| /* |
| * Copyright(c) 2015, 2016 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include <linux/vmalloc.h> |
| #include <linux/delay.h> |
| #include <linux/idr.h> |
| #include <linux/module.h> |
| #include <linux/printk.h> |
| #include <linux/hrtimer.h> |
| #include <rdma/rdma_vt.h> |
| |
| #include "hfi.h" |
| #include "device.h" |
| #include "common.h" |
| #include "trace.h" |
| #include "mad.h" |
| #include "sdma.h" |
| #include "debugfs.h" |
| #include "verbs.h" |
| #include "aspm.h" |
| #include "affinity.h" |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) DRIVER_NAME ": " fmt |
| |
| /* |
| * min buffers we want to have per context, after driver |
| */ |
| #define HFI1_MIN_USER_CTXT_BUFCNT 7 |
| |
| #define HFI1_MIN_HDRQ_EGRBUF_CNT 2 |
| #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352 |
| #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ |
| #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ |
| |
| /* |
| * Number of user receive contexts we are configured to use (to allow for more |
| * pio buffers per ctxt, etc.) Zero means use one user context per CPU. |
| */ |
| int num_user_contexts = -1; |
| module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO); |
| MODULE_PARM_DESC( |
| num_user_contexts, "Set max number of user contexts to use"); |
| |
| uint krcvqs[RXE_NUM_DATA_VL]; |
| int krcvqsset; |
| module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); |
| MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); |
| |
| /* computed based on above array */ |
| unsigned n_krcvqs; |
| |
| static unsigned hfi1_rcvarr_split = 25; |
| module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); |
| MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); |
| |
| static uint eager_buffer_size = (2 << 20); /* 2MB */ |
| module_param(eager_buffer_size, uint, S_IRUGO); |
| MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB"); |
| |
| static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ |
| module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); |
| MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); |
| |
| static uint hfi1_hdrq_entsize = 32; |
| module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO); |
| MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B"); |
| |
| unsigned int user_credit_return_threshold = 33; /* default is 33% */ |
| module_param(user_credit_return_threshold, uint, S_IRUGO); |
| MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); |
| |
| static inline u64 encode_rcv_header_entry_size(u16); |
| |
| static struct idr hfi1_unit_table; |
| u32 hfi1_cpulist_count; |
| unsigned long *hfi1_cpulist; |
| |
| /* |
| * Common code for creating the receive context array. |
| */ |
| int hfi1_create_ctxts(struct hfi1_devdata *dd) |
| { |
| unsigned i; |
| int ret; |
| |
| /* Control context has to be always 0 */ |
| BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); |
| |
| dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd), |
| GFP_KERNEL, dd->node); |
| if (!dd->rcd) |
| goto nomem; |
| |
| /* create one or more kernel contexts */ |
| for (i = 0; i < dd->first_user_ctxt; ++i) { |
| struct hfi1_pportdata *ppd; |
| struct hfi1_ctxtdata *rcd; |
| |
| ppd = dd->pport + (i % dd->num_pports); |
| rcd = hfi1_create_ctxtdata(ppd, i, dd->node); |
| if (!rcd) { |
| dd_dev_err(dd, |
| "Unable to allocate kernel receive context, failing\n"); |
| goto nomem; |
| } |
| /* |
| * Set up the kernel context flags here and now because they |
| * use default values for all receive side memories. User |
| * contexts will be handled as they are created. |
| */ |
| rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | |
| HFI1_CAP_KGET(NODROP_RHQ_FULL) | |
| HFI1_CAP_KGET(NODROP_EGR_FULL) | |
| HFI1_CAP_KGET(DMA_RTAIL); |
| |
| /* Control context must use DMA_RTAIL */ |
| if (rcd->ctxt == HFI1_CTRL_CTXT) |
| rcd->flags |= HFI1_CAP_DMA_RTAIL; |
| rcd->seq_cnt = 1; |
| |
| rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); |
| if (!rcd->sc) { |
| dd_dev_err(dd, |
| "Unable to allocate kernel send context, failing\n"); |
| dd->rcd[rcd->ctxt] = NULL; |
| hfi1_free_ctxtdata(dd, rcd); |
| goto nomem; |
| } |
| |
| ret = hfi1_init_ctxt(rcd->sc); |
| if (ret < 0) { |
| dd_dev_err(dd, |
| "Failed to setup kernel receive context, failing\n"); |
| sc_free(rcd->sc); |
| dd->rcd[rcd->ctxt] = NULL; |
| hfi1_free_ctxtdata(dd, rcd); |
| ret = -EFAULT; |
| goto bail; |
| } |
| } |
| |
| /* |
| * Initialize aspm, to be done after gen3 transition and setting up |
| * contexts and before enabling interrupts |
| */ |
| aspm_init(dd); |
| |
| return 0; |
| nomem: |
| ret = -ENOMEM; |
| bail: |
| kfree(dd->rcd); |
| dd->rcd = NULL; |
| return ret; |
| } |
| |
| /* |
| * Common code for user and kernel context setup. |
| */ |
| struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt, |
| int numa) |
| { |
| struct hfi1_devdata *dd = ppd->dd; |
| struct hfi1_ctxtdata *rcd; |
| unsigned kctxt_ngroups = 0; |
| u32 base; |
| |
| if (dd->rcv_entries.nctxt_extra > |
| dd->num_rcv_contexts - dd->first_user_ctxt) |
| kctxt_ngroups = (dd->rcv_entries.nctxt_extra - |
| (dd->num_rcv_contexts - dd->first_user_ctxt)); |
| rcd = kzalloc(sizeof(*rcd), GFP_KERNEL); |
| if (rcd) { |
| u32 rcvtids, max_entries; |
| |
| hfi1_cdbg(PROC, "setting up context %u\n", ctxt); |
| |
| INIT_LIST_HEAD(&rcd->qp_wait_list); |
| rcd->ppd = ppd; |
| rcd->dd = dd; |
| rcd->cnt = 1; |
| rcd->ctxt = ctxt; |
| dd->rcd[ctxt] = rcd; |
| rcd->numa_id = numa; |
| rcd->rcv_array_groups = dd->rcv_entries.ngroups; |
| |
| mutex_init(&rcd->exp_lock); |
| |
| /* |
| * Calculate the context's RcvArray entry starting point. |
| * We do this here because we have to take into account all |
| * the RcvArray entries that previous context would have |
| * taken and we have to account for any extra groups |
| * assigned to the kernel or user contexts. |
| */ |
| if (ctxt < dd->first_user_ctxt) { |
| if (ctxt < kctxt_ngroups) { |
| base = ctxt * (dd->rcv_entries.ngroups + 1); |
| rcd->rcv_array_groups++; |
| } else |
| base = kctxt_ngroups + |
| (ctxt * dd->rcv_entries.ngroups); |
| } else { |
| u16 ct = ctxt - dd->first_user_ctxt; |
| |
| base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + |
| kctxt_ngroups); |
| if (ct < dd->rcv_entries.nctxt_extra) { |
| base += ct * (dd->rcv_entries.ngroups + 1); |
| rcd->rcv_array_groups++; |
| } else |
| base += dd->rcv_entries.nctxt_extra + |
| (ct * dd->rcv_entries.ngroups); |
| } |
| rcd->eager_base = base * dd->rcv_entries.group_size; |
| |
| /* Validate and initialize Rcv Hdr Q variables */ |
| if (rcvhdrcnt % HDRQ_INCREMENT) { |
| dd_dev_err(dd, |
| "ctxt%u: header queue count %d must be divisible by %lu\n", |
| rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT); |
| goto bail; |
| } |
| rcd->rcvhdrq_cnt = rcvhdrcnt; |
| rcd->rcvhdrqentsize = hfi1_hdrq_entsize; |
| /* |
| * Simple Eager buffer allocation: we have already pre-allocated |
| * the number of RcvArray entry groups. Each ctxtdata structure |
| * holds the number of groups for that context. |
| * |
| * To follow CSR requirements and maintain cacheline alignment, |
| * make sure all sizes and bases are multiples of group_size. |
| * |
| * The expected entry count is what is left after assigning |
| * eager. |
| */ |
| max_entries = rcd->rcv_array_groups * |
| dd->rcv_entries.group_size; |
| rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); |
| rcd->egrbufs.count = round_down(rcvtids, |
| dd->rcv_entries.group_size); |
| if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { |
| dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", |
| rcd->ctxt); |
| rcd->egrbufs.count = MAX_EAGER_ENTRIES; |
| } |
| hfi1_cdbg(PROC, |
| "ctxt%u: max Eager buffer RcvArray entries: %u\n", |
| rcd->ctxt, rcd->egrbufs.count); |
| |
| /* |
| * Allocate array that will hold the eager buffer accounting |
| * data. |
