| /* |
| * OMAP2/3/4 DPLL clock functions |
| * |
| * Copyright (C) 2005-2008 Texas Instruments, Inc. |
| * Copyright (C) 2004-2010 Nokia Corporation |
| * |
| * Contacts: |
| * Richard Woodruff <r-woodruff2@ti.com> |
| * Paul Walmsley |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #undef DEBUG |
| |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/clk.h> |
| #include <linux/clk-provider.h> |
| #include <linux/io.h> |
| #include <linux/clk/ti.h> |
| |
| #include <asm/div64.h> |
| |
| #include "clock.h" |
| |
| /* DPLL rate rounding: minimum DPLL multiplier, divider values */ |
| #define DPLL_MIN_MULTIPLIER 2 |
| #define DPLL_MIN_DIVIDER 1 |
| |
| /* Possible error results from _dpll_test_mult */ |
| #define DPLL_MULT_UNDERFLOW -1 |
| |
| /* |
| * Scale factor to mitigate roundoff errors in DPLL rate rounding. |
| * The higher the scale factor, the greater the risk of arithmetic overflow, |
| * but the closer the rounded rate to the target rate. DPLL_SCALE_FACTOR |
| * must be a power of DPLL_SCALE_BASE. |
| */ |
| #define DPLL_SCALE_FACTOR 64 |
| #define DPLL_SCALE_BASE 2 |
| #define DPLL_ROUNDING_VAL ((DPLL_SCALE_BASE / 2) * \ |
| (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE)) |
| |
| /* |
| * DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx. |
| * From device data manual section 4.3 "DPLL and DLL Specifications". |
| */ |
| #define OMAP3PLUS_DPLL_FINT_JTYPE_MIN 500000 |
| #define OMAP3PLUS_DPLL_FINT_JTYPE_MAX 2500000 |
| |
| /* _dpll_test_fint() return codes */ |
| #define DPLL_FINT_UNDERFLOW -1 |
| #define DPLL_FINT_INVALID -2 |
| |
| /* Private functions */ |
| |
| /* |
| * _dpll_test_fint - test whether an Fint value is valid for the DPLL |
| * @clk: DPLL struct clk to test |
| * @n: divider value (N) to test |
| * |
| * Tests whether a particular divider @n will result in a valid DPLL |
| * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter |
| * Correction". Returns 0 if OK, -1 if the enclosing loop can terminate |
| * (assuming that it is counting N upwards), or -2 if the enclosing loop |
| * should skip to the next iteration (again assuming N is increasing). |
| */ |
| static int _dpll_test_fint(struct clk_hw_omap *clk, unsigned int n) |
| { |
| struct dpll_data *dd; |
| long fint, fint_min, fint_max; |
| int ret = 0; |
| |
| dd = clk->dpll_data; |
| |
| /* DPLL divider must result in a valid jitter correction val */ |
| fint = clk_hw_get_rate(clk_hw_get_parent(&clk->hw)) / n; |
| |
| if (dd->flags & DPLL_J_TYPE) { |
| fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN; |
| fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX; |
| } else { |
| fint_min = ti_clk_get_features()->fint_min; |
| fint_max = ti_clk_get_features()->fint_max; |
| } |
| |
| if (!fint_min || !fint_max) { |
| WARN(1, "No fint limits available!\n"); |
| return DPLL_FINT_INVALID; |
| } |
| |
| if (fint < ti_clk_get_features()->fint_min) { |
| pr_debug("rejecting n=%d due to Fint failure, lowering max_divider\n", |
| n); |
| dd->max_divider = n; |
| ret = DPLL_FINT_UNDERFLOW; |
| } else if (fint > ti_clk_get_features()->fint_max) { |
| pr_debug("rejecting n=%d due to Fint failure, boosting min_divider\n", |
| n); |
| dd->min_divider = n; |
| ret = DPLL_FINT_INVALID; |
| } else if (fint > ti_clk_get_features()->fint_band1_max && |
| fint < ti_clk_get_features()->fint_band2_min) { |
| pr_debug("rejecting n=%d due to Fint failure\n", n); |
| ret = DPLL_FINT_INVALID; |
| } |
| |
| return ret; |
| } |
| |
| static unsigned long _dpll_compute_new_rate(unsigned long parent_rate, |
| unsigned int m, unsigned int n) |
| { |
| unsigned long long num; |
| |
| num = (unsigned long long)parent_rate * m; |
| do_div(num, n); |
| return num; |
| } |
| |
| /* |
| * _dpll_test_mult - test a DPLL multiplier value |
