| /* SCTP kernel reference Implementation |
| * (C) Copyright IBM Corp. 2001, 2004 |
| * Copyright (c) 1999-2000 Cisco, Inc. |
| * Copyright (c) 1999-2001 Motorola, Inc. |
| * Copyright (c) 2001 Intel Corp. |
| * Copyright (c) 2001 Nokia, Inc. |
| * Copyright (c) 2001 La Monte H.P. Yarroll |
| * |
| * This abstraction carries sctp events to the ULP (sockets). |
| * |
| * The SCTP reference implementation is free software; |
| * you can redistribute it and/or modify it under the terms of |
| * the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * The SCTP reference implementation is distributed in the hope that it |
| * will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| * ************************ |
| * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| * See the GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with GNU CC; see the file COPYING. If not, write to |
| * the Free Software Foundation, 59 Temple Place - Suite 330, |
| * Boston, MA 02111-1307, USA. |
| * |
| * Please send any bug reports or fixes you make to the |
| * email address(es): |
| * lksctp developers <lksctp-developers@lists.sourceforge.net> |
| * |
| * Or submit a bug report through the following website: |
| * http://www.sf.net/projects/lksctp |
| * |
| * Written or modified by: |
| * Jon Grimm <jgrimm@us.ibm.com> |
| * La Monte H.P. Yarroll <piggy@acm.org> |
| * Sridhar Samudrala <sri@us.ibm.com> |
| * |
| * Any bugs reported given to us we will try to fix... any fixes shared will |
| * be incorporated into the next SCTP release. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/skbuff.h> |
| #include <net/sock.h> |
| #include <net/sctp/structs.h> |
| #include <net/sctp/sctp.h> |
| #include <net/sctp/sm.h> |
| |
| /* Forward declarations for internal helpers. */ |
| static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq, |
| struct sctp_ulpevent *); |
| static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *, |
| struct sctp_ulpevent *); |
| static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); |
| |
| /* 1st Level Abstractions */ |
| |
| /* Initialize a ULP queue from a block of memory. */ |
| struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq, |
| struct sctp_association *asoc) |
| { |
| memset(ulpq, 0, sizeof(struct sctp_ulpq)); |
| |
| ulpq->asoc = asoc; |
| skb_queue_head_init(&ulpq->reasm); |
| skb_queue_head_init(&ulpq->lobby); |
| ulpq->pd_mode = 0; |
| ulpq->malloced = 0; |
| |
| return ulpq; |
| } |
| |
| |
| /* Flush the reassembly and ordering queues. */ |
| void sctp_ulpq_flush(struct sctp_ulpq *ulpq) |
| { |
| struct sk_buff *skb; |
| struct sctp_ulpevent *event; |
| |
| while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { |
| event = sctp_skb2event(skb); |
| sctp_ulpevent_free(event); |
| } |
| |
| while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { |
| event = sctp_skb2event(skb); |
| sctp_ulpevent_free(event); |
| } |
| |
| } |
| |
| /* Dispose of a ulpqueue. */ |
| void sctp_ulpq_free(struct sctp_ulpq *ulpq) |
| { |
| sctp_ulpq_flush(ulpq); |
| if (ulpq->malloced) |
| kfree(ulpq); |
| } |
| |
| /* Process an incoming DATA chunk. */ |
| int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, |
| gfp_t gfp) |
| { |
| struct sk_buff_head temp; |
| sctp_data_chunk_t *hdr; |
| struct sctp_ulpevent *event; |
| |
| hdr = (sctp_data_chunk_t *) chunk->chunk_hdr; |
| |
| /* Create an event from the incoming chunk. */ |
| event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); |
| if (!event) |
| return -ENOMEM; |
| |
| /* Do reassembly if needed. */ |
| event = sctp_ulpq_reasm(ulpq, event); |
| |
| /* Do ordering if needed. */ |
| if ((event) && (event->msg_flags & MSG_EOR)){ |
| /* Create a temporary list to collect chunks on. */ |
| skb_queue_head_init(&temp); |