| * This will allocate the maximum possible buffer count based |
| * on the value of the RcvArray split parameter. |
| * The resulting value will be rounded down to the closest |
| * multiple of dd->rcv_entries.group_size. |
| */ |
| rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count, |
| sizeof(*rcd->egrbufs.buffers), |
| GFP_KERNEL); |
| if (!rcd->egrbufs.buffers) |
| goto bail; |
| rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count, |
| sizeof(*rcd->egrbufs.rcvtids), |
| GFP_KERNEL); |
| if (!rcd->egrbufs.rcvtids) |
| goto bail; |
| rcd->egrbufs.size = eager_buffer_size; |
| /* |
| * The size of the buffers programmed into the RcvArray |
| * entries needs to be big enough to handle the highest |
| * MTU supported. |
| */ |
| if (rcd->egrbufs.size < hfi1_max_mtu) { |
| rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); |
| hfi1_cdbg(PROC, |
| "ctxt%u: eager bufs size too small. Adjusting to %zu\n", |
| rcd->ctxt, rcd->egrbufs.size); |
| } |
| rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; |
| |
| if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */ |
| rcd->opstats = kzalloc(sizeof(*rcd->opstats), |
| GFP_KERNEL); |
| if (!rcd->opstats) |
| goto bail; |
| } |
| } |
| return rcd; |
| bail: |
| kfree(rcd->egrbufs.rcvtids); |
| kfree(rcd->egrbufs.buffers); |
| kfree(rcd); |
| return NULL; |
| } |
| |
| /* |
| * Convert a receive header entry size that to the encoding used in the CSR. |
| * |
| * Return a zero if the given size is invalid. |
| */ |
| static inline u64 encode_rcv_header_entry_size(u16 size) |
| { |
| /* there are only 3 valid receive header entry sizes */ |
| if (size == 2) |
| return 1; |
| if (size == 16) |
| return 2; |
| else if (size == 32) |
| return 4; |
| return 0; /* invalid */ |
| } |
| |
| /* |
| * Select the largest ccti value over all SLs to determine the intra- |
| * packet gap for the link. |
| * |
| * called with cca_timer_lock held (to protect access to cca_timer |
| * array), and rcu_read_lock() (to protect access to cc_state). |
| */ |
| void set_link_ipg(struct hfi1_pportdata *ppd) |
| { |
| struct hfi1_devdata *dd = ppd->dd; |
| struct cc_state *cc_state; |
| int i; |
| u16 cce, ccti_limit, max_ccti = 0; |
| u16 shift, mult; |
| u64 src; |
| u32 current_egress_rate; /* Mbits /sec */ |
| u32 max_pkt_time; |
| /* |
| * max_pkt_time is the maximum packet egress time in units |
| * of the fabric clock period 1/(805 MHz). |
| */ |
| |
| cc_state = get_cc_state(ppd); |
| |
| if (!cc_state) |
| /* |
| * This should _never_ happen - rcu_read_lock() is held, |
| * and set_link_ipg() should not be called if cc_state |
| * is NULL. |
| */ |
| return; |
| |
| for (i = 0; i < OPA_MAX_SLS; i++) { |
| u16 ccti = ppd->cca_timer[i].ccti; |
| |
| if (ccti > max_ccti) |
| max_ccti = ccti; |
| } |
| |
| ccti_limit = cc_state->cct.ccti_limit; |
| if (max_ccti > ccti_limit) |
| max_ccti = ccti_limit; |
| |
| cce = cc_state->cct.entries[max_ccti].entry; |
| shift = (cce & 0xc000) >> 14; |
| mult = (cce & 0x3fff); |
| |
| current_egress_rate = active_egress_rate(ppd); |
| |
| max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); |
| |
| src = (max_pkt_time >> shift) * mult; |
| |
| src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; |
| src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; |
| |
| write_csr(dd, SEND_STATIC_RATE_CONTROL, src); |
| } |
| |
| static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) |
| { |
| struct cca_timer *cca_timer; |
| struct hfi1_pportdata *ppd; |
| int sl; |
| u16 ccti_timer, ccti_min; |
| struct cc_state *cc_state; |
| unsigned long flags; |
| enum hrtimer_restart ret = HRTIMER_NORESTART; |
| |
| cca_timer = container_of(t, struct cca_timer, hrtimer); |
| ppd = cca_timer->ppd; |
| sl = cca_timer->sl; |
| |
| rcu_read_lock(); |
| |
| cc_state = get_cc_state(ppd); |
| |
| if (!cc_state) { |
| rcu_read_unlock(); |
| return HRTIMER_NORESTART; |
| } |
| |
| /* |