| * @m: pointer to the DPLL m (multiplier) value under test |
| * @n: current DPLL n (divider) value under test |
| * @new_rate: pointer to storage for the resulting rounded rate |
| * @target_rate: the desired DPLL rate |
| * @parent_rate: the DPLL's parent clock rate |
| * |
| * This code tests a DPLL multiplier value, ensuring that the |
| * resulting rate will not be higher than the target_rate, and that |
| * the multiplier value itself is valid for the DPLL. Initially, the |
| * integer pointed to by the m argument should be prescaled by |
| * multiplying by DPLL_SCALE_FACTOR. The code will replace this with |
| * a non-scaled m upon return. This non-scaled m will result in a |
| * new_rate as close as possible to target_rate (but not greater than |
| * target_rate) given the current (parent_rate, n, prescaled m) |
| * triple. Returns DPLL_MULT_UNDERFLOW in the event that the |
| * non-scaled m attempted to underflow, which can allow the calling |
| * function to bail out early; or 0 upon success. |
| */ |
| static int _dpll_test_mult(int *m, int n, unsigned long *new_rate, |
| unsigned long target_rate, |
| unsigned long parent_rate) |
| { |
| int r = 0, carry = 0; |
| |
| /* Unscale m and round if necessary */ |
| if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL) |
| carry = 1; |
| *m = (*m / DPLL_SCALE_FACTOR) + carry; |
| |
| /* |
| * The new rate must be <= the target rate to avoid programming |
| * a rate that is impossible for the hardware to handle |
| */ |
| *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); |
| if (*new_rate > target_rate) { |
| (*m)--; |
| *new_rate = 0; |
| } |
| |
| /* Guard against m underflow */ |
| if (*m < DPLL_MIN_MULTIPLIER) { |
| *m = DPLL_MIN_MULTIPLIER; |
| *new_rate = 0; |
| r = DPLL_MULT_UNDERFLOW; |
| } |
| |
| if (*new_rate == 0) |
| *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); |
| |
| return r; |
| } |
| |
| /** |
| * _omap2_dpll_is_in_bypass - check if DPLL is in bypass mode or not |
| * @v: bitfield value of the DPLL enable |
| * |
| * Checks given DPLL enable bitfield to see whether the DPLL is in bypass |
| * mode or not. Returns 1 if the DPLL is in bypass, 0 otherwise. |
| */ |
| static int _omap2_dpll_is_in_bypass(u32 v) |
| { |
| u8 mask, val; |
| |
| mask = ti_clk_get_features()->dpll_bypass_vals; |
| |
| /* |
| * Each set bit in the mask corresponds to a bypass value equal |
| * to the bitshift. Go through each set-bit in the mask and |
| * compare against the given register value. |
| */ |
| while (mask) { |
| val = __ffs(mask); |
| mask ^= (1 << val); |
| if (v == val) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Public functions */ |
| u8 omap2_init_dpll_parent(struct clk_hw *hw) |
| { |
| struct clk_hw_omap *clk = to_clk_hw_omap(hw); |
| u32 v; |
| struct dpll_data *dd; |
| |
| dd = clk->dpll_data; |
| if (!dd) |
| return -EINVAL; |
| |
| v = ti_clk_ll_ops->clk_readl(dd->control_reg); |
| v &= dd->enable_mask; |
| v >>= __ffs(dd->enable_mask); |
| |
| /* Reparent the struct clk in case the dpll is in bypass */ |
| if (_omap2_dpll_is_in_bypass(v)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /** |
| * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate |
| * @clk: struct clk * of a DPLL |
| * |
| * DPLLs can be locked or bypassed - basically, enabled or disabled. |
| * When locked, the DPLL output depends on the M and N values. When |
| * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock |
| * or sys_clk. Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and |
| * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively |
| * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk. |
| * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is |
| * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0 |
| * if the clock @clk is not a DPLL. |