| __skb_queue_tail(&temp, sctp_event2skb(event)); |
| |
| event = sctp_ulpq_order(ulpq, event); |
| } |
| |
| /* Send event to the ULP. 'event' is the sctp_ulpevent for |
| * very first SKB on the 'temp' list. |
| */ |
| if (event) |
| sctp_ulpq_tail_event(ulpq, event); |
| |
| return 0; |
| } |
| |
| /* Add a new event for propagation to the ULP. */ |
| /* Clear the partial delivery mode for this socket. Note: This |
| * assumes that no association is currently in partial delivery mode. |
| */ |
| int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) |
| { |
| struct sctp_sock *sp = sctp_sk(sk); |
| |
| if (atomic_dec_and_test(&sp->pd_mode)) { |
| /* This means there are no other associations in PD, so |
| * we can go ahead and clear out the lobby in one shot |
| */ |
| if (!skb_queue_empty(&sp->pd_lobby)) { |
| struct list_head *list; |
| sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue); |
| list = (struct list_head *)&sctp_sk(sk)->pd_lobby; |
| INIT_LIST_HEAD(list); |
| return 1; |
| } |
| } else { |
| /* There are other associations in PD, so we only need to |
| * pull stuff out of the lobby that belongs to the |
| * associations that is exiting PD (all of its notifications |
| * are posted here). |
| */ |
| if (!skb_queue_empty(&sp->pd_lobby) && asoc) { |
| struct sk_buff *skb, *tmp; |
| struct sctp_ulpevent *event; |
| |
| sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { |
| event = sctp_skb2event(skb); |
| if (event->asoc == asoc) { |
| __skb_unlink(skb, &sp->pd_lobby); |
| __skb_queue_tail(&sk->sk_receive_queue, |
| skb); |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Set the pd_mode on the socket and ulpq */ |
| static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) |
| { |
| struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); |
| |
| atomic_inc(&sp->pd_mode); |
| ulpq->pd_mode = 1; |
| } |
| |
| /* Clear the pd_mode and restart any pending messages waiting for delivery. */ |
| static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) |
| { |
| ulpq->pd_mode = 0; |
| sctp_ulpq_reasm_drain(ulpq); |
| return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); |
| } |
| |
| /* If the SKB of 'event' is on a list, it is the first such member |
| * of that list. |
| */ |
| int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event) |
| { |
| struct sock *sk = ulpq->asoc->base.sk; |
| struct sk_buff_head *queue, *skb_list; |
| struct sk_buff *skb = sctp_event2skb(event); |
| int clear_pd = 0; |
| |
| skb_list = (struct sk_buff_head *) skb->prev; |
| |
| /* If the socket is just going to throw this away, do not |
| * even try to deliver it. |
| */ |
| if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN)) |
| goto out_free; |
| |
| /* Check if the user wishes to receive this event. */ |
| if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe)) |
| goto out_free; |
| |
| /* If we are in partial delivery mode, post to the lobby until |
| * partial delivery is cleared, unless, of course _this_ is |
| * the association the cause of the partial delivery. |
| */ |
| |
| if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) { |
| queue = &sk->sk_receive_queue; |
| } else { |
| if (ulpq->pd_mode) { |
| /* If the association is in partial delivery, we |
| * need to finish delivering the partially processed |
| * packet before passing any other data. This is |
| * because we don't truly support stream interleaving. |
| */ |
| if ((event->msg_flags & MSG_NOTIFICATION) || |
| (SCTP_DATA_NOT_FRAG == |
| (event->msg_flags & SCTP_DATA_FRAG_MASK))) |
| queue = &sctp_sk(sk)->pd_lobby; |
| else { |
| clear_pd = event->msg_flags & MSG_EOR; |
| queue = &sk->sk_receive_queue; |
| } |
| } else { |
| /* |
| * If fragment interleave is enabled, we |
| * can queue this to the recieve queue instead |
