blob: 5797e0b5a1327f4e87a41e772bdd568d6180abce [file] [log] [blame]
/* $Id: cris-ide-driver.patch,v 1.1 2005/06/29 21:39:07 akpm Exp $
*
* Etrax specific IDE functions, like init and PIO-mode setting etc.
* Almost the entire ide.c is used for the rest of the Etrax ATA driver.
* Copyright (c) 2000-2005 Axis Communications AB
*
* Authors: Bjorn Wesen (initial version)
* Mikael Starvik (crisv32 port)
*/
/* Regarding DMA:
*
* There are two forms of DMA - "DMA handshaking" between the interface and the drive,
* and DMA between the memory and the interface. We can ALWAYS use the latter, since it's
* something built-in in the Etrax. However only some drives support the DMA-mode handshaking
* on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the
* device can't do DMA handshaking for some stupid reason. We don't need to do that.
*/
#undef REALLY_SLOW_IO /* most systems can safely undef this */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <asm/io.h>
#include <asm/dma.h>
/* number of DMA descriptors */
#define MAX_DMA_DESCRS 64
/* number of times to retry busy-flags when reading/writing IDE-registers
* this can't be too high because a hung harddisk might cause the watchdog
* to trigger (sometimes INB and OUTB are called with irq's disabled)
*/
#define IDE_REGISTER_TIMEOUT 300
#define LOWDB(x)
#define D(x)
enum /* Transfer types */
{
TYPE_PIO,
TYPE_DMA,
TYPE_UDMA
};
/* CRISv32 specifics */
#ifdef CONFIG_ETRAX_ARCH_V32
#include <asm/arch/hwregs/ata_defs.h>
#include <asm/arch/hwregs/dma_defs.h>
#include <asm/arch/hwregs/dma.h>
#include <asm/arch/pinmux.h>
#define ATA_UDMA2_CYC 2
#define ATA_UDMA2_DVS 3
#define ATA_UDMA1_CYC 2
#define ATA_UDMA1_DVS 4
#define ATA_UDMA0_CYC 4
#define ATA_UDMA0_DVS 6
#define ATA_DMA2_STROBE 7
#define ATA_DMA2_HOLD 1
#define ATA_DMA1_STROBE 8
#define ATA_DMA1_HOLD 3
#define ATA_DMA0_STROBE 25
#define ATA_DMA0_HOLD 19
#define ATA_PIO4_SETUP 3
#define ATA_PIO4_STROBE 7
#define ATA_PIO4_HOLD 1
#define ATA_PIO3_SETUP 3
#define ATA_PIO3_STROBE 9
#define ATA_PIO3_HOLD 3
#define ATA_PIO2_SETUP 3
#define ATA_PIO2_STROBE 13
#define ATA_PIO2_HOLD 5
#define ATA_PIO1_SETUP 5
#define ATA_PIO1_STROBE 23
#define ATA_PIO1_HOLD 9
#define ATA_PIO0_SETUP 9
#define ATA_PIO0_STROBE 39
#define ATA_PIO0_HOLD 9
int
cris_ide_ack_intr(ide_hwif_t* hwif)
{
reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2,
int, hwif->io_ports[0]);
REG_WR_INT(ata, regi_ata, rw_ack_intr, 1 << ctrl2.sel);
return 1;
}
static inline int
cris_ide_busy(void)
{
reg_ata_rs_stat_data stat_data;
stat_data = REG_RD(ata, regi_ata, rs_stat_data);
return stat_data.busy;
}
static inline int
cris_ide_ready(void)
{
return !cris_ide_busy();
}
static inline int
cris_ide_data_available(unsigned short* data)
{
reg_ata_rs_stat_data stat_data;
stat_data = REG_RD(ata, regi_ata, rs_stat_data);
*data = stat_data.data;
return stat_data.dav;
}
static void
cris_ide_write_command(unsigned long command)
{
REG_WR_INT(ata, regi_ata, rw_ctrl2, command); /* write data to the drive's register */
}
static void
cris_ide_set_speed(int type, int setup, int strobe, int hold)
{
reg_ata_rw_ctrl0 ctrl0 = REG_RD(ata, regi_ata, rw_ctrl0);
reg_ata_rw_ctrl1 ctrl1 = REG_RD(ata, regi_ata, rw_ctrl1);
if (type == TYPE_PIO) {
ctrl0.pio_setup = setup;
ctrl0.pio_strb = strobe;
ctrl0.pio_hold = hold;
} else if (type == TYPE_DMA) {
ctrl0.dma_strb = strobe;
ctrl0.dma_hold = hold;
} else if (type == TYPE_UDMA) {
ctrl1.udma_tcyc = setup;
ctrl1.udma_tdvs = strobe;
}
REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
REG_WR(ata, regi_ata, rw_ctrl1, ctrl1);
}
static unsigned long
cris_ide_base_address(int bus)