| */ |
| unsigned long omap2_get_dpll_rate(struct clk_hw_omap *clk) |
| { |
| long long dpll_clk; |
| u32 dpll_mult, dpll_div, v; |
| struct dpll_data *dd; |
| |
| dd = clk->dpll_data; |
| if (!dd) |
| return 0; |
| |
| /* Return bypass rate if DPLL is bypassed */ |
| v = ti_clk_ll_ops->clk_readl(dd->control_reg); |
| v &= dd->enable_mask; |
| v >>= __ffs(dd->enable_mask); |
| |
| if (_omap2_dpll_is_in_bypass(v)) |
| return clk_get_rate(dd->clk_bypass); |
| |
| v = ti_clk_ll_ops->clk_readl(dd->mult_div1_reg); |
| dpll_mult = v & dd->mult_mask; |
| dpll_mult >>= __ffs(dd->mult_mask); |
| dpll_div = v & dd->div1_mask; |
| dpll_div >>= __ffs(dd->div1_mask); |
| |
| dpll_clk = (long long)clk_get_rate(dd->clk_ref) * dpll_mult; |
| do_div(dpll_clk, dpll_div + 1); |
| |
| return dpll_clk; |
| } |
| |
| /* DPLL rate rounding code */ |
| |
| /** |
| * omap2_dpll_round_rate - round a target rate for an OMAP DPLL |
| * @clk: struct clk * for a DPLL |
| * @target_rate: desired DPLL clock rate |
| * |
| * Given a DPLL and a desired target rate, round the target rate to a |
| * possible, programmable rate for this DPLL. Attempts to select the |
| * minimum possible n. Stores the computed (m, n) in the DPLL's |
| * dpll_data structure so set_rate() will not need to call this |
| * (expensive) function again. Returns ~0 if the target rate cannot |
| * be rounded, or the rounded rate upon success. |
| */ |
| long omap2_dpll_round_rate(struct clk_hw *hw, unsigned long target_rate, |
| unsigned long *parent_rate) |
| { |
| struct clk_hw_omap *clk = to_clk_hw_omap(hw); |
| int m, n, r, scaled_max_m; |
| int min_delta_m = INT_MAX, min_delta_n = INT_MAX; |
| unsigned long scaled_rt_rp; |
| unsigned long new_rate = 0; |
| struct dpll_data *dd; |
| unsigned long ref_rate; |
| long delta; |
| long prev_min_delta = LONG_MAX; |
| const char *clk_name; |
| |
| if (!clk || !clk->dpll_data) |
| return ~0; |
| |
| dd = clk->dpll_data; |
| |
| ref_rate = clk_get_rate(dd->clk_ref); |
| clk_name = clk_hw_get_name(hw); |
| pr_debug("clock: %s: starting DPLL round_rate, target rate %lu\n", |
| clk_name, target_rate); |
| |
| scaled_rt_rp = target_rate / (ref_rate / DPLL_SCALE_FACTOR); |
| scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR; |
| |
| dd->last_rounded_rate = 0; |
| |
| for (n = dd->min_divider; n <= dd->max_divider; n++) { |
| /* Is the (input clk, divider) pair valid for the DPLL? */ |
| r = _dpll_test_fint(clk, n); |
| if (r == DPLL_FINT_UNDERFLOW) |
| break; |
| else if (r == DPLL_FINT_INVALID) |
| continue; |
| |
| /* Compute the scaled DPLL multiplier, based on the divider */ |
| m = scaled_rt_rp * n; |
| |
| /* |
| * Since we're counting n up, a m overflow means we |
| * can bail out completely (since as n increases in |
| * the next iteration, there's no way that m can |
| * increase beyond the current m) |
| */ |
| if (m > scaled_max_m) |
| break; |
| |
| r = _dpll_test_mult(&m, n, &new_rate, target_rate, |
| ref_rate); |
| |
| /* m can't be set low enough for this n - try with a larger n */ |
| if (r == DPLL_MULT_UNDERFLOW) |
| continue; |
| |
| /* skip rates above our target rate */ |
| delta = target_rate - new_rate; |
| if (delta < 0) |
| continue; |
| |
| if (delta < prev_min_delta) { |
| prev_min_delta = delta; |
| min_delta_m = m; |
| min_delta_n = n; |
| } |
| |
| pr_debug("clock: %s: m = %d: n = %d: new_rate = %lu\n", |
| clk_name, m, n, new_rate); |
| |
| if (delta == 0) |
| break; |
| } |
| |
| if (prev_min_delta == LONG_MAX) { |
| pr_debug("clock: %s: cannot round to rate %lu\n", |
| clk_name, target_rate); |
| return ~0; |
| } |
| |
| dd->last_rounded_m = min_delta_m; |
| dd->last_rounded_n = min_delta_n; |
| dd->last_rounded_rate = target_rate - prev_min_delta; |
| |
| return dd->last_rounded_rate; |
| } |