| * of the lobby. |
| */ |
| if (sctp_sk(sk)->frag_interleave) |
| queue = &sk->sk_receive_queue; |
| else |
| queue = &sctp_sk(sk)->pd_lobby; |
| } |
| } |
| |
| /* If we are harvesting multiple skbs they will be |
| * collected on a list. |
| */ |
| if (skb_list) |
| sctp_skb_list_tail(skb_list, queue); |
| else |
| __skb_queue_tail(queue, skb); |
| |
| /* Did we just complete partial delivery and need to get |
| * rolling again? Move pending data to the receive |
| * queue. |
| */ |
| if (clear_pd) |
| sctp_ulpq_clear_pd(ulpq); |
| |
| if (queue == &sk->sk_receive_queue) |
| sk->sk_data_ready(sk, 0); |
| return 1; |
| |
| out_free: |
| if (skb_list) |
| sctp_queue_purge_ulpevents(skb_list); |
| else |
| sctp_ulpevent_free(event); |
| |
| return 0; |
| } |
| |
| /* 2nd Level Abstractions */ |
| |
| /* Helper function to store chunks that need to be reassembled. */ |
| static inline void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, |
| struct sctp_ulpevent *event) |
| { |
| struct sk_buff *pos; |
| struct sctp_ulpevent *cevent; |
| __u32 tsn, ctsn; |
| |
| tsn = event->tsn; |
| |
| /* See if it belongs at the end. */ |
| pos = skb_peek_tail(&ulpq->reasm); |
| if (!pos) { |
| __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); |
| return; |
| } |
| |
| /* Short circuit just dropping it at the end. */ |
| cevent = sctp_skb2event(pos); |
| ctsn = cevent->tsn; |
| if (TSN_lt(ctsn, tsn)) { |
| __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); |
| return; |
| } |
| |
| /* Find the right place in this list. We store them by TSN. */ |
| skb_queue_walk(&ulpq->reasm, pos) { |
| cevent = sctp_skb2event(pos); |
| ctsn = cevent->tsn; |
| |
| if (TSN_lt(tsn, ctsn)) |
| break; |
| } |
| |
| /* Insert before pos. */ |
| __skb_insert(sctp_event2skb(event), pos->prev, pos, &ulpq->reasm); |
| |
| } |
| |
| /* Helper function to return an event corresponding to the reassembled |
| * datagram. |
| * This routine creates a re-assembled skb given the first and last skb's |
| * as stored in the reassembly queue. The skb's may be non-linear if the sctp |
| * payload was fragmented on the way and ip had to reassemble them. |
| * We add the rest of skb's to the first skb's fraglist. |
| */ |
| static struct sctp_ulpevent *sctp_make_reassembled_event(struct sk_buff_head *queue, struct sk_buff *f_frag, struct sk_buff *l_frag) |
| { |
| struct sk_buff *pos; |
| struct sk_buff *new = NULL; |
| struct sctp_ulpevent *event; |
| struct sk_buff *pnext, *last; |
| struct sk_buff *list = skb_shinfo(f_frag)->frag_list; |
| |
| /* Store the pointer to the 2nd skb */ |
| if (f_frag == l_frag) |
| pos = NULL; |
| else |
| pos = f_frag->next; |
| |
| /* Get the last skb in the f_frag's frag_list if present. */ |
| for (last = list; list; last = list, list = list->next); |
| |
| /* Add the list of remaining fragments to the first fragments |
| * frag_list. |
| */ |
| if (last) |
| last->next = pos; |
| else { |
| if (skb_cloned(f_frag)) { |
| /* This is a cloned skb, we can't just modify |
| * the frag_list. We need a new skb to do that. |
| * Instead of calling skb_unshare(), we'll do it |
| * ourselves since we need to delay the free. |
| */ |
| new = skb_copy(f_frag, GFP_ATOMIC); |
| if (!new) |
| return NULL; /* try again later */ |
| |
| sctp_skb_set_owner_r(new, f_frag->sk); |
| |
| skb_shinfo(new)->frag_list = pos; |
| } else |
| skb_shinfo(f_frag)->frag_list = pos; |
| } |
| |
| /* Remove the first fragment from the reassembly queue. */ |
| __skb_unlink(f_frag, queue); |
| |
| /* if we did unshare, then free the old skb and re-assign */ |
| if (new) { |
| kfree_skb(f_frag); |
| f_frag = new; |
| } |
| |
| while (pos) { |
| |
| pnext = pos->next; |
| |
| /* Update the len and data_len fields of the first fragment. */ |
