blob: b1315e197ffba3701fee63a68828895174152b8e [file] [log] [blame]
/*
* PCIe driver for Marvell Armada 370 and Armada XP SoCs
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/module.h>
#include <linux/mbus.h>
#include <linux/msi.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_gpio.h>
#include <linux/of_pci.h>
#include <linux/of_platform.h>
/*
* PCIe unit register offsets.
*/
#define PCIE_DEV_ID_OFF 0x0000
#define PCIE_CMD_OFF 0x0004
#define PCIE_DEV_REV_OFF 0x0008
#define PCIE_BAR_LO_OFF(n) (0x0010 + ((n) << 3))
#define PCIE_BAR_HI_OFF(n) (0x0014 + ((n) << 3))
#define PCIE_HEADER_LOG_4_OFF 0x0128
#define PCIE_BAR_CTRL_OFF(n) (0x1804 + (((n) - 1) * 4))
#define PCIE_WIN04_CTRL_OFF(n) (0x1820 + ((n) << 4))
#define PCIE_WIN04_BASE_OFF(n) (0x1824 + ((n) << 4))
#define PCIE_WIN04_REMAP_OFF(n) (0x182c + ((n) << 4))
#define PCIE_WIN5_CTRL_OFF 0x1880
#define PCIE_WIN5_BASE_OFF 0x1884
#define PCIE_WIN5_REMAP_OFF 0x188c
#define PCIE_CONF_ADDR_OFF 0x18f8
#define PCIE_CONF_ADDR_EN 0x80000000
#define PCIE_CONF_REG(r) ((((r) & 0xf00) << 16) | ((r) & 0xfc))
#define PCIE_CONF_BUS(b) (((b) & 0xff) << 16)
#define PCIE_CONF_DEV(d) (((d) & 0x1f) << 11)
#define PCIE_CONF_FUNC(f) (((f) & 0x7) << 8)
#define PCIE_CONF_ADDR(bus, devfn, where) \
(PCIE_CONF_BUS(bus) | PCIE_CONF_DEV(PCI_SLOT(devfn)) | \
PCIE_CONF_FUNC(PCI_FUNC(devfn)) | PCIE_CONF_REG(where) | \
PCIE_CONF_ADDR_EN)
#define PCIE_CONF_DATA_OFF 0x18fc
#define PCIE_MASK_OFF 0x1910
#define PCIE_MASK_ENABLE_INTS 0x0f000000
#define PCIE_CTRL_OFF 0x1a00
#define PCIE_CTRL_X1_MODE 0x0001
#define PCIE_STAT_OFF 0x1a04
#define PCIE_STAT_BUS 0xff00
#define PCIE_STAT_DEV 0x1f0000
#define PCIE_STAT_LINK_DOWN BIT(0)
#define PCIE_DEBUG_CTRL 0x1a60
#define PCIE_DEBUG_SOFT_RESET BIT(20)
/* PCI configuration space of a PCI-to-PCI bridge */
struct mvebu_sw_pci_bridge {
u16 vendor;
u16 device;
u16 command;
u16 class;
u8 interface;
u8 revision;
u8 bist;
u8 header_type;
u8 latency_timer;
u8 cache_line_size;
u32 bar[2];
u8 primary_bus;
u8 secondary_bus;
u8 subordinate_bus;
u8 secondary_latency_timer;
u8 iobase;
u8 iolimit;
u16 secondary_status;
u16 membase;
u16 memlimit;
u16 iobaseupper;
u16 iolimitupper;
u8 cappointer;
u8 reserved1;
u16 reserved2;
u32 romaddr;
u8 intline;
u8 intpin;
u16 bridgectrl;
};
struct mvebu_pcie_port;
/* Structure representing all PCIe interfaces */
struct mvebu_pcie {
struct platform_device *pdev;
struct mvebu_pcie_port *ports;
struct msi_chip *msi;
struct resource io;
char io_name[30];
struct resource realio;
char mem_name[30];
struct resource mem;
struct resource busn;
int nports;
};
/* Structure representing one PCIe interface */
struct mvebu_pcie_port {
char *name;
void __iomem *base;
u32 port;
u32 lane;
int devfn;
unsigned int mem_target;
unsigned int mem_attr;
unsigned int io_target;
unsigned int io_attr;
struct clk *clk;
int reset_gpio;
int reset_active_low;
char *reset_name;
struct mvebu_sw_pci_bridge bridge;
struct device_node *dn;
struct mvebu_pcie *pcie;
phys_addr_t memwin_base;
size_t memwin_size;
