| /* |
| * General Purpose functions for the global management of the |
| * Communication Processor Module. |
| * Copyright (c) 1997 Dan error_act (dmalek@jlc.net) |
| * |
| * In addition to the individual control of the communication |
| * channels, there are a few functions that globally affect the |
| * communication processor. |
| * |
| * Buffer descriptors must be allocated from the dual ported memory |
| * space. The allocator for that is here. When the communication |
| * process is reset, we reclaim the memory available. There is |
| * currently no deallocator for this memory. |
| * The amount of space available is platform dependent. On the |
| * MBX, the EPPC software loads additional microcode into the |
| * communication processor, and uses some of the DP ram for this |
| * purpose. Current, the first 512 bytes and the last 256 bytes of |
| * memory are used. Right now I am conservative and only use the |
| * memory that can never be used for microcode. If there are |
| * applications that require more DP ram, we can expand the boundaries |
| * but then we have to be careful of any downloaded microcode. |
| */ |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/module.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/8xx_immap.h> |
| #include <asm/cpm1.h> |
| #include <asm/io.h> |
| #include <asm/tlbflush.h> |
| #include <asm/rheap.h> |
| #include <asm/prom.h> |
| #include <asm/cpm.h> |
| |
| #include <asm/fs_pd.h> |
| |
| #define CPM_MAP_SIZE (0x4000) |
| |
| cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */ |
| immap_t __iomem *mpc8xx_immr; |
| static cpic8xx_t __iomem *cpic_reg; |
| |
| static struct irq_host *cpm_pic_host; |
| |
| static void cpm_mask_irq(unsigned int irq) |
| { |
| unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; |
| |
| clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); |
| } |
| |
| static void cpm_unmask_irq(unsigned int irq) |
| { |
| unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; |
| |
| setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); |
| } |
| |
| static void cpm_end_irq(unsigned int irq) |
| { |
| unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; |
| |
| out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec)); |
| } |
| |
| static struct irq_chip cpm_pic = { |
| .typename = " CPM PIC ", |
| .mask = cpm_mask_irq, |
| .unmask = cpm_unmask_irq, |
| .eoi = cpm_end_irq, |
| }; |
| |
| int cpm_get_irq(void) |
| { |
| int cpm_vec; |
| |
| /* Get the vector by setting the ACK bit and then reading |
| * the register. |
| */ |
| out_be16(&cpic_reg->cpic_civr, 1); |
| cpm_vec = in_be16(&cpic_reg->cpic_civr); |
| cpm_vec >>= 11; |
| |
| return irq_linear_revmap(cpm_pic_host, cpm_vec); |
| } |
| |
| static int cpm_pic_host_map(struct irq_host *h, unsigned int virq, |
| irq_hw_number_t hw) |
| { |
| pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw); |
| |
| get_irq_desc(virq)->status |= IRQ_LEVEL; |
| set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq); |
| return 0; |
| } |
| |
| /* The CPM can generate the error interrupt when there is a race condition |
| * between generating and masking interrupts. All we have to do is ACK it |
| * and return. This is a no-op function so we don't need any special |
| * tests in the interrupt handler. |
| */ |