| f_frag->len += pos->len; |
| f_frag->data_len += pos->len; |
| |
| /* Remove the fragment from the reassembly queue. */ |
| __skb_unlink(pos, queue); |
| |
| /* Break if we have reached the last fragment. */ |
| if (pos == l_frag) |
| break; |
| pos->next = pnext; |
| pos = pnext; |
| } |
| |
| event = sctp_skb2event(f_frag); |
| SCTP_INC_STATS(SCTP_MIB_REASMUSRMSGS); |
| |
| return event; |
| } |
| |
| |
| /* Helper function to check if an incoming chunk has filled up the last |
| * missing fragment in a SCTP datagram and return the corresponding event. |
| */ |
| static inline struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) |
| { |
| struct sk_buff *pos; |
| struct sctp_ulpevent *cevent; |
| struct sk_buff *first_frag = NULL; |
| __u32 ctsn, next_tsn; |
| struct sctp_ulpevent *retval = NULL; |
| struct sk_buff *pd_first = NULL; |
| struct sk_buff *pd_last = NULL; |
| size_t pd_len = 0; |
| struct sctp_association *asoc; |
| u32 pd_point; |
| |
| /* Initialized to 0 just to avoid compiler warning message. Will |
| * never be used with this value. It is referenced only after it |
| * is set when we find the first fragment of a message. |
| */ |
| next_tsn = 0; |
| |
| /* The chunks are held in the reasm queue sorted by TSN. |
| * Walk through the queue sequentially and look for a sequence of |
| * fragmented chunks that complete a datagram. |
| * 'first_frag' and next_tsn are reset when we find a chunk which |
| * is the first fragment of a datagram. Once these 2 fields are set |
| * we expect to find the remaining middle fragments and the last |
| * fragment in order. If not, first_frag is reset to NULL and we |
| * start the next pass when we find another first fragment. |
| * |
| * There is a potential to do partial delivery if user sets |
| * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here |
| * to see if can do PD. |
| */ |
| skb_queue_walk(&ulpq->reasm, pos) { |
| cevent = sctp_skb2event(pos); |
| ctsn = cevent->tsn; |
| |
| switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { |
| case SCTP_DATA_FIRST_FRAG: |
| /* If this "FIRST_FRAG" is the first |
| * element in the queue, then count it towards |
| * possible PD. |
| */ |
| if (pos == ulpq->reasm.next) { |
| pd_first = pos; |
| pd_last = pos; |
| pd_len = pos->len; |
| } else { |
| pd_first = NULL; |
| pd_last = NULL; |
| pd_len = 0; |
| } |
| |
| first_frag = pos; |
| next_tsn = ctsn + 1; |
| break; |
| |
| case SCTP_DATA_MIDDLE_FRAG: |
| if ((first_frag) && (ctsn == next_tsn)) { |
| next_tsn++; |
| if (pd_first) { |
| pd_last = pos; |
| pd_len += pos->len; |
| } |
| } else |
| first_frag = NULL; |
| break; |
| |
| case SCTP_DATA_LAST_FRAG: |
| if (first_frag && (ctsn == next_tsn)) |
| goto found; |
| else |
| first_frag = NULL; |
| break; |
| } |
| } |
| |
| asoc = ulpq->asoc; |
| if (pd_first) { |
| /* Make sure we can enter partial deliver. |
| * We can trigger partial delivery only if framgent |
| * interleave is set, or the socket is not already |
| * in partial delivery. |
| */ |
| if (!sctp_sk(asoc->base.sk)->frag_interleave && |
| atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) |
| goto done; |
| |
| cevent = sctp_skb2event(pd_first); |
| pd_point = sctp_sk(asoc->base.sk)->pd_point; |
| if (pd_point && pd_point <= pd_len) { |
| retval = sctp_make_reassembled_event(&ulpq->reasm, |
| pd_first, |
| pd_last); |
| if (retval) |
| sctp_ulpq_set_pd(ulpq); |
| } |
| } |
| done: |
| return retval; |
| found: |
| retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, pos); |
| if (retval) |
| retval->msg_flags |= MSG_EOR; |
| goto done; |
| } |
| |
| /* Retrieve the next set of fragments of a partial message. */ |
| static inline struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) |
| { |
| struct sk_buff *pos, *last_frag, *first_frag; |