phys_addr_t iowin_base;
size_t iowin_size;
};
static inline void mvebu_writel(struct mvebu_pcie_port *port, u32 val, u32 reg)
{
writel(val, port->base + reg);
}
static inline u32 mvebu_readl(struct mvebu_pcie_port *port, u32 reg)
{
return readl(port->base + reg);
}
static inline bool mvebu_has_ioport(struct mvebu_pcie_port *port)
{
return port->io_target != -1 && port->io_attr != -1;
}
static bool mvebu_pcie_link_up(struct mvebu_pcie_port *port)
{
return !(mvebu_readl(port, PCIE_STAT_OFF) & PCIE_STAT_LINK_DOWN);
}
static void mvebu_pcie_set_local_bus_nr(struct mvebu_pcie_port *port, int nr)
{
u32 stat;
stat = mvebu_readl(port, PCIE_STAT_OFF);
stat &= ~PCIE_STAT_BUS;
stat |= nr << 8;
mvebu_writel(port, stat, PCIE_STAT_OFF);
}
static void mvebu_pcie_set_local_dev_nr(struct mvebu_pcie_port *port, int nr)
{
u32 stat;
stat = mvebu_readl(port, PCIE_STAT_OFF);
stat &= ~PCIE_STAT_DEV;
stat |= nr << 16;
mvebu_writel(port, stat, PCIE_STAT_OFF);
}
/*
* Setup PCIE BARs and Address Decode Wins:
* BAR[0,2] -> disabled, BAR[1] -> covers all DRAM banks
* WIN[0-3] -> DRAM bank[0-3]
*/
static void mvebu_pcie_setup_wins(struct mvebu_pcie_port *port)
{
const struct mbus_dram_target_info *dram;
u32 size;
int i;
dram = mv_mbus_dram_info();
/* First, disable and clear BARs and windows. */
for (i = 1; i < 3; i++) {
mvebu_writel(port, 0, PCIE_BAR_CTRL_OFF(i));
mvebu_writel(port, 0, PCIE_BAR_LO_OFF(i));
mvebu_writel(port, 0, PCIE_BAR_HI_OFF(i));
}
for (i = 0; i < 5; i++) {
mvebu_writel(port, 0, PCIE_WIN04_CTRL_OFF(i));
mvebu_writel(port, 0, PCIE_WIN04_BASE_OFF(i));
mvebu_writel(port, 0, PCIE_WIN04_REMAP_OFF(i));
}
mvebu_writel(port, 0, PCIE_WIN5_CTRL_OFF);
mvebu_writel(port, 0, PCIE_WIN5_BASE_OFF);
mvebu_writel(port, 0, PCIE_WIN5_REMAP_OFF);
/* Setup windows for DDR banks. Count total DDR size on the fly. */
size = 0;
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
mvebu_writel(port, cs->base & 0xffff0000,
PCIE_WIN04_BASE_OFF(i));
mvebu_writel(port, 0, PCIE_WIN04_REMAP_OFF(i));
mvebu_writel(port,
((cs->size - 1) & 0xffff0000) |
(cs->mbus_attr << 8) |
(dram->mbus_dram_target_id << 4) | 1,
PCIE_WIN04_CTRL_OFF(i));
size += cs->size;
}
/* Round up 'size' to the nearest power of two. */
if ((size & (size - 1)) != 0)
size = 1 << fls(size);
/* Setup BAR[1] to all DRAM banks. */
mvebu_writel(port, dram->cs[0].base, PCIE_BAR_LO_OFF(1));
mvebu_writel(port, 0, PCIE_BAR_HI_OFF(1));
mvebu_writel(port, ((size - 1) & 0xffff0000) | 1,
PCIE_BAR_CTRL_OFF(1));
}
static void mvebu_pcie_setup_hw(struct mvebu_pcie_port *port)
{
u32 cmd, mask;
/* Point PCIe unit MBUS decode windows to DRAM space. */
mvebu_pcie_setup_wins(port);
/* Master + slave enable. */
cmd = mvebu_readl(port, PCIE_CMD_OFF);
cmd |= PCI_COMMAND_IO;
cmd |= PCI_COMMAND_MEMORY;
cmd |= PCI_COMMAND_MASTER;
mvebu_writel(port, cmd, PCIE_CMD_OFF);
/* Enable interrupt lines A-D. */
mask = mvebu_readl(port, PCIE_MASK_OFF);
mask |= PCIE_MASK_ENABLE_INTS;
mvebu_writel(port, mask, PCIE_MASK_OFF);
}
static int mvebu_pcie_hw_rd_conf(struct mvebu_pcie_port *port,