| static irqreturn_t cpm_error_interrupt(int irq, void *dev) |
| { |
| return IRQ_HANDLED; |
| } |
| |
| static struct irqaction cpm_error_irqaction = { |
| .handler = cpm_error_interrupt, |
| .mask = CPU_MASK_NONE, |
| .name = "error", |
| }; |
| |
| static struct irq_host_ops cpm_pic_host_ops = { |
| .map = cpm_pic_host_map, |
| }; |
| |
| unsigned int cpm_pic_init(void) |
| { |
| struct device_node *np = NULL; |
| struct resource res; |
| unsigned int sirq = NO_IRQ, hwirq, eirq; |
| int ret; |
| |
| pr_debug("cpm_pic_init\n"); |
| |
| np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic"); |
| if (np == NULL) |
| np = of_find_compatible_node(NULL, "cpm-pic", "CPM"); |
| if (np == NULL) { |
| printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n"); |
| return sirq; |
| } |
| |
| ret = of_address_to_resource(np, 0, &res); |
| if (ret) |
| goto end; |
| |
| cpic_reg = ioremap(res.start, res.end - res.start + 1); |
| if (cpic_reg == NULL) |
| goto end; |
| |
| sirq = irq_of_parse_and_map(np, 0); |
| if (sirq == NO_IRQ) |
| goto end; |
| |
| /* Initialize the CPM interrupt controller. */ |
| hwirq = (unsigned int)irq_map[sirq].hwirq; |
| out_be32(&cpic_reg->cpic_cicr, |
| (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | |
| ((hwirq/2) << 13) | CICR_HP_MASK); |
| |
| out_be32(&cpic_reg->cpic_cimr, 0); |
| |
| cpm_pic_host = irq_alloc_host(of_node_get(np), IRQ_HOST_MAP_LINEAR, |
| 64, &cpm_pic_host_ops, 64); |
| if (cpm_pic_host == NULL) { |
| printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n"); |
| sirq = NO_IRQ; |
| goto end; |
| } |
| |
| /* Install our own error handler. */ |
| np = of_find_compatible_node(NULL, NULL, "fsl,cpm1"); |
| if (np == NULL) |
| np = of_find_node_by_type(NULL, "cpm"); |
| if (np == NULL) { |
| printk(KERN_ERR "CPM PIC init: can not find cpm node\n"); |
| goto end; |
| } |
| |
| eirq = irq_of_parse_and_map(np, 0); |
| if (eirq == NO_IRQ) |
| goto end; |
| |
| if (setup_irq(eirq, &cpm_error_irqaction)) |
| printk(KERN_ERR "Could not allocate CPM error IRQ!"); |
| |
| setbits32(&cpic_reg->cpic_cicr, CICR_IEN); |
| |
| end: |
| of_node_put(np); |
| return sirq; |
| } |
| |
| void __init cpm_reset(void) |
| { |
| sysconf8xx_t __iomem *siu_conf; |
| |
| mpc8xx_immr = ioremap(get_immrbase(), 0x4000); |
| if (!mpc8xx_immr) { |
| printk(KERN_CRIT "Could not map IMMR\n"); |
| return; |
| } |
| |
| cpmp = &mpc8xx_immr->im_cpm; |
| |
| #ifndef CONFIG_PPC_EARLY_DEBUG_CPM |
| /* Perform a reset. |
| */ |
| out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG); |
| |
| /* Wait for it. |
| */ |
| while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG); |
| #endif |
| |
| #ifdef CONFIG_UCODE_PATCH |
| cpm_load_patch(cpmp); |
| #endif |
| |
| /* Set SDMA Bus Request priority 5. |
| * On 860T, this also enables FEC priority 6. I am not sure |
| * this is what we realy want for some applications, but the |
| * manual recommends it. |
| * Bit 25, FAM can also be set to use FEC aggressive mode (860T). |
| */ |
| siu_conf = immr_map(im_siu_conf); |
| out_be32(&siu_conf->sc_sdcr, 1); |
| immr_unmap(siu_conf); |
| |
| cpm_muram_init(); |
| } |
| |
| static DEFINE_SPINLOCK(cmd_lock); |
| |
| #define MAX_CR_CMD_LOOPS 10000 |
| |
| int cpm_command(u32 command, u8 opcode) |
| { |
| int i, ret; |
| unsigned long flags; |
| |