| struct sctp_ulpevent *cevent; |
| __u32 ctsn, next_tsn; |
| int is_last; |
| struct sctp_ulpevent *retval; |
| |
| /* The chunks are held in the reasm queue sorted by TSN. |
| * Walk through the queue sequentially and look for the first |
| * sequence of fragmented chunks. |
| */ |
| |
| if (skb_queue_empty(&ulpq->reasm)) |
| return NULL; |
| |
| last_frag = first_frag = NULL; |
| retval = NULL; |
| next_tsn = 0; |
| is_last = 0; |
| |
| skb_queue_walk(&ulpq->reasm, pos) { |
| cevent = sctp_skb2event(pos); |
| ctsn = cevent->tsn; |
| |
| switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { |
| case SCTP_DATA_MIDDLE_FRAG: |
| if (!first_frag) { |
| first_frag = pos; |
| next_tsn = ctsn + 1; |
| last_frag = pos; |
| } else if (next_tsn == ctsn) |
| next_tsn++; |
| else |
| goto done; |
| break; |
| case SCTP_DATA_LAST_FRAG: |
| if (!first_frag) |
| first_frag = pos; |
| else if (ctsn != next_tsn) |
| goto done; |
| last_frag = pos; |
| is_last = 1; |
| goto done; |
| default: |
| return NULL; |
| } |
| } |
| |
| /* We have the reassembled event. There is no need to look |
| * further. |
| */ |
| done: |
| retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, last_frag); |
| if (retval && is_last) |
| retval->msg_flags |= MSG_EOR; |
| |
| return retval; |
| } |
| |
| |
| /* Helper function to reassemble chunks. Hold chunks on the reasm queue that |
| * need reassembling. |
| */ |
| static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, |
| struct sctp_ulpevent *event) |
| { |
| struct sctp_ulpevent *retval = NULL; |
| |
| /* Check if this is part of a fragmented message. */ |
| if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { |
| event->msg_flags |= MSG_EOR; |
| return event; |
| } |
| |
| sctp_ulpq_store_reasm(ulpq, event); |
| if (!ulpq->pd_mode) |
| retval = sctp_ulpq_retrieve_reassembled(ulpq); |
| else { |
| __u32 ctsn, ctsnap; |
| |
| /* Do not even bother unless this is the next tsn to |
| * be delivered. |
| */ |
| ctsn = event->tsn; |
| ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); |
| if (TSN_lte(ctsn, ctsnap)) |
| retval = sctp_ulpq_retrieve_partial(ulpq); |
| } |
| |
| return retval; |
| } |
| |
| /* Retrieve the first part (sequential fragments) for partial delivery. */ |
| static inline struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) |
| { |
| struct sk_buff *pos, *last_frag, *first_frag; |
| struct sctp_ulpevent *cevent; |
| __u32 ctsn, next_tsn; |
| struct sctp_ulpevent *retval; |
| |
| /* The chunks are held in the reasm queue sorted by TSN. |
| * Walk through the queue sequentially and look for a sequence of |
| * fragmented chunks that start a datagram. |
| */ |
| |
| if (skb_queue_empty(&ulpq->reasm)) |
| return NULL; |
| |
| last_frag = first_frag = NULL; |
| retval = NULL; |
| next_tsn = 0; |
| |
| skb_queue_walk(&ulpq->reasm, pos) { |
| cevent = sctp_skb2event(pos); |
| ctsn = cevent->tsn; |
| |
| switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { |
| case SCTP_DATA_FIRST_FRAG: |
| if (!first_frag) { |
| first_frag = pos; |
| next_tsn = ctsn + 1; |
| last_frag = pos; |
| } else |
| goto done; |
| break; |
| |
| case SCTP_DATA_MIDDLE_FRAG: |
| if (!first_frag) |
| return NULL; |
| if (ctsn == next_tsn) { |
| next_tsn++; |
| last_frag = pos; |
| } else |
| goto done; |
| break; |
| default: |
| return NULL; |
| } |
| } |
| |
| /* We have the reassembled event. There is no need to look |
| * further. |
| */ |
| done: |
| retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, last_frag); |
| return retval; |
| } |
| |
| /* |
| * Flush out stale fragments from the reassembly queue when processing |
| * a Forward TSN. |
| * |
| * RFC 3758, Section 3.6 |
| * |
| * After receiving and processing a FORWARD TSN, the data receiver MUST |