struct pci_bus *bus,
u32 devfn, int where, int size, u32 *val)
{
mvebu_writel(port, PCIE_CONF_ADDR(bus->number, devfn, where),
PCIE_CONF_ADDR_OFF);
*val = mvebu_readl(port, PCIE_CONF_DATA_OFF);
if (size == 1)
*val = (*val >> (8 * (where & 3))) & 0xff;
else if (size == 2)
*val = (*val >> (8 * (where & 3))) & 0xffff;
return PCIBIOS_SUCCESSFUL;
}
static int mvebu_pcie_hw_wr_conf(struct mvebu_pcie_port *port,
struct pci_bus *bus,
u32 devfn, int where, int size, u32 val)
{
u32 _val, shift = 8 * (where & 3);
mvebu_writel(port, PCIE_CONF_ADDR(bus->number, devfn, where),
PCIE_CONF_ADDR_OFF);
_val = mvebu_readl(port, PCIE_CONF_DATA_OFF);
if (size == 4)
_val = val;
else if (size == 2)
_val = (_val & ~(0xffff << shift)) | ((val & 0xffff) << shift);
else if (size == 1)
_val = (_val & ~(0xff << shift)) | ((val & 0xff) << shift);
else
return PCIBIOS_BAD_REGISTER_NUMBER;
mvebu_writel(port, _val, PCIE_CONF_DATA_OFF);
return PCIBIOS_SUCCESSFUL;
}
/*
* Remove windows, starting from the largest ones to the smallest
* ones.
*/
static void mvebu_pcie_del_windows(struct mvebu_pcie_port *port,
phys_addr_t base, size_t size)
{
while (size) {
size_t sz = 1 << (fls(size) - 1);
mvebu_mbus_del_window(base, sz);
base += sz;
size -= sz;
}
}
/*
* MBus windows can only have a power of two size, but PCI BARs do not
* have this constraint. Therefore, we have to split the PCI BAR into
* areas each having a power of two size. We start from the largest
* one (i.e highest order bit set in the size).
*/
static void mvebu_pcie_add_windows(struct mvebu_pcie_port *port,
unsigned int target, unsigned int attribute,
phys_addr_t base, size_t size,
phys_addr_t remap)
{
size_t size_mapped = 0;
while (size) {
size_t sz = 1 << (fls(size) - 1);
int ret;
ret = mvebu_mbus_add_window_remap_by_id(target, attribute, base,
sz, remap);
if (ret) {
phys_addr_t end = base + sz - 1;
dev_err(&port->pcie->pdev->dev,
"Could not create MBus window at [mem %pa-%pa]: %d\n",
&base, &end, ret);
mvebu_pcie_del_windows(port, base - size_mapped,
size_mapped);
return;
}
size -= sz;
size_mapped += sz;
base += sz;
if (remap != MVEBU_MBUS_NO_REMAP)
remap += sz;
}
}
static void mvebu_pcie_handle_iobase_change(struct mvebu_pcie_port *port)
{
phys_addr_t iobase;
/* Are the new iobase/iolimit values invalid? */
if (port->bridge.iolimit < port->bridge.iobase ||
port->bridge.iolimitupper < port->bridge.iobaseupper ||
!(port->bridge.command & PCI_COMMAND_IO)) {
/* If a window was configured, remove it */
if (port->iowin_base) {
mvebu_pcie_del_windows(port, port->iowin_base,
port->iowin_size);
port->iowin_base = 0;
port->iowin_size = 0;
}
return;
}
if (!mvebu_has_ioport(port)) {
dev_WARN(&port->pcie->pdev->dev,
"Attempt to set IO when IO is disabled\n");
return;
}
/*
* We read the PCI-to-PCI bridge emulated registers, and
* calculate the base address and size of the address decoding
* window to setup, according to the PCI-to-PCI bridge
* specifications. iobase is the bus address, port->iowin_base
* is the CPU address.