| if (command & 0xffffff0f) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&cmd_lock, flags); |
| |
| ret = 0; |
| out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8)); |
| for (i = 0; i < MAX_CR_CMD_LOOPS; i++) |
| if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0) |
| goto out; |
| |
| printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__); |
| ret = -EIO; |
| out: |
| spin_unlock_irqrestore(&cmd_lock, flags); |
| return ret; |
| } |
| EXPORT_SYMBOL(cpm_command); |
| |
| /* Set a baud rate generator. This needs lots of work. There are |
| * four BRGs, any of which can be wired to any channel. |
| * The internal baud rate clock is the system clock divided by 16. |
| * This assumes the baudrate is 16x oversampled by the uart. |
| */ |
| #define BRG_INT_CLK (get_brgfreq()) |
| #define BRG_UART_CLK (BRG_INT_CLK/16) |
| #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) |
| |
| void |
| cpm_setbrg(uint brg, uint rate) |
| { |
| u32 __iomem *bp; |
| |
| /* This is good enough to get SMCs running..... |
| */ |
| bp = &cpmp->cp_brgc1; |
| bp += brg; |
| /* The BRG has a 12-bit counter. For really slow baud rates (or |
| * really fast processors), we may have to further divide by 16. |
| */ |
| if (((BRG_UART_CLK / rate) - 1) < 4096) |
| out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN); |
| else |
| out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | |
| CPM_BRG_EN | CPM_BRG_DIV16); |
| } |
| |
| struct cpm_ioport16 { |
| __be16 dir, par, odr_sor, dat, intr; |
| __be16 res[3]; |
| }; |
| |
| struct cpm_ioport32 { |
| __be32 dir, par, sor; |
| }; |
| |
| static void cpm1_set_pin32(int port, int pin, int flags) |
| { |
| struct cpm_ioport32 __iomem *iop; |
| pin = 1 << (31 - pin); |
| |
| if (port == CPM_PORTB) |
| iop = (struct cpm_ioport32 __iomem *) |
| &mpc8xx_immr->im_cpm.cp_pbdir; |
| else |
| iop = (struct cpm_ioport32 __iomem *) |
| &mpc8xx_immr->im_cpm.cp_pedir; |
| |
| if (flags & CPM_PIN_OUTPUT) |
| setbits32(&iop->dir, pin); |
| else |
| clrbits32(&iop->dir, pin); |
| |
| if (!(flags & CPM_PIN_GPIO)) |
| setbits32(&iop->par, pin); |
| else |
| clrbits32(&iop->par, pin); |
| |
| if (port == CPM_PORTB) { |
| if (flags & CPM_PIN_OPENDRAIN) |
| setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin); |
| else |
| clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin); |
| } |
| |
| if (port == CPM_PORTE) { |
| if (flags & CPM_PIN_SECONDARY) |
| setbits32(&iop->sor, pin); |
| else |
| clrbits32(&iop->sor, pin); |
| |
| if (flags & CPM_PIN_OPENDRAIN) |
| setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin); |
| else |
| clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin); |
| } |
| } |
| |
| static void cpm1_set_pin16(int port, int pin, int flags) |
| { |
| struct cpm_ioport16 __iomem *iop = |
| (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport; |
| |
| pin = 1 << (15 - pin); |
| |
| if (port != 0) |
| iop += port - 1; |
| |
| if (flags & CPM_PIN_OUTPUT) |
| setbits16(&iop->dir, pin); |
| else |
| clrbits16(&iop->dir, pin); |
| |
| if (!(flags & CPM_PIN_GPIO)) |
| setbits16(&iop->par, pin); |
| else |
| clrbits16(&iop->par, pin); |
| |
| if (port == CPM_PORTA) { |
| if (flags & CPM_PIN_OPENDRAIN) |
| setbits16(&iop->odr_sor, pin); |
| else |
| clrbits16(&iop->odr_sor, pin); |
| } |
| if (port == CPM_PORTC) { |
