| /* |
| * mm/prio_tree.c - priority search tree for mapping->i_mmap |
| * |
| * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> |
| * |
| * This file is released under the GPL v2. |
| * |
| * Based on the radix priority search tree proposed by Edward M. McCreight |
| * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 |
| * |
| * 02Feb2004 Initial version |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/prio_tree.h> |
| |
| /* |
| * See lib/prio_tree.c for details on the general radix priority search tree |
| * code. |
| */ |
| |
| /* |
| * The following #defines are mirrored from lib/prio_tree.c. They're only used |
| * for debugging, and should be removed (along with the debugging code using |
| * them) when switching also VMAs to the regular prio_tree code. |
| */ |
| |
| #define RADIX_INDEX(vma) ((vma)->vm_pgoff) |
| #define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) |
| /* avoid overflow */ |
| #define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) |
| |
| /* |
| * Radix priority search tree for address_space->i_mmap |
| * |
| * For each vma that map a unique set of file pages i.e., unique [radix_index, |
| * heap_index] value, we have a corresponding priority search tree node. If |
| * multiple vmas have identical [radix_index, heap_index] value, then one of |
| * them is used as a tree node and others are stored in a vm_set list. The tree |
| * node points to the first vma (head) of the list using vm_set.head. |
| * |
| * prio_tree_root |
| * | |
| * A vm_set.head |
| * / \ / |
| * L R -> H-I-J-K-M-N-O-P-Q-S |
| * ^ ^ <-- vm_set.list --> |
| * tree nodes |
| * |
| * We need some way to identify whether a vma is a tree node, head of a vm_set |
| * list, or just a member of a vm_set list. We cannot use vm_flags to store |
| * such information. The reason is, in the above figure, it is possible that |
| * vm_flags' of R and H are covered by the different mmap_sems. When R is |
| * removed under R->mmap_sem, H replaces R as a tree node. Since we do not hold |
| * H->mmap_sem, we cannot use H->vm_flags for marking that H is a tree node now. |
| * That's why some trick involving shared.vm_set.parent is used for identifying |
| * tree nodes and list head nodes. |
| * |
| * vma radix priority search tree node rules: |
| * |
| * vma->shared.vm_set.parent != NULL ==> a tree node |
| * vma->shared.vm_set.head != NULL ==> list of others mapping same range |
| * vma->shared.vm_set.head == NULL ==> no others map the same range |
| * |
| * vma->shared.vm_set.parent == NULL |
| * vma->shared.vm_set.head != NULL ==> list head of vmas mapping same range |
| * vma->shared.vm_set.head == NULL ==> a list node |
| */ |
| |
| /* |
| * Add a new vma known to map the same set of pages as the old vma: |
| * useful for fork's dup_mmap as well as vma_prio_tree_insert below. |
| * Note that it just happens to work correctly on i_mmap_nonlinear too. |
| */ |
| void vma_prio_tree_add(struct vm_area_struct *vma, struct vm_area_struct *old) |
| { |
| /* Leave these BUG_ONs till prio_tree patch stabilizes */ |
| BUG_ON(RADIX_INDEX(vma) != RADIX_INDEX(old)); |
| BUG_ON(HEAP_INDEX(vma) != HEAP_INDEX(old)); |
| |
| vma->shared.vm_set.head = NULL; |
| vma->shared.vm_set.parent = NULL; |
| |
| if (!old->shared.vm_set.parent) |
| list_add(&vma->shared.vm_set.list, |
| &old->shared.vm_set.list); |
| else if (old->shared.vm_set.head) |