*/
iobase = ((port->bridge.iobase & 0xF0) << 8) |
(port->bridge.iobaseupper << 16);
port->iowin_base = port->pcie->io.start + iobase;
port->iowin_size = ((0xFFF | ((port->bridge.iolimit & 0xF0) << 8) |
(port->bridge.iolimitupper << 16)) -
iobase) + 1;
mvebu_pcie_add_windows(port, port->io_target, port->io_attr,
port->iowin_base, port->iowin_size,
iobase);
}
static void mvebu_pcie_handle_membase_change(struct mvebu_pcie_port *port)
{
/* Are the new membase/memlimit values invalid? */
if (port->bridge.memlimit < port->bridge.membase ||
!(port->bridge.command & PCI_COMMAND_MEMORY)) {
/* If a window was configured, remove it */
if (port->memwin_base) {
mvebu_pcie_del_windows(port, port->memwin_base,
port->memwin_size);
port->memwin_base = 0;
port->memwin_size = 0;
}
return;
}
/*
* We read the PCI-to-PCI bridge emulated registers, and
* calculate the base address and size of the address decoding
* window to setup, according to the PCI-to-PCI bridge
* specifications.
*/
port->memwin_base = ((port->bridge.membase & 0xFFF0) << 16);
port->memwin_size =
(((port->bridge.memlimit & 0xFFF0) << 16) | 0xFFFFF) -
port->memwin_base + 1;
mvebu_pcie_add_windows(port, port->mem_target, port->mem_attr,
port->memwin_base, port->memwin_size,
MVEBU_MBUS_NO_REMAP);
}
/*
* Initialize the configuration space of the PCI-to-PCI bridge
* associated with the given PCIe interface.
*/
static void mvebu_sw_pci_bridge_init(struct mvebu_pcie_port *port)
{
struct mvebu_sw_pci_bridge *bridge = &port->bridge;
memset(bridge, 0, sizeof(struct mvebu_sw_pci_bridge));
bridge->class = PCI_CLASS_BRIDGE_PCI;
bridge->vendor = PCI_VENDOR_ID_MARVELL;
bridge->device = mvebu_readl(port, PCIE_DEV_ID_OFF) >> 16;
bridge->revision = mvebu_readl(port, PCIE_DEV_REV_OFF) & 0xff;
bridge->header_type = PCI_HEADER_TYPE_BRIDGE;
bridge->cache_line_size = 0x10;
/* We support 32 bits I/O addressing */
bridge->iobase = PCI_IO_RANGE_TYPE_32;
bridge->iolimit = PCI_IO_RANGE_TYPE_32;
}
/*
* Read the configuration space of the PCI-to-PCI bridge associated to
* the given PCIe interface.
*/
static int mvebu_sw_pci_bridge_read(struct mvebu_pcie_port *port,
unsigned int where, int size, u32 *value)
{
struct mvebu_sw_pci_bridge *bridge = &port->bridge;
switch (where & ~3) {
case PCI_VENDOR_ID:
*value = bridge->device << 16 | bridge->vendor;
break;
case PCI_COMMAND:
*value = bridge->command;
break;
case PCI_CLASS_REVISION:
*value = bridge->class << 16 | bridge->interface << 8 |
bridge->revision;
break;
case PCI_CACHE_LINE_SIZE:
*value = bridge->bist << 24 | bridge->header_type << 16 |
bridge->latency_timer << 8 | bridge->cache_line_size;
break;
case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_1:
*value = bridge->bar[((where & ~3) - PCI_BASE_ADDRESS_0) / 4];
break;
case PCI_PRIMARY_BUS:
*value = (bridge->secondary_latency_timer << 24 |
bridge->subordinate_bus << 16 |
bridge->secondary_bus << 8 |
bridge->primary_bus);
break;
case PCI_IO_BASE:
if (!mvebu_has_ioport(port))
*value = bridge->secondary_status << 16;
else
*value = (bridge->secondary_status << 16 |
bridge->iolimit << 8 |
bridge->iobase);
break;
case PCI_MEMORY_BASE:
*value = (bridge->memlimit << 16 | bridge->membase);
break;
case PCI_PREF_MEMORY_BASE:
*value = 0;
break;
case PCI_IO_BASE_UPPER16:
*value = (bridge->iolimitupper << 16 | bridge->iobaseupper);
break;
case PCI_ROM_ADDRESS1:
*value = 0;
break;
case PCI_INTERRUPT_LINE:
/* LINE PIN MIN_GNT MAX_LAT */
*value = 0;
break;