{
reg_ata_rw_ctrl2 ctrl2 = {0};
ctrl2.sel = bus;
return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2);
}
static unsigned long
cris_ide_reg_addr(unsigned long addr, int cs0, int cs1)
{
reg_ata_rw_ctrl2 ctrl2 = {0};
ctrl2.addr = addr;
ctrl2.cs1 = cs1;
ctrl2.cs0 = cs0;
return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2);
}
static __init void
cris_ide_reset(unsigned val)
{
reg_ata_rw_ctrl0 ctrl0 = {0};
ctrl0.rst = val ? regk_ata_active : regk_ata_inactive;
REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
}
static __init void
cris_ide_init(void)
{
reg_ata_rw_ctrl0 ctrl0 = {0};
reg_ata_rw_intr_mask intr_mask = {0};
ctrl0.en = regk_ata_yes;
REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
intr_mask.bus0 = regk_ata_yes;
intr_mask.bus1 = regk_ata_yes;
intr_mask.bus2 = regk_ata_yes;
intr_mask.bus3 = regk_ata_yes;
REG_WR(ata, regi_ata, rw_intr_mask, intr_mask);
crisv32_request_dma(2, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata);
crisv32_request_dma(3, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata);
crisv32_pinmux_alloc_fixed(pinmux_ata);
crisv32_pinmux_alloc_fixed(pinmux_ata0);
crisv32_pinmux_alloc_fixed(pinmux_ata1);
crisv32_pinmux_alloc_fixed(pinmux_ata2);
crisv32_pinmux_alloc_fixed(pinmux_ata3);
DMA_RESET(regi_dma2);
DMA_ENABLE(regi_dma2);
DMA_RESET(regi_dma3);
DMA_ENABLE(regi_dma3);
DMA_WR_CMD (regi_dma2, regk_dma_set_w_size2);
DMA_WR_CMD (regi_dma3, regk_dma_set_w_size2);
}
static dma_descr_context mycontext __attribute__ ((__aligned__(32)));
#define cris_dma_descr_type dma_descr_data
#define cris_pio_read regk_ata_rd
#define cris_ultra_mask 0x7
#define MAX_DESCR_SIZE 0xffffffffUL
static unsigned long
cris_ide_get_reg(unsigned long reg)
{
return (reg & 0x0e000000) >> 25;
}
static void
cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last)
{
d->buf = (char*)virt_to_phys(buf);
d->after = d->buf + len;
d->eol = last;
}
static void
cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir,int type,int len)
{
reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG);
reg_ata_rw_trf_cnt trf_cnt = {0};
mycontext.saved_data = (dma_descr_data*)virt_to_phys(d);
mycontext.saved_data_buf = d->buf;
/* start the dma channel */
DMA_START_CONTEXT(dir ? regi_dma3 : regi_dma2, virt_to_phys(&mycontext));
/* initiate a multi word dma read using PIO handshaking */
trf_cnt.cnt = len >> 1;
/* Due to a "feature" the transfer count has to be one extra word for UDMA. */
if (type == TYPE_UDMA)
trf_cnt.cnt++;
REG_WR(ata, regi_ata, rw_trf_cnt, trf_cnt);
ctrl2.rw = dir ? regk_ata_rd : regk_ata_wr;
ctrl2.trf_mode = regk_ata_dma;
ctrl2.hsh = type == TYPE_PIO ? regk_ata_pio :
type == TYPE_DMA ? regk_ata_dma : regk_ata_udma;
ctrl2.multi = regk_ata_yes;
ctrl2.dma_size = regk_ata_word;
REG_WR(ata, regi_ata, rw_ctrl2, ctrl2);
}
static void
cris_ide_wait_dma(int dir)
{
reg_dma_rw_stat status;
do
{
status = REG_RD(dma, dir ? regi_dma3 : regi_dma2, rw_stat);
} while(status.list_state != regk_dma_data_at_eol);
}
static int cris_dma_test_irq(ide_drive_t *drive)
{
int intr = REG_RD_INT(ata, regi_ata, r_intr);
reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG);
return intr & (1 << ctrl2.sel) ? 1 : 0;
}
static void cris_ide_initialize_dma(int dir)
{
}
#else
/* CRISv10 specifics */
#include <asm/arch/svinto.h>
#include <asm/arch/io_interface_mux.h>
/* PIO timing (in R_ATA_CONFIG)
*
* _____________________________
* ADDRESS : ________/
*
* _______________
* DIOR : ____________/ \__________
*
* _______________
* DATA : XXXXXXXXXXXXXXXX_______________XXXXXXXX
*
*
* DIOR is unbuffered while address and data is buffered.