| * take cautions in updating its re-assembly queue. The receiver MUST |
| * remove any partially reassembled message, which is still missing one |
| * or more TSNs earlier than or equal to the new cumulative TSN point. |
| * In the event that the receiver has invoked the partial delivery API, |
| * a notification SHOULD also be generated to inform the upper layer API |
| * that the message being partially delivered will NOT be completed. |
| */ |
| void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) |
| { |
| struct sk_buff *pos, *tmp; |
| struct sctp_ulpevent *event; |
| __u32 tsn; |
| |
| if (skb_queue_empty(&ulpq->reasm)) |
| return; |
| |
| skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { |
| event = sctp_skb2event(pos); |
| tsn = event->tsn; |
| |
| /* Since the entire message must be abandoned by the |
| * sender (item A3 in Section 3.5, RFC 3758), we can |
| * free all fragments on the list that are less then |
| * or equal to ctsn_point |
| */ |
| if (TSN_lte(tsn, fwd_tsn)) { |
| __skb_unlink(pos, &ulpq->reasm); |
| sctp_ulpevent_free(event); |
| } else |
| break; |
| } |
| } |
| |
| /* |
| * Drain the reassembly queue. If we just cleared parted delivery, it |
| * is possible that the reassembly queue will contain already reassembled |
| * messages. Retrieve any such messages and give them to the user. |
| */ |
| static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) |
| { |
| struct sctp_ulpevent *event = NULL; |
| struct sk_buff_head temp; |
| |
| if (skb_queue_empty(&ulpq->reasm)) |
| return; |
| |
| while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { |
| /* Do ordering if needed. */ |
| if ((event) && (event->msg_flags & MSG_EOR)){ |
| skb_queue_head_init(&temp); |
| __skb_queue_tail(&temp, sctp_event2skb(event)); |
| |
| event = sctp_ulpq_order(ulpq, event); |
| } |
| |
| /* Send event to the ULP. 'event' is the |
| * sctp_ulpevent for very first SKB on the temp' list. |
| */ |
| if (event) |
| sctp_ulpq_tail_event(ulpq, event); |
| } |
| } |
| |
| |
| /* Helper function to gather skbs that have possibly become |
| * ordered by an an incoming chunk. |
| */ |
| static inline void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, |
| struct sctp_ulpevent *event) |
| { |
| struct sk_buff_head *event_list; |
| struct sk_buff *pos, *tmp; |
| struct sctp_ulpevent *cevent; |
| struct sctp_stream *in; |
| __u16 sid, csid; |
| __u16 ssn, cssn; |
| |
| sid = event->stream; |
| ssn = event->ssn; |
| in = &ulpq->asoc->ssnmap->in; |
| |
| event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; |
| |
| /* We are holding the chunks by stream, by SSN. */ |
| sctp_skb_for_each(pos, &ulpq->lobby, tmp) { |
| cevent = (struct sctp_ulpevent *) pos->cb; |
| csid = cevent->stream; |
| cssn = cevent->ssn; |
| |
| /* Have we gone too far? */ |
| if (csid > sid) |
| break; |
| |
| /* Have we not gone far enough? */ |
| if (csid < sid) |
| continue; |
| |
| if (cssn != sctp_ssn_peek(in, sid)) |
| break; |
| |
| /* Found it, so mark in the ssnmap. */ |
| sctp_ssn_next(in, sid); |
| |
| __skb_unlink(pos, &ulpq->lobby); |
| |
| /* Attach all gathered skbs to the event. */ |
| __skb_queue_tail(event_list, pos); |
| } |
| } |
| |
| /* Helper function to store chunks needing ordering. */ |
| static inline void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, |
| struct sctp_ulpevent *event) |
| { |
| struct sk_buff *pos; |
| struct sctp_ulpevent *cevent; |
| __u16 sid, csid; |
| __u16 ssn, cssn; |
| |
| pos = skb_peek_tail(&ulpq->lobby); |
| if (!pos) { |
| __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); |
| return; |
| } |
| |
| sid = event->stream; |
| ssn = event->ssn; |
| |
| cevent = (struct sctp_ulpevent *) pos->cb; |
| csid = cevent->stream; |
| cssn = cevent->ssn; |