default:
*value = 0xffffffff;
return PCIBIOS_BAD_REGISTER_NUMBER;
}
if (size == 2)
*value = (*value >> (8 * (where & 3))) & 0xffff;
else if (size == 1)
*value = (*value >> (8 * (where & 3))) & 0xff;
return PCIBIOS_SUCCESSFUL;
}
/* Write to the PCI-to-PCI bridge configuration space */
static int mvebu_sw_pci_bridge_write(struct mvebu_pcie_port *port,
unsigned int where, int size, u32 value)
{
struct mvebu_sw_pci_bridge *bridge = &port->bridge;
u32 mask, reg;
int err;
if (size == 4)
mask = 0x0;
else if (size == 2)
mask = ~(0xffff << ((where & 3) * 8));
else if (size == 1)
mask = ~(0xff << ((where & 3) * 8));
else
return PCIBIOS_BAD_REGISTER_NUMBER;
err = mvebu_sw_pci_bridge_read(port, where & ~3, 4, &reg);
if (err)
return err;
value = (reg & mask) | value << ((where & 3) * 8);
switch (where & ~3) {
case PCI_COMMAND:
{
u32 old = bridge->command;
if (!mvebu_has_ioport(port))
value &= ~PCI_COMMAND_IO;
bridge->command = value & 0xffff;
if ((old ^ bridge->command) & PCI_COMMAND_IO)
mvebu_pcie_handle_iobase_change(port);
if ((old ^ bridge->command) & PCI_COMMAND_MEMORY)
mvebu_pcie_handle_membase_change(port);
break;
}
case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_1:
bridge->bar[((where & ~3) - PCI_BASE_ADDRESS_0) / 4] = value;
break;
case PCI_IO_BASE:
/*
* We also keep bit 1 set, it is a read-only bit that
* indicates we support 32 bits addressing for the
* I/O
*/
bridge->iobase = (value & 0xff) | PCI_IO_RANGE_TYPE_32;
bridge->iolimit = ((value >> 8) & 0xff) | PCI_IO_RANGE_TYPE_32;
mvebu_pcie_handle_iobase_change(port);
break;
case PCI_MEMORY_BASE:
bridge->membase = value & 0xffff;
bridge->memlimit = value >> 16;
mvebu_pcie_handle_membase_change(port);
break;
case PCI_IO_BASE_UPPER16:
bridge->iobaseupper = value & 0xffff;
bridge->iolimitupper = value >> 16;
mvebu_pcie_handle_iobase_change(port);
break;
case PCI_PRIMARY_BUS:
bridge->primary_bus = value & 0xff;
bridge->secondary_bus = (value >> 8) & 0xff;
bridge->subordinate_bus = (value >> 16) & 0xff;
bridge->secondary_latency_timer = (value >> 24) & 0xff;
mvebu_pcie_set_local_bus_nr(port, bridge->secondary_bus);
break;
default:
break;
}
return PCIBIOS_SUCCESSFUL;
}
static inline struct mvebu_pcie *sys_to_pcie(struct pci_sys_data *sys)
{
return sys->private_data;
}
static struct mvebu_pcie_port *mvebu_pcie_find_port(struct mvebu_pcie *pcie,
struct pci_bus *bus,
int devfn)
{
int i;
for (i = 0; i < pcie->nports; i++) {
struct mvebu_pcie_port *port = &pcie->ports[i];
if (bus->number == 0 && port->devfn == devfn)
return port;
if (bus->number != 0 &&
bus->number >= port->bridge.secondary_bus &&
bus->number <= port->bridge.subordinate_bus)
return port;
}
return NULL;
}
/* PCI configuration space write function */
static int mvebu_pcie_wr_conf(struct pci_bus *bus, u32 devfn,
int where, int size, u32 val)
{
struct mvebu_pcie *pcie = sys_to_pcie(bus->sysdata);
struct mvebu_pcie_port *port;
int ret;
port = mvebu_pcie_find_port(pcie, bus, devfn);
if (!port)
return PCIBIOS_DEVICE_NOT_FOUND;
/* Access the emulated PCI-to-PCI bridge */
if (bus->number == 0)
return mvebu_sw_pci_bridge_write(port, where, size, val);
if (!mvebu_pcie_link_up(port))
return PCIBIOS_DEVICE_NOT_FOUND;
/*
* On the secondary bus, we don't want to expose any other
* device than the device physically connected in the PCIe
* slot, visible in slot 0. In slot 1, there's a special
* Marvell device that only makes sense when the Armada is
* used as a PCIe endpoint.