* This creates two problems:
* 1. The DIOR pulse is to early (because it is unbuffered)
* 2. The rise time of DIOR is long
*
* There are at least three different plausible solutions
* 1. Use a pad capable of larger currents in Etrax
* 2. Use an external buffer
* 3. Make the strobe pulse longer
*
* Some of the strobe timings below are modified to compensate
* for this. This implies a slight performance decrease.
*
* THIS SHOULD NEVER BE CHANGED!
*
* TODO: Is this true for the latest LX boards still ?
*/
#define ATA_UDMA2_CYC 0 /* No UDMA supported, just to make it compile. */
#define ATA_UDMA2_DVS 0
#define ATA_UDMA1_CYC 0
#define ATA_UDMA1_DVS 0
#define ATA_UDMA0_CYC 0
#define ATA_UDMA0_DVS 0
#define ATA_DMA2_STROBE 4
#define ATA_DMA2_HOLD 0
#define ATA_DMA1_STROBE 4
#define ATA_DMA1_HOLD 1
#define ATA_DMA0_STROBE 12
#define ATA_DMA0_HOLD 9
#define ATA_PIO4_SETUP 1
#define ATA_PIO4_STROBE 5
#define ATA_PIO4_HOLD 0
#define ATA_PIO3_SETUP 1
#define ATA_PIO3_STROBE 5
#define ATA_PIO3_HOLD 1
#define ATA_PIO2_SETUP 1
#define ATA_PIO2_STROBE 6
#define ATA_PIO2_HOLD 2
#define ATA_PIO1_SETUP 2
#define ATA_PIO1_STROBE 11
#define ATA_PIO1_HOLD 4
#define ATA_PIO0_SETUP 4
#define ATA_PIO0_STROBE 19
#define ATA_PIO0_HOLD 4
int
cris_ide_ack_intr(ide_hwif_t* hwif)
{
return 1;
}
static inline int
cris_ide_busy(void)
{
return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy) ;
}
static inline int
cris_ide_ready(void)
{
return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy) ;
}
static inline int
cris_ide_data_available(unsigned short* data)
{
unsigned long status = *R_ATA_STATUS_DATA;
*data = (unsigned short)status;
return status & IO_MASK(R_ATA_STATUS_DATA, dav);
}
static void
cris_ide_write_command(unsigned long command)
{
*R_ATA_CTRL_DATA = command;
}
static void
cris_ide_set_speed(int type, int setup, int strobe, int hold)
{
static int pio_setup = ATA_PIO4_SETUP;
static int pio_strobe = ATA_PIO4_STROBE;
static int pio_hold = ATA_PIO4_HOLD;
static int dma_strobe = ATA_DMA2_STROBE;
static int dma_hold = ATA_DMA2_HOLD;
if (type == TYPE_PIO) {
pio_setup = setup;
pio_strobe = strobe;
pio_hold = hold;
} else if (type == TYPE_DMA) {
dma_strobe = strobe;
dma_hold = hold;
}
*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) |
IO_FIELD( R_ATA_CONFIG, dma_strobe, dma_strobe ) |
IO_FIELD( R_ATA_CONFIG, dma_hold, dma_hold ) |
IO_FIELD( R_ATA_CONFIG, pio_setup, pio_setup ) |
IO_FIELD( R_ATA_CONFIG, pio_strobe, pio_strobe ) |
IO_FIELD( R_ATA_CONFIG, pio_hold, pio_hold ) );
}
static unsigned long
cris_ide_base_address(int bus)
{
return IO_FIELD(R_ATA_CTRL_DATA, sel, bus);
}
static unsigned long
cris_ide_reg_addr(unsigned long addr, int cs0, int cs1)
{
return IO_FIELD(R_ATA_CTRL_DATA, addr, addr) |
IO_FIELD(R_ATA_CTRL_DATA, cs0, cs0) |
IO_FIELD(R_ATA_CTRL_DATA, cs1, cs1);
}
static __init void
cris_ide_reset(unsigned val)
{
#ifdef CONFIG_ETRAX_IDE_G27_RESET
REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, val);
#endif
#ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET
REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, val);
#endif
#ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET
REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, val);
#endif
#ifdef CONFIG_ETRAX_IDE_PB7_RESET
port_pb_dir_shadow = port_pb_dir_shadow |
IO_STATE(R_PORT_PB_DIR, dir7, output);
*R_PORT_PB_DIR = port_pb_dir_shadow;
REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, val);
#endif
}
static __init void
cris_ide_init(void)
{
volatile unsigned int dummy;
*R_ATA_CTRL_DATA = 0;
*R_ATA_TRANSFER_CNT = 0;
*R_ATA_CONFIG = 0;
if (cris_request_io_interface(if_ata, "ETRAX100LX IDE")) {
printk(KERN_CRIT "ide: Failed to get IO interface\n");
return;
} else if (cris_request_dma(ATA_TX_DMA_NBR,
"ETRAX100LX IDE TX",
DMA_VERBOSE_ON_ERROR,
dma_ata)) {
cris_free_io_interface(if_ata);
printk(KERN_CRIT "ide: Failed to get Tx DMA channel\n");
return;
} else if (cris_request_dma(ATA_RX_DMA_NBR,
"ETRAX100LX IDE RX",
DMA_VERBOSE_ON_ERROR,
dma_ata)) {
cris_free_dma(ATA_TX_DMA_NBR, "ETRAX100LX IDE Tx");
cris_free_io_interface(if_ata);
printk(KERN_CRIT "ide: Failed to get Rx DMA channel\n");
return;
}
/* make a dummy read to set the ata controller in a proper state */
dummy = *R_ATA_STATUS_DATA;
*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ));
*R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw, read) |
IO_FIELD( R_ATA_CTRL_DATA, addr, 1 ) );
while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/
*R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) |
IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) |
IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) |
IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) );
/* reset the dma channels we will use */
RESET_DMA(ATA_TX_DMA_NBR);
RESET_DMA(ATA_RX_DMA_NBR);
WAIT_DMA(ATA_TX_DMA_NBR);
WAIT_DMA(ATA_RX_DMA_NBR);
}
#define cris_dma_descr_type etrax_dma_descr
#define cris_pio_read IO_STATE(R_ATA_CTRL_DATA, rw, read)
#define cris_ultra_mask 0x0
#define MAX_DESCR_SIZE 0x10000UL
static unsigned long
cris_ide_get_reg(unsigned long reg)
{
return (reg & 0x0e000000) >> 25;
}
static void
cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last)
{
d->buf = virt_to_phys(buf);
d->sw_len = len == MAX_DESCR_SIZE ? 0 : len;
if (last)
d->ctrl |= d_eol;
}
static void cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir, int type, int len)
{
unsigned long cmd;
if (dir) {
/* need to do this before RX DMA due to a chip bug
* it is enough to just flush the part of the cache that
* corresponds to the buffers we start, but since HD transfers
* usually are more than 8 kB, it is easier to optimize for the
* normal case and just flush the entire cache. its the only
* way to be sure! (OB movie quote)
*/
flush_etrax_cache();
*R_DMA_CH3_FIRST = virt_to_phys(d);
*R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start);
} else {
*R_DMA_CH2_FIRST = virt_to_phys(d);
*R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start);
}