| if (sid > csid) { |
| __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); |
| return; |
| } |
| |
| if ((sid == csid) && SSN_lt(cssn, ssn)) { |
| __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); |
| return; |
| } |
| |
| /* Find the right place in this list. We store them by |
| * stream ID and then by SSN. |
| */ |
| skb_queue_walk(&ulpq->lobby, pos) { |
| cevent = (struct sctp_ulpevent *) pos->cb; |
| csid = cevent->stream; |
| cssn = cevent->ssn; |
| |
| if (csid > sid) |
| break; |
| if (csid == sid && SSN_lt(ssn, cssn)) |
| break; |
| } |
| |
| |
| /* Insert before pos. */ |
| __skb_insert(sctp_event2skb(event), pos->prev, pos, &ulpq->lobby); |
| |
| } |
| |
| static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, |
| struct sctp_ulpevent *event) |
| { |
| __u16 sid, ssn; |
| struct sctp_stream *in; |
| |
| /* Check if this message needs ordering. */ |
| if (SCTP_DATA_UNORDERED & event->msg_flags) |
| return event; |
| |
| /* Note: The stream ID must be verified before this routine. */ |
| sid = event->stream; |
| ssn = event->ssn; |
| in = &ulpq->asoc->ssnmap->in; |
| |
| /* Is this the expected SSN for this stream ID? */ |
| if (ssn != sctp_ssn_peek(in, sid)) { |
| /* We've received something out of order, so find where it |
| * needs to be placed. We order by stream and then by SSN. |
| */ |
| sctp_ulpq_store_ordered(ulpq, event); |
| return NULL; |
| } |
| |
| /* Mark that the next chunk has been found. */ |
| sctp_ssn_next(in, sid); |
| |
| /* Go find any other chunks that were waiting for |
| * ordering. |
| */ |
| sctp_ulpq_retrieve_ordered(ulpq, event); |
| |
| return event; |
| } |
| |
| /* Helper function to gather skbs that have possibly become |
| * ordered by forward tsn skipping their dependencies. |
| */ |
| static inline void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) |
| { |
| struct sk_buff *pos, *tmp; |
| struct sctp_ulpevent *cevent; |
| struct sctp_ulpevent *event; |
| struct sctp_stream *in; |
| struct sk_buff_head temp; |
| __u16 csid, cssn; |
| |
| in = &ulpq->asoc->ssnmap->in; |
| |
| /* We are holding the chunks by stream, by SSN. */ |
| skb_queue_head_init(&temp); |
| event = NULL; |
| sctp_skb_for_each(pos, &ulpq->lobby, tmp) { |
| cevent = (struct sctp_ulpevent *) pos->cb; |
| csid = cevent->stream; |
| cssn = cevent->ssn; |
| |
| /* Have we gone too far? */ |
| if (csid > sid) |
| break; |
| |
| /* Have we not gone far enough? */ |
| if (csid < sid) |
| continue; |
| |
| /* see if this ssn has been marked by skipping */ |
| if (!SSN_lte(cssn, sctp_ssn_peek(in, csid))) |
| break; |
| |
| __skb_unlink(pos, &ulpq->lobby); |
| if (!event) |
| /* Create a temporary list to collect chunks on. */ |
| event = sctp_skb2event(pos); |
| |
| /* Attach all gathered skbs to the event. */ |
| __skb_queue_tail(&temp, pos); |
| } |
| |
| /* Send event to the ULP. 'event' is the sctp_ulpevent for |
| * very first SKB on the 'temp' list. |
| */ |
| if (event) { |
| /* see if we have more ordered that we can deliver */ |
| sctp_ulpq_retrieve_ordered(ulpq, event); |
| sctp_ulpq_tail_event(ulpq, event); |
| } |
| } |
| |
| /* Skip over an SSN. This is used during the processing of |
| * Forwared TSN chunk to skip over the abandoned ordered data |
| */ |
| void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) |
| { |
| struct sctp_stream *in; |
| |
| /* Note: The stream ID must be verified before this routine. */ |
| in = &ulpq->asoc->ssnmap->in; |
| |
| /* Is this an old SSN? If so ignore. */ |
| if (SSN_lt(ssn, sctp_ssn_peek(in, sid))) |
| return; |
| |
| /* Mark that we are no longer expecting this SSN or lower. */ |
| sctp_ssn_skip(in, sid, ssn); |
| |
| /* Go find any other chunks that were waiting for |
| * ordering and deliver them if needed. |
| */ |
| sctp_ulpq_reap_ordered(ulpq, sid); |