*/
if (bus->number == port->bridge.secondary_bus &&
PCI_SLOT(devfn) != 0)
return PCIBIOS_DEVICE_NOT_FOUND;
/* Access the real PCIe interface */
ret = mvebu_pcie_hw_wr_conf(port, bus, devfn,
where, size, val);
return ret;
}
/* PCI configuration space read function */
static int mvebu_pcie_rd_conf(struct pci_bus *bus, u32 devfn, int where,
int size, u32 *val)
{
struct mvebu_pcie *pcie = sys_to_pcie(bus->sysdata);
struct mvebu_pcie_port *port;
int ret;
port = mvebu_pcie_find_port(pcie, bus, devfn);
if (!port) {
*val = 0xffffffff;
return PCIBIOS_DEVICE_NOT_FOUND;
}
/* Access the emulated PCI-to-PCI bridge */
if (bus->number == 0)
return mvebu_sw_pci_bridge_read(port, where, size, val);
if (!mvebu_pcie_link_up(port)) {
*val = 0xffffffff;
return PCIBIOS_DEVICE_NOT_FOUND;
}
/*
* On the secondary bus, we don't want to expose any other
* device than the device physically connected in the PCIe
* slot, visible in slot 0. In slot 1, there's a special
* Marvell device that only makes sense when the Armada is
* used as a PCIe endpoint.
*/
if (bus->number == port->bridge.secondary_bus &&
PCI_SLOT(devfn) != 0) {
*val = 0xffffffff;
return PCIBIOS_DEVICE_NOT_FOUND;
}
/* Access the real PCIe interface */
ret = mvebu_pcie_hw_rd_conf(port, bus, devfn,
where, size, val);
return ret;
}
static struct pci_ops mvebu_pcie_ops = {
.read = mvebu_pcie_rd_conf,
.write = mvebu_pcie_wr_conf,
};
static int mvebu_pcie_setup(int nr, struct pci_sys_data *sys)
{
struct mvebu_pcie *pcie = sys_to_pcie(sys);
int i;
int domain = 0;
#ifdef CONFIG_PCI_DOMAINS
domain = sys->domain;
#endif
snprintf(pcie->mem_name, sizeof(pcie->mem_name), "PCI MEM %04x",
domain);
pcie->mem.name = pcie->mem_name;
snprintf(pcie->io_name, sizeof(pcie->io_name), "PCI I/O %04x", domain);
pcie->realio.name = pcie->io_name;
if (request_resource(&iomem_resource, &pcie->mem))
return 0;
if (resource_size(&pcie->realio) != 0) {
if (request_resource(&ioport_resource, &pcie->realio)) {
release_resource(&pcie->mem);
return 0;
}
pci_add_resource_offset(&sys->resources, &pcie->realio,
sys->io_offset);
}
pci_add_resource_offset(&sys->resources, &pcie->mem, sys->mem_offset);
pci_add_resource(&sys->resources, &pcie->busn);
for (i = 0; i < pcie->nports; i++) {
struct mvebu_pcie_port *port = &pcie->ports[i];
if (!port->base)
continue;
mvebu_pcie_setup_hw(port);
}
return 1;
}
static struct pci_bus *mvebu_pcie_scan_bus(int nr, struct pci_sys_data *sys)
{
struct mvebu_pcie *pcie = sys_to_pcie(sys);
struct pci_bus *bus;
bus = pci_create_root_bus(&pcie->pdev->dev, sys->busnr,
&mvebu_pcie_ops, sys, &sys->resources);
if (!bus)
return NULL;
pci_scan_child_bus(bus);
return bus;
}
static void mvebu_pcie_add_bus(struct pci_bus *bus)
{
struct mvebu_pcie *pcie = sys_to_pcie(bus->sysdata);
bus->msi = pcie->msi;
}
static resource_size_t mvebu_pcie_align_resource(struct pci_dev *dev,
const struct resource *res,
resource_size_t start,
resource_size_t size,
resource_size_t align)
{
if (dev->bus->number != 0)
return start;
/*
* On the PCI-to-PCI bridge side, the I/O windows must have at
* least a 64 KB size and the memory windows must have at
* least a 1 MB size. Moreover, MBus windows need to have a
* base address aligned on their size, and their size must be
* a power of two. This means that if the BAR doesn't have a
* power of two size, several MBus windows will actually be
* created. We need to ensure that the biggest MBus window
* (which will be the first one) is aligned on its size, which
* explains the rounddown_pow_of_two() being done here.