| if (flags & CPM_PIN_SECONDARY) |
| setbits16(&iop->odr_sor, pin); |
| else |
| clrbits16(&iop->odr_sor, pin); |
| } |
| } |
| |
| void cpm1_set_pin(enum cpm_port port, int pin, int flags) |
| { |
| if (port == CPM_PORTB || port == CPM_PORTE) |
| cpm1_set_pin32(port, pin, flags); |
| else |
| cpm1_set_pin16(port, pin, flags); |
| } |
| |
| int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode) |
| { |
| int shift; |
| int i, bits = 0; |
| u32 __iomem *reg; |
| u32 mask = 7; |
| |
| u8 clk_map[][3] = { |
| {CPM_CLK_SCC1, CPM_BRG1, 0}, |
| {CPM_CLK_SCC1, CPM_BRG2, 1}, |
| {CPM_CLK_SCC1, CPM_BRG3, 2}, |
| {CPM_CLK_SCC1, CPM_BRG4, 3}, |
| {CPM_CLK_SCC1, CPM_CLK1, 4}, |
| {CPM_CLK_SCC1, CPM_CLK2, 5}, |
| {CPM_CLK_SCC1, CPM_CLK3, 6}, |
| {CPM_CLK_SCC1, CPM_CLK4, 7}, |
| |
| {CPM_CLK_SCC2, CPM_BRG1, 0}, |
| {CPM_CLK_SCC2, CPM_BRG2, 1}, |
| {CPM_CLK_SCC2, CPM_BRG3, 2}, |
| {CPM_CLK_SCC2, CPM_BRG4, 3}, |
| {CPM_CLK_SCC2, CPM_CLK1, 4}, |
| {CPM_CLK_SCC2, CPM_CLK2, 5}, |
| {CPM_CLK_SCC2, CPM_CLK3, 6}, |
| {CPM_CLK_SCC2, CPM_CLK4, 7}, |
| |
| {CPM_CLK_SCC3, CPM_BRG1, 0}, |
| {CPM_CLK_SCC3, CPM_BRG2, 1}, |
| {CPM_CLK_SCC3, CPM_BRG3, 2}, |
| {CPM_CLK_SCC3, CPM_BRG4, 3}, |
| {CPM_CLK_SCC3, CPM_CLK5, 4}, |
| {CPM_CLK_SCC3, CPM_CLK6, 5}, |
| {CPM_CLK_SCC3, CPM_CLK7, 6}, |
| {CPM_CLK_SCC3, CPM_CLK8, 7}, |
| |
| {CPM_CLK_SCC4, CPM_BRG1, 0}, |
| {CPM_CLK_SCC4, CPM_BRG2, 1}, |
| {CPM_CLK_SCC4, CPM_BRG3, 2}, |
| {CPM_CLK_SCC4, CPM_BRG4, 3}, |
| {CPM_CLK_SCC4, CPM_CLK5, 4}, |
| {CPM_CLK_SCC4, CPM_CLK6, 5}, |
| {CPM_CLK_SCC4, CPM_CLK7, 6}, |
| {CPM_CLK_SCC4, CPM_CLK8, 7}, |
| |
| {CPM_CLK_SMC1, CPM_BRG1, 0}, |
| {CPM_CLK_SMC1, CPM_BRG2, 1}, |
| {CPM_CLK_SMC1, CPM_BRG3, 2}, |
| {CPM_CLK_SMC1, CPM_BRG4, 3}, |
| {CPM_CLK_SMC1, CPM_CLK1, 4}, |
| {CPM_CLK_SMC1, CPM_CLK2, 5}, |
| {CPM_CLK_SMC1, CPM_CLK3, 6}, |
| {CPM_CLK_SMC1, CPM_CLK4, 7}, |
| |
| {CPM_CLK_SMC2, CPM_BRG1, 0}, |
| {CPM_CLK_SMC2, CPM_BRG2, 1}, |
| {CPM_CLK_SMC2, CPM_BRG3, 2}, |
| {CPM_CLK_SMC2, CPM_BRG4, 3}, |
| {CPM_CLK_SMC2, CPM_CLK5, 4}, |
| {CPM_CLK_SMC2, CPM_CLK6, 5}, |
| {CPM_CLK_SMC2, CPM_CLK7, 6}, |
| {CPM_CLK_SMC2, CPM_CLK8, 7}, |
| }; |
| |
| switch (target) { |
| case CPM_CLK_SCC1: |
| reg = &mpc8xx_immr->im_cpm.cp_sicr; |
| shift = 0; |
| break; |
| |
| case CPM_CLK_SCC2: |
| reg = &mpc8xx_immr->im_cpm.cp_sicr; |
| shift = 8; |
| break; |
| |
| case CPM_CLK_SCC3: |
| reg = &mpc8xx_immr->im_cpm.cp_sicr; |
| shift = 16; |
| break; |
| |
| case CPM_CLK_SCC4: |
| reg = &mpc8xx_immr->im_cpm.cp_sicr; |
| shift = 24; |
| break; |
| |
| case CPM_CLK_SMC1: |
| reg = &mpc8xx_immr->im_cpm.cp_simode; |
| shift = 12; |
| break; |
| |
| case CPM_CLK_SMC2: |
| reg = &mpc8xx_immr->im_cpm.cp_simode; |
| shift = 28; |
| break; |
| |
| default: |
| printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n"); |
| return -EINVAL; |
| } |
| |
| if (reg == &mpc8xx_immr->im_cpm.cp_sicr && mode == CPM_CLK_RX) |
| shift += 3; |
| |
| for (i = 0; i < ARRAY_SIZE(clk_map); i++) { |
| if (clk_map[i][0] == target && clk_map[i][1] == clock) { |
| bits = clk_map[i][2]; |
| break; |
| } |
| } |
| |
| if (i == ARRAY_SIZE(clk_map)) { |
| printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n"); |
| return -EINVAL; |
| } |
| |
| bits <<= shift; |
| mask <<= shift; |
| out_be32(reg, (in_be32(reg) & ~mask) | bits); |
| |
| return 0; |
| } |