| list_add_tail(&vma->shared.vm_set.list, |
| &old->shared.vm_set.head->shared.vm_set.list); |
| else { |
| INIT_LIST_HEAD(&vma->shared.vm_set.list); |
| vma->shared.vm_set.head = old; |
| old->shared.vm_set.head = vma; |
| } |
| } |
| |
| void vma_prio_tree_insert(struct vm_area_struct *vma, |
| struct prio_tree_root *root) |
| { |
| struct prio_tree_node *ptr; |
| struct vm_area_struct *old; |
| |
| vma->shared.vm_set.head = NULL; |
| |
| ptr = raw_prio_tree_insert(root, &vma->shared.prio_tree_node); |
| if (ptr != (struct prio_tree_node *) &vma->shared.prio_tree_node) { |
| old = prio_tree_entry(ptr, struct vm_area_struct, |
| shared.prio_tree_node); |
| vma_prio_tree_add(vma, old); |
| } |
| } |
| |
| void vma_prio_tree_remove(struct vm_area_struct *vma, |
| struct prio_tree_root *root) |
| { |
| struct vm_area_struct *node, *head, *new_head; |
| |
| if (!vma->shared.vm_set.head) { |
| if (!vma->shared.vm_set.parent) |
| list_del_init(&vma->shared.vm_set.list); |
| else |
| raw_prio_tree_remove(root, &vma->shared.prio_tree_node); |
| } else { |
| /* Leave this BUG_ON till prio_tree patch stabilizes */ |
| BUG_ON(vma->shared.vm_set.head->shared.vm_set.head != vma); |
| if (vma->shared.vm_set.parent) { |
| head = vma->shared.vm_set.head; |
| if (!list_empty(&head->shared.vm_set.list)) { |
| new_head = list_entry( |
| head->shared.vm_set.list.next, |
| struct vm_area_struct, |
| shared.vm_set.list); |
| list_del_init(&head->shared.vm_set.list); |
| } else |
| new_head = NULL; |
| |
| raw_prio_tree_replace(root, &vma->shared.prio_tree_node, |
| &head->shared.prio_tree_node); |
| head->shared.vm_set.head = new_head; |
| if (new_head) |
| new_head->shared.vm_set.head = head; |
| |
| } else { |
| node = vma->shared.vm_set.head; |
| if (!list_empty(&vma->shared.vm_set.list)) { |
| new_head = list_entry( |
| vma->shared.vm_set.list.next, |
| struct vm_area_struct, |
| shared.vm_set.list); |
| list_del_init(&vma->shared.vm_set.list); |
| node->shared.vm_set.head = new_head; |
| new_head->shared.vm_set.head = node; |
| } else |
| node->shared.vm_set.head = NULL; |
| } |
| } |
| } |
| |
| /* |
| * Helper function to enumerate vmas that map a given file page or a set of |
| * contiguous file pages. The function returns vmas that at least map a single |
| * page in the given range of contiguous file pages. |
| */ |
| struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, |
| struct prio_tree_iter *iter) |
| { |
| struct prio_tree_node *ptr; |
| struct vm_area_struct *next; |
| |
| if (!vma) { |
| /* |
| * First call is with NULL vma |
| */ |
| ptr = prio_tree_next(iter); |
| if (ptr) { |
| next = prio_tree_entry(ptr, struct vm_area_struct, |
| shared.prio_tree_node); |
| prefetch(next->shared.vm_set.head); |
| return next; |
| } else |
| return NULL; |
| } |
| |
| if (vma->shared.vm_set.parent) { |
| if (vma->shared.vm_set.head) { |
| next = vma->shared.vm_set.head; |
| prefetch(next->shared.vm_set.list.next); |
| return next; |
| } |
| } else { |
| next = list_entry(vma->shared.vm_set.list.next, |
| struct vm_area_struct, shared.vm_set.list); |
| if (!next->shared.vm_set.head) { |
| prefetch(next->shared.vm_set.list.next); |
| return next; |
| } |
| } |
| |
| ptr = prio_tree_next(iter); |
| if (ptr) { |
| next = prio_tree_entry(ptr, struct vm_area_struct, |
| shared.prio_tree_node); |
| prefetch(next->shared.vm_set.head); |
| return next; |
| } else |
| return NULL; |
| } |