/* initiate a multi word dma read using DMA handshaking */
*R_ATA_TRANSFER_CNT =
IO_FIELD(R_ATA_TRANSFER_CNT, count, len >> 1);
cmd = dir ? IO_STATE(R_ATA_CTRL_DATA, rw, read) : IO_STATE(R_ATA_CTRL_DATA, rw, write);
cmd |= type == TYPE_PIO ? IO_STATE(R_ATA_CTRL_DATA, handsh, pio) :
IO_STATE(R_ATA_CTRL_DATA, handsh, dma);
*R_ATA_CTRL_DATA =
cmd |
IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) |
IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) |
IO_STATE(R_ATA_CTRL_DATA, multi, on) |
IO_STATE(R_ATA_CTRL_DATA, dma_size, word);
}
static void
cris_ide_wait_dma(int dir)
{
if (dir)
WAIT_DMA(ATA_RX_DMA_NBR);
else
WAIT_DMA(ATA_TX_DMA_NBR);
}
static int cris_dma_test_irq(ide_drive_t *drive)
{
int intr = *R_IRQ_MASK0_RD;
int bus = IO_EXTRACT(R_ATA_CTRL_DATA, sel, IDE_DATA_REG);
return intr & (1 << (bus + IO_BITNR(R_IRQ_MASK0_RD, ata_irq0))) ? 1 : 0;
}
static void cris_ide_initialize_dma(int dir)
{
if (dir)
{
RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
WAIT_DMA(ATA_RX_DMA_NBR);
}
else
{
RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
WAIT_DMA(ATA_TX_DMA_NBR);
}
}
#endif
void
cris_ide_outw(unsigned short data, unsigned long reg) {
int timeleft;
LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data, reg));
/* note the lack of handling any timeouts. we stop waiting, but we don't
* really notify anybody.
*/
timeleft = IDE_REGISTER_TIMEOUT;
/* wait for busy flag */
do {
timeleft--;
} while(timeleft && cris_ide_busy());
/*
* Fall through at a timeout, so the ongoing command will be
* aborted by the write below, which is expected to be a dummy
* command to the command register. This happens when a faulty
* drive times out on a command. See comment on timeout in
* INB.
*/
if(!timeleft)
printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data);
cris_ide_write_command(reg|data); /* write data to the drive's register */
timeleft = IDE_REGISTER_TIMEOUT;
/* wait for transmitter ready */
do {
timeleft--;
} while(timeleft && !cris_ide_ready());
}
void
cris_ide_outb(unsigned char data, unsigned long reg)
{
cris_ide_outw(data, reg);
}
void
cris_ide_outbsync(ide_drive_t *drive, u8 addr, unsigned long port)
{
cris_ide_outw(addr, port);
}
unsigned short
cris_ide_inw(unsigned long reg) {
int timeleft;
unsigned short val;
timeleft = IDE_REGISTER_TIMEOUT;
/* wait for busy flag */
do {
timeleft--;
} while(timeleft && cris_ide_busy());
if(!timeleft) {
/*
* If we're asked to read the status register, like for
* example when a command does not complete for an
* extended time, but the ATA interface is stuck in a
* busy state at the *ETRAX* ATA interface level (as has
* happened repeatedly with at least one bad disk), then
* the best thing to do is to pretend that we read
* "busy" in the status register, so the IDE driver will
* time-out, abort the ongoing command and perform a
* reset sequence. Note that the subsequent OUT_BYTE
* call will also timeout on busy, but as long as the
* write is still performed, everything will be fine.