*/
if (res->flags & IORESOURCE_IO)
return round_up(start, max_t(resource_size_t, SZ_64K,
rounddown_pow_of_two(size)));
else if (res->flags & IORESOURCE_MEM)
return round_up(start, max_t(resource_size_t, SZ_1M,
rounddown_pow_of_two(size)));
else
return start;
}
static void mvebu_pcie_enable(struct mvebu_pcie *pcie)
{
struct hw_pci hw;
memset(&hw, 0, sizeof(hw));
hw.nr_controllers = 1;
hw.private_data = (void **)&pcie;
hw.setup = mvebu_pcie_setup;
hw.scan = mvebu_pcie_scan_bus;
hw.map_irq = of_irq_parse_and_map_pci;
hw.ops = &mvebu_pcie_ops;
hw.align_resource = mvebu_pcie_align_resource;
hw.add_bus = mvebu_pcie_add_bus;
pci_common_init(&hw);
}
/*
* Looks up the list of register addresses encoded into the reg =
* <...> property for one that matches the given port/lane. Once
* found, maps it.
*/
static void __iomem *mvebu_pcie_map_registers(struct platform_device *pdev,
struct device_node *np,
struct mvebu_pcie_port *port)
{
struct resource regs;
int ret = 0;
ret = of_address_to_resource(np, 0, &regs);
if (ret)
return ERR_PTR(ret);
return devm_ioremap_resource(&pdev->dev, &regs);
}
#define DT_FLAGS_TO_TYPE(flags) (((flags) >> 24) & 0x03)
#define DT_TYPE_IO 0x1
#define DT_TYPE_MEM32 0x2
#define DT_CPUADDR_TO_TARGET(cpuaddr) (((cpuaddr) >> 56) & 0xFF)
#define DT_CPUADDR_TO_ATTR(cpuaddr) (((cpuaddr) >> 48) & 0xFF)
static int mvebu_get_tgt_attr(struct device_node *np, int devfn,
unsigned long type,
unsigned int *tgt,
unsigned int *attr)
{
const int na = 3, ns = 2;
const __be32 *range;
int rlen, nranges, rangesz, pna, i;
*tgt = -1;
*attr = -1;
range = of_get_property(np, "ranges", &rlen);
if (!range)
return -EINVAL;
pna = of_n_addr_cells(np);
rangesz = pna + na + ns;
nranges = rlen / sizeof(__be32) / rangesz;
for (i = 0; i < nranges; i++, range += rangesz) {
u32 flags = of_read_number(range, 1);
u32 slot = of_read_number(range + 1, 1);
u64 cpuaddr = of_read_number(range + na, pna);
unsigned long rtype;
if (DT_FLAGS_TO_TYPE(flags) == DT_TYPE_IO)
rtype = IORESOURCE_IO;
else if (DT_FLAGS_TO_TYPE(flags) == DT_TYPE_MEM32)
rtype = IORESOURCE_MEM;
else
continue;
if (slot == PCI_SLOT(devfn) && type == rtype) {
*tgt = DT_CPUADDR_TO_TARGET(cpuaddr);
*attr = DT_CPUADDR_TO_ATTR(cpuaddr);
return 0;
}
}
return -ENOENT;
}
static void mvebu_pcie_msi_enable(struct mvebu_pcie *pcie)
{
struct device_node *msi_node;
msi_node = of_parse_phandle(pcie->pdev->dev.of_node,
"msi-parent", 0);
if (!msi_node)
return;
pcie->msi = of_pci_find_msi_chip_by_node(msi_node);
if (pcie->msi)
pcie->msi->dev = &pcie->pdev->dev;
}
static int mvebu_pcie_probe(struct platform_device *pdev)
{
struct mvebu_pcie *pcie;
struct device_node *np = pdev->dev.of_node;
struct device_node *child;
int i, ret;
pcie = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_pcie),
GFP_KERNEL);
if (!pcie)
return -ENOMEM;
pcie->pdev = pdev;
platform_set_drvdata(pdev, pcie);
/* Get the PCIe memory and I/O aperture */
mvebu_mbus_get_pcie_mem_aperture(&pcie->mem);
if (resource_size(&pcie->mem) == 0) {
dev_err(&pdev->dev, "invalid memory aperture size\n");
return -EINVAL;
}
mvebu_mbus_get_pcie_io_aperture(&pcie->io);
if (resource_size(&pcie->io) != 0) {
pcie->realio.flags = pcie->io.flags;
pcie->realio.start = PCIBIOS_MIN_IO;
pcie->realio.end = min_t(resource_size_t,
IO_SPACE_LIMIT,
resource_size(&pcie->io));
} else
pcie->realio = pcie->io;
/* Get the bus range */
ret = of_pci_parse_bus_range(np, &pcie->busn);