| return; |
| } |
| |
| static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, |
| struct sk_buff_head *list, __u16 needed) |
| { |
| __u16 freed = 0; |
| __u32 tsn; |
| struct sk_buff *skb; |
| struct sctp_ulpevent *event; |
| struct sctp_tsnmap *tsnmap; |
| |
| tsnmap = &ulpq->asoc->peer.tsn_map; |
| |
| while ((skb = __skb_dequeue_tail(list)) != NULL) { |
| freed += skb_headlen(skb); |
| event = sctp_skb2event(skb); |
| tsn = event->tsn; |
| |
| sctp_ulpevent_free(event); |
| sctp_tsnmap_renege(tsnmap, tsn); |
| if (freed >= needed) |
| return freed; |
| } |
| |
| return freed; |
| } |
| |
| /* Renege 'needed' bytes from the ordering queue. */ |
| static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) |
| { |
| return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); |
| } |
| |
| /* Renege 'needed' bytes from the reassembly queue. */ |
| static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) |
| { |
| return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); |
| } |
| |
| /* Partial deliver the first message as there is pressure on rwnd. */ |
| void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, |
| struct sctp_chunk *chunk, |
| gfp_t gfp) |
| { |
| struct sctp_ulpevent *event; |
| struct sctp_association *asoc; |
| struct sctp_sock *sp; |
| |
| asoc = ulpq->asoc; |
| sp = sctp_sk(asoc->base.sk); |
| |
| /* If the association is already in Partial Delivery mode |
| * we have noting to do. |
| */ |
| if (ulpq->pd_mode) |
| return; |
| |
| /* If the user enabled fragment interleave socket option, |
| * multiple associations can enter partial delivery. |
| * Otherwise, we can only enter partial delivery if the |
| * socket is not in partial deliver mode. |
| */ |
| if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { |
| /* Is partial delivery possible? */ |
| event = sctp_ulpq_retrieve_first(ulpq); |
| /* Send event to the ULP. */ |
| if (event) { |
| sctp_ulpq_tail_event(ulpq, event); |
| sctp_ulpq_set_pd(ulpq); |
| return; |
| } |
| } |
| } |
| |
| /* Renege some packets to make room for an incoming chunk. */ |
| void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, |
| gfp_t gfp) |
| { |
| struct sctp_association *asoc; |
| __u16 needed, freed; |
| |
| asoc = ulpq->asoc; |
| |
| if (chunk) { |
| needed = ntohs(chunk->chunk_hdr->length); |
| needed -= sizeof(sctp_data_chunk_t); |
| } else |
| needed = SCTP_DEFAULT_MAXWINDOW; |
| |
| freed = 0; |
| |
| if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { |
| freed = sctp_ulpq_renege_order(ulpq, needed); |
| if (freed < needed) { |
| freed += sctp_ulpq_renege_frags(ulpq, needed - freed); |
| } |
| } |
| /* If able to free enough room, accept this chunk. */ |
| if (chunk && (freed >= needed)) { |
| __u32 tsn; |
| tsn = ntohl(chunk->subh.data_hdr->tsn); |
| sctp_tsnmap_mark(&asoc->peer.tsn_map, tsn); |
| sctp_ulpq_tail_data(ulpq, chunk, gfp); |
| |
| sctp_ulpq_partial_delivery(ulpq, chunk, gfp); |
| } |
| |
| sk_stream_mem_reclaim(asoc->base.sk); |
| return; |
| } |
| |
| |
| |
| /* Notify the application if an association is aborted and in |
| * partial delivery mode. Send up any pending received messages. |
| */ |
| void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) |
| { |
| struct sctp_ulpevent *ev = NULL; |
| struct sock *sk; |
| |
| if (!ulpq->pd_mode) |
| return; |
| |
| sk = ulpq->asoc->base.sk; |
| if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT, |
| &sctp_sk(sk)->subscribe)) |
| ev = sctp_ulpevent_make_pdapi(ulpq->asoc, |
| SCTP_PARTIAL_DELIVERY_ABORTED, |
| gfp); |
| if (ev) |
| __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); |
| |
| /* If there is data waiting, send it up the socket now. */ |
| if (sctp_ulpq_clear_pd(ulpq) || ev) |
| sk->sk_data_ready(sk, 0); |
| } |