) != 0xFF) { |
| error = 1; |
| break; |
| } |
| } |
| if (error) { |
| chip->state = FL_READY; |
| spin_unlock_bh(chip->mutex); |
| printk(KERN_WARNING |
| "%s: verify error at 0x%x, size %ld.\n", |
| map->name, address, size); |
| DISABLE_VPP(map); |
| |
| return -EIO; |
| } |
| } |
| |
| DISABLE_VPP(map); |
| chip->state = FL_READY; |
| wake_up(&chip->wq); |
| spin_unlock_bh(chip->mutex); |
| |
| return 0; |
| } |
| |
| |
| |
| static int amd_flash_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| struct map_info *map = mtd->priv; |
| struct amd_flash_private *private = map->fldrv_priv; |
| unsigned long adr, len; |
| int chipnum; |
| int ret = 0; |
| int i; |
| int first; |
| struct mtd_erase_region_info *regions = mtd->eraseregions; |
| |
| if (instr->addr > mtd->size) { |
| return -EINVAL; |
| } |
| |
| if ((instr->len + instr->addr) > mtd->size) { |
| return -EINVAL; |
| } |
| |
| /* Check that both start and end of the requested erase are |
| * aligned with the erasesize at the appropriate addresses. |
| */ |
| |
| i = 0; |
| |
| /* Skip all erase regions which are ended before the start of |
| the requested erase. Actually, to save on the calculations, |
| we skip to the first erase region which starts after the |
| start of the requested erase, and then go back one. |
| */ |
| |
| while ((i < mtd->numeraseregions) && |
| (instr->addr >= regions[i].offset)) { |
| i++; |
| } |
| i--; |
| |
| /* OK, now i is pointing at the erase region in which this |
| * erase request starts. Check the start of the requested |
| * erase range is aligned with the erase size which is in |
| * effect here. |
| */ |
| |
| if (instr->addr & (regions[i].erasesize-1)) { |
| return -EINVAL; |
| } |
| |
| /* Remember the erase region we start on. */ |
| |
| first = i; |
| |
| /* Next, check that the end of the requested erase is aligned |
| * with the erase region at that address. |
| */ |
| |
| while ((i < mtd->numeraseregions) && |
| ((instr->addr + instr->len) >= regions[i].offset)) { |
| i++; |
| } |
| |
| /* As before, drop back one to point at the region in which |
| * the address actually falls. |
| */ |
| |
| i--; |
| |
| if ((instr->addr + instr->len) & (regions[i].erasesize-1)) { |
| return -EINVAL; |
| } |
| |
| chipnum = instr->addr >> private->chipshift; |
| adr = instr->addr - (chipnum << private->chipshift); |
| len = instr->len; |
| |
| i = first; |
| |
| while (len) { |
| ret = erase_one_block(map, &private->chips[chipnum], adr, |
| regions[i].erasesize); |
| |
| if (ret) { |
| return ret; |
| } |
| |
| adr += regions[i].erasesize; |
| len -= regions[i].erasesize; |
| |
| if ((adr % (1 << private->chipshift)) == |
| ((regions[i].offset + (regions[i].erasesize * |
| regions[i].numblocks)) |
| % (1 << private->chipshift))) { |
| i++; |
| } |
| |
| if (adr >> private->chipshift) { |
| adr = 0; |
| chipnum++; |
| if (chipnum >= private->numchips) { |
| break; |
| } |
| } |
| } |
| |
| instr->state = MTD_ERASE_DONE; |
| mtd_erase_callback(instr); |
| |
| return 0; |
| } |
| |
| |
| |
| static void amd_flash_sync(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct amd_flash_private *private = map->fldrv_priv; |
| int i; |
| struct flchip *chip; |
| int ret = 0; |
| DECLARE_WAITQUEUE(wait, current); |
| |
| for (i = 0; !ret && (i < private->numchips); i++) { |
| chip = &private->chips[i]; |
| |
| retry: |
| spin_lock_bh(chip->mutex); |
| |
| switch(chip->state) { |
| case FL_READY: |
| case FL_STATUS: |
| case FL_CFI_QUERY: |
| case FL_JEDEC_QUERY: |
| chip->oldstate = chip->state; |
| chip->state = FL_SYNCING; |
| /* No need to wake_up() on this state change - |
| * as the whole point is that nobody can do anything |
| * with the chip now anyway. |
| */ |
| case FL_SYNCING: |
| spin_unlock_bh(chip->mutex); |
| break; |
| |
| default: |
| /* Not an idle state */ |
| add_wait_queue(&chip->wq, &wait); |
| |
| spin_unlock_bh(chip->mutex); |
| |
| schedule(); |
| |
| remove_wait_queue(&chip->wq, &wait); |
| |
| goto retry; |
| } |
| } |
| |
| /* Unlock the chips again */ |
| for (i--; i >= 0; i--) { |
| chip = &private->chips[i]; |
| |
| spin_lock_bh(chip->mutex); |
| |
| if (chip->state == FL_SYNCING) { |
| chip->state = chip->oldstate; |
| wake_up(&chip->wq); |
| } |
| spin_unlock_bh(chip->mutex); |
| } |
| } |
| |
| |
| |
| static int amd_flash_suspend(struct mtd_info *mtd) |
| { |
| printk("amd_flash_suspend(): not implemented!\n"); |
| return -EINVAL; |
| } |
| |
| |
| |
| static void amd_flash_resume(struct mtd_info *mtd) |
| { |
| printk("amd_flash_resume(): not implemented!\n"); |
| } |
| |
| |
| |
| static void amd_flash_destroy(struct mtd_info *mtd) |
| { |
| struct map_info *map = mtd->priv; |
| struct amd_flash_private *private = map->fldrv_priv; |
| kfree(private); |
| } |
| |
| int __init amd_flash_init(void) |
| { |
| register_mtd_chip_driver(&amd_flash_chipdrv); |
| return 0; |
| } |
| |
| void __exit amd_flash_exit(void) |
| { |
| unregister_mtd_chip_driver(&amd_flash_chipdrv); |
| } |
| |
| module_init(amd_flash_init); |
| module_exit(amd_flash_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Jonas Holmberg <jonas.holmberg@axis.com>"); |
| MODULE_DESCRIPTION("Old MTD chip driver for AMD flash chips"); |