*/
if (cris_ide_get_reg(reg) == IDE_STATUS_OFFSET)
return BUSY_STAT;
else
/* For other rare cases we assume 0 is good enough. */
return 0;
}
cris_ide_write_command(reg | cris_pio_read);
timeleft = IDE_REGISTER_TIMEOUT;
/* wait for available */
do {
timeleft--;
} while(timeleft && !cris_ide_data_available(&val));
if(!timeleft)
return 0;
LOWDB(printk("inb: 0x%x from reg 0x%x\n", val & 0xff, reg));
return val;
}
unsigned char
cris_ide_inb(unsigned long reg)
{
return (unsigned char)cris_ide_inw(reg);
}
static int cris_dma_check (ide_drive_t *drive);
static int cris_dma_end (ide_drive_t *drive);
static int cris_dma_setup (ide_drive_t *drive);
static void cris_dma_exec_cmd (ide_drive_t *drive, u8 command);
static int cris_dma_test_irq(ide_drive_t *drive);
static void cris_dma_start(ide_drive_t *drive);
static void cris_ide_input_data (ide_drive_t *drive, void *, unsigned int);
static void cris_ide_output_data (ide_drive_t *drive, void *, unsigned int);
static void cris_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int);
static void cris_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int);
static int cris_dma_off (ide_drive_t *drive);
static int cris_dma_on (ide_drive_t *drive);
static void tune_cris_ide(ide_drive_t *drive, u8 pio)
{
int setup, strobe, hold;
switch(pio)
{
case 0:
setup = ATA_PIO0_SETUP;
strobe = ATA_PIO0_STROBE;
hold = ATA_PIO0_HOLD;
break;
case 1:
setup = ATA_PIO1_SETUP;
strobe = ATA_PIO1_STROBE;
hold = ATA_PIO1_HOLD;
break;
case 2:
setup = ATA_PIO2_SETUP;
strobe = ATA_PIO2_STROBE;
hold = ATA_PIO2_HOLD;
break;
case 3:
setup = ATA_PIO3_SETUP;
strobe = ATA_PIO3_STROBE;
hold = ATA_PIO3_HOLD;
break;
case 4:
setup = ATA_PIO4_SETUP;
strobe = ATA_PIO4_STROBE;
hold = ATA_PIO4_HOLD;
break;
default:
return;
}
cris_ide_set_speed(TYPE_PIO, setup, strobe, hold);
}
static int speed_cris_ide(ide_drive_t *drive, u8 speed)
{
int cyc = 0, dvs = 0, strobe = 0, hold = 0;
if (speed >= XFER_PIO_0 && speed <= XFER_PIO_4) {
tune_cris_ide(drive, speed - XFER_PIO_0);
return 0;
}
switch(speed)
{
case XFER_UDMA_0:
cyc = ATA_UDMA0_CYC;
dvs = ATA_UDMA0_DVS;
break;
case XFER_UDMA_1:
cyc = ATA_UDMA1_CYC;
dvs = ATA_UDMA1_DVS;
break;
case XFER_UDMA_2:
cyc = ATA_UDMA2_CYC;
dvs = ATA_UDMA2_DVS;
break;
case XFER_MW_DMA_0:
strobe = ATA_DMA0_STROBE;
hold = ATA_DMA0_HOLD;
break;
case XFER_MW_DMA_1:
strobe = ATA_DMA1_STROBE;
hold = ATA_DMA1_HOLD;
break;
case XFER_MW_DMA_2:
strobe = ATA_DMA2_STROBE;
hold = ATA_DMA2_HOLD;
break;
default:
return 0;
}
if (speed >= XFER_UDMA_0)
cris_ide_set_speed(TYPE_UDMA, cyc, dvs, 0);
else
cris_ide_set_speed(TYPE_DMA, 0, strobe, hold);
return 0;
}
void __init
init_e100_ide (void)
{
hw_regs_t hw;
int ide_offsets[IDE_NR_PORTS];
int h;
int i;
printk("ide: ETRAX FS built-in ATA DMA controller\n");
for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; i++)
ide_offsets[i] = cris_ide_reg_addr(i, 0, 1);
/* the IDE control register is at ATA address 6, with CS1 active instead of CS0 */
ide_offsets[IDE_CONTROL_OFFSET] = cris_ide_reg_addr(6, 1, 0);
/* first fill in some stuff in the ide_hwifs fields */
for(h = 0; h < MAX_HWIFS; h++) {
ide_hwif_t *hwif = &ide_hwifs[h];
ide_setup_ports(&hw, cris_ide_base_address(h),
ide_offsets,
0, 0, cris_ide_ack_intr,
ide_default_irq(0));
ide_register_hw(&hw, &hwif);
hwif->mmio = 2;
hwif->chipset = ide_etrax100;
hwif->tuneproc = &tune_cris_ide;
hwif->speedproc = &speed_cris_ide;
hwif->ata_input_data = &cris_ide_input_data;
hwif->ata_output_data = &cris_ide_output_data;
hwif->atapi_input_bytes = &cris_atapi_input_bytes;
hwif->atapi_output_bytes = &cris_atapi_output_bytes;
hwif->ide_dma_check = &cris_dma_check;
hwif->ide_dma_end = &cris_dma_end;
