| /* |
| * linux/arch/arm/mm/context.c |
| * |
| * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved. |
| * Copyright (C) 2012 ARM Limited |
| * |
| * Author: Will Deacon <will.deacon@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/init.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/percpu.h> |
| |
| #include <asm/mmu_context.h> |
| #include <asm/smp_plat.h> |
| #include <asm/thread_notify.h> |
| #include <asm/tlbflush.h> |
| #include <asm/proc-fns.h> |
| |
| /* |
| * On ARMv6, we have the following structure in the Context ID: |
| * |
| * 31 7 0 |
| * +-------------------------+-----------+ |
| * | process ID | ASID | |
| * +-------------------------+-----------+ |
| * | context ID | |
| * +-------------------------------------+ |
| * |
| * The ASID is used to tag entries in the CPU caches and TLBs. |
| * The context ID is used by debuggers and trace logic, and |
| * should be unique within all running processes. |
| * |
| * In big endian operation, the two 32 bit words are swapped if accessed |
| * by non-64-bit operations. |
| */ |
| #define ASID_FIRST_VERSION (1ULL << ASID_BITS) |
| #define NUM_USER_ASIDS ASID_FIRST_VERSION |
| |
| static DEFINE_RAW_SPINLOCK(cpu_asid_lock); |
| static atomic64_t asid_generation = ATOMIC64_INIT(ASID_FIRST_VERSION); |
| static DECLARE_BITMAP(asid_map, NUM_USER_ASIDS); |
| |
| static DEFINE_PER_CPU(atomic64_t, active_asids); |
| static DEFINE_PER_CPU(u64, reserved_asids); |
| static cpumask_t tlb_flush_pending; |
| |
| #ifdef CONFIG_ARM_ERRATA_798181 |
| void a15_erratum_get_cpumask(int this_cpu, struct mm_struct *mm, |
| cpumask_t *mask) |
| { |
| int cpu; |
| unsigned long flags; |
| u64 context_id, asid; |
| |
| raw_spin_lock_irqsave(&cpu_asid_lock, flags); |
| context_id = mm->context.id.counter; |
| for_each_online_cpu(cpu) { |
| if (cpu == this_cpu) |
| continue; |
| /* |
| * We only need to send an IPI if the other CPUs are |
| * running the same ASID as the one being invalidated. |
| */ |
| asid = per_cpu(active_asids, cpu).counter; |
| if (asid == 0) |
| asid = per_cpu(reserved_asids, cpu); |
| if (context_id == asid) |
| cpumask_set_cpu(cpu, mask); |
| } |
| raw_spin_unlock_irqrestore(&cpu_asid_lock, flags); |
| } |
| #endif |
| |
| #ifdef CONFIG_ARM_LPAE |
| /* |
| * With LPAE, the ASID and page tables are updated atomicly, so there is |
| * no need for a reserved set of tables (the active ASID tracking prevents |
| * any issues across a rollover). |
| */ |
| #define cpu_set_reserved_ttbr0() |
| #else |
| static void cpu_set_reserved_ttbr0(void) |
| { |
| u32 ttb; |
| /* |
| * Copy TTBR1 into TTBR0. |
| * This points at swapper_pg_dir, which contains only global |
| * entries so any speculative walks are perfectly safe. |
| */ |
| asm volatile( |
| " mrc p15, 0, %0, c2, c0, 1 @ read TTBR1\n" |
| " mcr p15, 0, %0, c2, c0, 0 @ set TTBR0\n" |
| : "=r" (ttb)); |
| isb(); |
| } |
| #endif |
| |
| #ifdef CONFIG_PID_IN_CONTEXTIDR |
| static int contextidr_notifier(struct notifier_block *unused, unsigned long cmd, |
| void *t) |
| { |
| u32 contextidr; |
| pid_t pid; |
| struct thread_info *thread = t; |
| |
| if (cmd != THREAD_NOTIFY_SWITCH) |
| return NOTIFY_DONE; |
| |
| pid = task_pid_nr(thread->task) << ASID_BITS; |
| asm volatile( |
| " mrc p15, 0, %0, c13, c0, 1\n" |
| " and %0, %0, %2\n" |
| " orr %0, %0, %1\n" |
| " mcr p15, 0, %0, c13, c0, 1\n" |
| : "=r" (contextidr), "+r" (pid) |
| : "I" (~ASID_MASK)); |
| isb(); |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block contextidr_notifier_block = { |
| .notifier_call = contextidr_notifier, |
| }; |
| |
| static int __init contextidr_notifier_init(void) |
| { |
| return thread_register_notifier(&contextidr_notifier_block); |
| } |
| arch_initcall(contextidr_notifier_init); |
| #endif |
| |
| static void flush_context(unsigned int cpu) |
| { |
| int i; |
| u64 asid; |
| |