if (ret) {
dev_err(&pdev->dev, "failed to parse bus-range property: %d\n",
ret);
return ret;
}
i = 0;
for_each_child_of_node(pdev->dev.of_node, child) {
if (!of_device_is_available(child))
continue;
i++;
}
pcie->ports = devm_kzalloc(&pdev->dev, i *
sizeof(struct mvebu_pcie_port),
GFP_KERNEL);
if (!pcie->ports)
return -ENOMEM;
i = 0;
for_each_child_of_node(pdev->dev.of_node, child) {
struct mvebu_pcie_port *port = &pcie->ports[i];
enum of_gpio_flags flags;
if (!of_device_is_available(child))
continue;
port->pcie = pcie;
if (of_property_read_u32(child, "marvell,pcie-port",
&port->port)) {
dev_warn(&pdev->dev,
"ignoring PCIe DT node, missing pcie-port property\n");
continue;
}
if (of_property_read_u32(child, "marvell,pcie-lane",
&port->lane))
port->lane = 0;
port->name = kasprintf(GFP_KERNEL, "pcie%d.%d",
port->port, port->lane);
port->devfn = of_pci_get_devfn(child);
if (port->devfn < 0)
continue;
ret = mvebu_get_tgt_attr(np, port->devfn, IORESOURCE_MEM,
&port->mem_target, &port->mem_attr);
if (ret < 0) {
dev_err(&pdev->dev, "PCIe%d.%d: cannot get tgt/attr for mem window\n",
port->port, port->lane);
continue;
}
if (resource_size(&pcie->io) != 0)
mvebu_get_tgt_attr(np, port->devfn, IORESOURCE_IO,
&port->io_target, &port->io_attr);
else {
port->io_target = -1;
port->io_attr = -1;
}
port->reset_gpio = of_get_named_gpio_flags(child,
"reset-gpios", 0, &flags);
if (gpio_is_valid(port->reset_gpio)) {
u32 reset_udelay = 20000;
port->reset_active_low = flags & OF_GPIO_ACTIVE_LOW;
port->reset_name = kasprintf(GFP_KERNEL,
"pcie%d.%d-reset", port->port, port->lane);
of_property_read_u32(child, "reset-delay-us",
&reset_udelay);
ret = devm_gpio_request_one(&pdev->dev,
port->reset_gpio, GPIOF_DIR_OUT, port->reset_name);
if (ret) {
if (ret == -EPROBE_DEFER)
return ret;
continue;
}
gpio_set_value(port->reset_gpio,
(port->reset_active_low) ? 1 : 0);
msleep(reset_udelay/1000);
}
port->clk = of_clk_get_by_name(child, NULL);
if (IS_ERR(port->clk)) {
dev_err(&pdev->dev, "PCIe%d.%d: cannot get clock\n",
port->port, port->lane);
continue;
}
ret = clk_prepare_enable(port->clk);
if (ret)
continue;
port->base = mvebu_pcie_map_registers(pdev, child, port);
if (IS_ERR(port->base)) {
dev_err(&pdev->dev, "PCIe%d.%d: cannot map registers\n",
port->port, port->lane);
port->base = NULL;
clk_disable_unprepare(port->clk);
continue;
}
mvebu_pcie_set_local_dev_nr(port, 1);
port->dn = child;
mvebu_sw_pci_bridge_init(port);
i++;
}
pcie->nports = i;
for (i = 0; i < (IO_SPACE_LIMIT - SZ_64K); i += SZ_64K)
pci_ioremap_io(i, pcie->io.start + i);
mvebu_pcie_msi_enable(pcie);
mvebu_pcie_enable(pcie);
return 0;
}
static const struct of_device_id mvebu_pcie_of_match_table[] = {
{ .compatible = "marvell,armada-xp-pcie", },
{ .compatible = "marvell,armada-370-pcie", },
{ .compatible = "marvell,dove-pcie", },
{ .compatible = "marvell,kirkwood-pcie", },
{},
};
MODULE_DEVICE_TABLE(of, mvebu_pcie_of_match_table);
static struct platform_driver mvebu_pcie_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "mvebu-pcie",
.of_match_table = mvebu_pcie_of_match_table,
/* driver unloading/unbinding currently not supported */
.suppress_bind_attrs = true,
},
.probe = mvebu_pcie_probe,
};
module_platform_driver(mvebu_pcie_driver);
MODULE_AUTHOR("Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
MODULE_DESCRIPTION("Marvell EBU PCIe driver");
MODULE_LICENSE("GPL v2");