hwif->dma_setup = &cris_dma_setup;
hwif->dma_exec_cmd = &cris_dma_exec_cmd;
hwif->ide_dma_test_irq = &cris_dma_test_irq;
hwif->dma_start = &cris_dma_start;
hwif->OUTB = &cris_ide_outb;
hwif->OUTW = &cris_ide_outw;
hwif->OUTBSYNC = &cris_ide_outbsync;
hwif->INB = &cris_ide_inb;
hwif->INW = &cris_ide_inw;
hwif->ide_dma_host_off = &cris_dma_off;
hwif->ide_dma_host_on = &cris_dma_on;
hwif->ide_dma_off_quietly = &cris_dma_off;
hwif->udma_four = 0;
hwif->ultra_mask = cris_ultra_mask;
hwif->mwdma_mask = 0x07; /* Multiword DMA 0-2 */
hwif->swdma_mask = 0x07; /* Singleword DMA 0-2 */
}
/* Reset pulse */
cris_ide_reset(0);
udelay(25);
cris_ide_reset(1);
cris_ide_init();
cris_ide_set_speed(TYPE_PIO, ATA_PIO4_SETUP, ATA_PIO4_STROBE, ATA_PIO4_HOLD);
cris_ide_set_speed(TYPE_DMA, 0, ATA_DMA2_STROBE, ATA_DMA2_HOLD);
cris_ide_set_speed(TYPE_UDMA, ATA_UDMA2_CYC, ATA_UDMA2_DVS, 0);
}
static int cris_dma_off (ide_drive_t *drive)
{
return 0;
}
static int cris_dma_on (ide_drive_t *drive)
{
return 0;
}
static cris_dma_descr_type mydescr __attribute__ ((__aligned__(16)));
/*
* The following routines are mainly used by the ATAPI drivers.
*
* These routines will round up any request for an odd number of bytes,
* so if an odd bytecount is specified, be sure that there's at least one
* extra byte allocated for the buffer.
*/
static void
cris_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
{
D(printk("atapi_input_bytes, buffer 0x%x, count %d\n",
buffer, bytecount));
if(bytecount & 1) {
printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount);
bytecount++; /* to round off */
}
/* setup DMA and start transfer */
cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1);
cris_ide_start_dma(drive, &mydescr, 1, TYPE_PIO, bytecount);
/* wait for completion */
LED_DISK_READ(1);
cris_ide_wait_dma(1);
LED_DISK_READ(0);
}
static void
cris_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
{
D(printk("atapi_output_bytes, buffer 0x%x, count %d\n",
buffer, bytecount));
if(bytecount & 1) {
printk("odd bytecount %d in atapi_out_bytes!\n", bytecount);
bytecount++;
}
cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1);
cris_ide_start_dma(drive, &mydescr, 0, TYPE_PIO, bytecount);
/* wait for completion */
LED_DISK_WRITE(1);
LED_DISK_READ(1);
cris_ide_wait_dma(0);
LED_DISK_WRITE(0);
}
/*
* This is used for most PIO data transfers *from* the IDE interface
*/
static void
cris_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
{
cris_atapi_input_bytes(drive, buffer, wcount << 2);
}
/*
* This is used for most PIO data transfers *to* the IDE interface
*/
static void
cris_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
{
cris_atapi_output_bytes(drive, buffer, wcount << 2);
}
/* we only have one DMA channel on the chip for ATA, so we can keep these statically */
static cris_dma_descr_type ata_descrs[MAX_DMA_DESCRS] __attribute__ ((__aligned__(16)));
static unsigned int ata_tot_size;
/*
* cris_ide_build_dmatable() prepares a dma request.
* Returns 0 if all went okay, returns 1 otherwise.
*/
static int cris_ide_build_dmatable (ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
struct scatterlist* sg;
struct request *rq = drive->hwif->hwgroup->rq;
unsigned long size, addr;
unsigned int count = 0;
int i = 0;
sg = hwif->sg_table;
ata_tot_size = 0;
ide_map_sg(drive, rq);
i = hwif->sg_nents;
while(i) {
/*
* Determine addr and size of next buffer area. We assume that
* individual virtual buffers are always composed linearly in
* physical memory. For example, we assume that any 8kB buffer
* is always composed of two adjacent physical 4kB pages rather
* than two possibly non-adjacent physical 4kB pages.