| /* Update the list of reserved ASIDs and the ASID bitmap. */ |
| bitmap_clear(asid_map, 0, NUM_USER_ASIDS); |
| for_each_possible_cpu(i) { |
| if (i == cpu) { |
| asid = 0; |
| } else { |
| asid = atomic64_xchg(&per_cpu(active_asids, i), 0); |
| /* |
| * If this CPU has already been through a |
| * rollover, but hasn't run another task in |
| * the meantime, we must preserve its reserved |
| * ASID, as this is the only trace we have of |
| * the process it is still running. |
| */ |
| if (asid == 0) |
| asid = per_cpu(reserved_asids, i); |
| __set_bit(asid & ~ASID_MASK, asid_map); |
| } |
| per_cpu(reserved_asids, i) = asid; |
| } |
| |
| /* Queue a TLB invalidate and flush the I-cache if necessary. */ |
| cpumask_setall(&tlb_flush_pending); |
| |
| if (icache_is_vivt_asid_tagged()) |
| __flush_icache_all(); |
| } |
| |
| static int is_reserved_asid(u64 asid) |
| { |
| int cpu; |
| for_each_possible_cpu(cpu) |
| if (per_cpu(reserved_asids, cpu) == asid) |
| return 1; |
| return 0; |
| } |
| |
| static u64 new_context(struct mm_struct *mm, unsigned int cpu) |
| { |
| static u32 cur_idx = 1; |
| u64 asid = atomic64_read(&mm->context.id); |
| u64 generation = atomic64_read(&asid_generation); |
| |
| if (asid != 0) { |
| /* |
| * If our current ASID was active during a rollover, we |
| * can continue to use it and this was just a false alarm. |
| */ |
| if (is_reserved_asid(asid)) |
| return generation | (asid & ~ASID_MASK); |
| |
| /* |
| * We had a valid ASID in a previous life, so try to re-use |
| * it if possible., |
| */ |
| asid &= ~ASID_MASK; |
| if (!__test_and_set_bit(asid, asid_map)) |
| goto bump_gen; |
| } |
| |
| /* |
| * Allocate a free ASID. If we can't find one, take a note of the |
| * currently active ASIDs and mark the TLBs as requiring flushes. |
| * We always count from ASID #1, as we reserve ASID #0 to switch |
| * via TTBR0 and to avoid speculative page table walks from hitting |
| * in any partial walk caches, which could be populated from |
| * overlapping level-1 descriptors used to map both the module |
| * area and the userspace stack. |
| */ |
| asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx); |
| if (asid == NUM_USER_ASIDS) { |
| generation = atomic64_add_return(ASID_FIRST_VERSION, |
| &asid_generation); |
| flush_context(cpu); |
| asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1); |
| } |
| |
| __set_bit(asid, asid_map); |
| cur_idx = asid; |
| |
| bump_gen: |
| asid |= generation; |
| cpumask_clear(mm_cpumask(mm)); |
| return asid; |
| } |
| |
| void check_and_switch_context(struct mm_struct *mm, struct task_struct *tsk) |
| { |
| unsigned long flags; |
| unsigned int cpu = smp_processor_id(); |
| u64 asid; |
| |
| if (unlikely(mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)) |
| __check_vmalloc_seq(mm); |
| |
| /* |
| * We cannot update the pgd and the ASID atomicly with classic |
| * MMU, so switch exclusively to global mappings to avoid |
| * speculative page table walking with the wrong TTBR. |
| */ |
| cpu_set_reserved_ttbr0(); |
| |
| asid = atomic64_read(&mm->context.id); |
| if (!((asid ^ atomic64_read(&asid_generation)) >> ASID_BITS) |
| && atomic64_xchg(&per_cpu(active_asids, cpu), asid)) |
| goto switch_mm_fastpath; |
| |
| raw_spin_lock_irqsave(&cpu_asid_lock, flags); |
| /* Check that our ASID belongs to the current generation. */ |
| asid = atomic64_read(&mm->context.id); |
| if ((asid ^ atomic64_read(&asid_generation)) >> ASID_BITS) { |
| asid = new_context(mm, cpu); |
| atomic64_set(&mm->context.id, asid); |
| } |
| |
| if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending)) { |
| local_flush_bp_all(); |
| local_flush_tlb_all(); |
| } |
| |
| atomic64_set(&per_cpu(active_asids, cpu), asid); |
| cpumask_set_cpu(cpu, mm_cpumask(mm)); |
| raw_spin_unlock_irqrestore(&cpu_asid_lock, flags); |
| |
| switch_mm_fastpath: |
| cpu_switch_mm(mm->pgd, mm); |
| } |