*/
/* group sequential buffers into one large buffer */
addr = page_to_phys(sg->page) + sg->offset;
size = sg_dma_len(sg);
while (sg++, --i) {
if ((addr + size) != page_to_phys(sg->page) + sg->offset)
break;
size += sg_dma_len(sg);
}
/* did we run out of descriptors? */
if(count >= MAX_DMA_DESCRS) {
printk("%s: too few DMA descriptors\n", drive->name);
return 1;
}
/* however, this case is more difficult - rw_trf_cnt cannot be more
than 65536 words per transfer, so in that case we need to either
1) use a DMA interrupt to re-trigger rw_trf_cnt and continue with
the descriptors, or
2) simply do the request here, and get dma_intr to only ide_end_request on
those blocks that were actually set-up for transfer.
*/
if(ata_tot_size + size > 131072) {
printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size);
return 1;
}
/* If size > MAX_DESCR_SIZE it has to be splitted into new descriptors. Since we
don't handle size > 131072 only one split is necessary */
if(size > MAX_DESCR_SIZE) {
cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, MAX_DESCR_SIZE, 0);
count++;
ata_tot_size += MAX_DESCR_SIZE;
size -= MAX_DESCR_SIZE;
addr += MAX_DESCR_SIZE;
}
cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, size,i ? 0 : 1);
count++;
ata_tot_size += size;
}
if (count) {
/* return and say all is ok */
return 0;
}
printk("%s: empty DMA table?\n", drive->name);
return 1; /* let the PIO routines handle this weirdness */
}
static int cris_config_drive_for_dma (ide_drive_t *drive)
{
u8 speed = ide_dma_speed(drive, 1);
if (!speed)
return 0;
speed_cris_ide(drive, speed);
ide_config_drive_speed(drive, speed);
return ide_dma_enable(drive);
}
/*
* cris_dma_intr() is the handler for disk read/write DMA interrupts
*/
static ide_startstop_t cris_dma_intr (ide_drive_t *drive)
{
LED_DISK_READ(0);
LED_DISK_WRITE(0);
return ide_dma_intr(drive);
}
/*
* Functions below initiates/aborts DMA read/write operations on a drive.
*
* The caller is assumed to have selected the drive and programmed the drive's
* sector address using CHS or LBA. All that remains is to prepare for DMA
* and then issue the actual read/write DMA/PIO command to the drive.
*
* For ATAPI devices, we just prepare for DMA and return. The caller should
* then issue the packet command to the drive and call us again with
* cris_dma_start afterwards.
*
* Returns 0 if all went well.
* Returns 1 if DMA read/write could not be started, in which case
* the caller should revert to PIO for the current request.
*/
static int cris_dma_check(ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
struct hd_driveid* id = drive->id;
if (id && (id->capability & 1)) {
if (ide_use_dma(drive)) {
if (cris_config_drive_for_dma(drive))
return hwif->ide_dma_on(drive);
}
}
return hwif->ide_dma_off_quietly(drive);
}
static int cris_dma_end(ide_drive_t *drive)
{
drive->waiting_for_dma = 0;
return 0;
}
static int cris_dma_setup(ide_drive_t *drive)
{
struct request *rq = drive->hwif->hwgroup->rq;
cris_ide_initialize_dma(!rq_data_dir(rq));
if (cris_ide_build_dmatable (drive)) {
ide_map_sg(drive, rq);
return 1;
}
drive->waiting_for_dma = 1;
return 0;
}
static void cris_dma_exec_cmd(ide_drive_t *drive, u8 command)
{
/* set the irq handler which will finish the request when DMA is done */
ide_set_handler(drive, &cris_dma_intr, WAIT_CMD, NULL);
/* issue cmd to drive */
cris_ide_outb(command, IDE_COMMAND_REG);
}
static void cris_dma_start(ide_drive_t *drive)
{
struct request *rq = drive->hwif->hwgroup->rq;
int writing = rq_data_dir(rq);
int type = TYPE_DMA;
if (drive->current_speed >= XFER_UDMA_0)
type = TYPE_UDMA;
cris_ide_start_dma(drive, &ata_descrs[0], writing ? 0 : 1, type, ata_tot_size);
if (writing) {
LED_DISK_WRITE(1);
} else {
LED_DISK_READ(1);
}
}