| * 1) decrement ccti for SL |
| * 2) calculate IPG for link (set_link_ipg()) |
| * 3) restart timer, unless ccti is at min value |
| */ |
| |
| ccti_min = cc_state->cong_setting.entries[sl].ccti_min; |
| ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; |
| |
| spin_lock_irqsave(&ppd->cca_timer_lock, flags); |
| |
| if (cca_timer->ccti > ccti_min) { |
| cca_timer->ccti--; |
| set_link_ipg(ppd); |
| } |
| |
| if (cca_timer->ccti > ccti_min) { |
| unsigned long nsec = 1024 * ccti_timer; |
| /* ccti_timer is in units of 1.024 usec */ |
| hrtimer_forward_now(t, ns_to_ktime(nsec)); |
| ret = HRTIMER_RESTART; |
| } |
| |
| spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| /* |
| * Common code for initializing the physical port structure. |
| */ |
| void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, |
| struct hfi1_devdata *dd, u8 hw_pidx, u8 port) |
| { |
| int i; |
| uint default_pkey_idx; |
| struct cc_state *cc_state; |
| |
| ppd->dd = dd; |
| ppd->hw_pidx = hw_pidx; |
| ppd->port = port; /* IB port number, not index */ |
| |
| default_pkey_idx = 1; |
| |
| ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; |
| if (loopback) { |
| hfi1_early_err(&pdev->dev, |
| "Faking data partition 0x8001 in idx %u\n", |
| !default_pkey_idx); |
| ppd->pkeys[!default_pkey_idx] = 0x8001; |
| } |
| |
| INIT_WORK(&ppd->link_vc_work, handle_verify_cap); |
| INIT_WORK(&ppd->link_up_work, handle_link_up); |
| INIT_WORK(&ppd->link_down_work, handle_link_down); |
| INIT_WORK(&ppd->freeze_work, handle_freeze); |
| INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); |
| INIT_WORK(&ppd->sma_message_work, handle_sma_message); |
| INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); |
| INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); |
| INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); |
| |
| mutex_init(&ppd->hls_lock); |
| spin_lock_init(&ppd->sdma_alllock); |
| spin_lock_init(&ppd->qsfp_info.qsfp_lock); |
| |
| ppd->qsfp_info.ppd = ppd; |
| ppd->sm_trap_qp = 0x0; |
| ppd->sa_qp = 0x1; |
| |
| ppd->hfi1_wq = NULL; |
| |
| spin_lock_init(&ppd->cca_timer_lock); |
| |
| for (i = 0; i < OPA_MAX_SLS; i++) { |
| hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, |
| HRTIMER_MODE_REL); |
| ppd->cca_timer[i].ppd = ppd; |
| ppd->cca_timer[i].sl = i; |
| ppd->cca_timer[i].ccti = 0; |
| ppd->cca_timer[i].hrtimer.function = cca_timer_fn; |
| } |
| |
| ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; |
| |
| spin_lock_init(&ppd->cc_state_lock); |
| spin_lock_init(&ppd->cc_log_lock); |
| cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); |
| RCU_INIT_POINTER(ppd->cc_state, cc_state); |
| if (!cc_state) |
| goto bail; |
| return; |
| |
| bail: |
| |
| hfi1_early_err(&pdev->dev, |
| "Congestion Control Agent disabled for port %d\n", port); |
| } |
| |
| /* |
| * Do initialization for device that is only needed on |
| * first detect, not on resets. |
| */ |
| static int loadtime_init(struct hfi1_devdata *dd) |
| { |
| return 0; |
| } |
| |
| /** |
| * init_after_reset - re-initialize after a reset |
| * @dd: the hfi1_ib device |
| * |
| * sanity check at least some of the values after reset, and |
| * ensure no receive or transmit (explicitly, in case reset |
| * failed |
| */ |
| static int init_after_reset(struct hfi1_devdata *dd) |
| { |
| int i; |
| |
| /* |
| * Ensure chip does no sends or receives, tail updates, or |
| * pioavail updates while we re-initialize. This is mostly |
| * for the driver data structures, not chip registers. |
| */ |
| for (i = 0; i < dd->num_rcv_contexts; i++) |
| hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | |
| HFI1_RCVCTRL_INTRAVAIL_DIS | |
| HFI1_RCVCTRL_TAILUPD_DIS, i); |
| pio_send_control(dd, PSC_GLOBAL_DISABLE); |
| for (i = 0; i < dd->num_send_contexts; i++) |
| sc_disable(dd->send_contexts[i].sc); |
| |
| return 0; |
| } |
| |
| static void enable_chip(struct hfi1_devdata *dd) |
| { |
| u32 rcvmask; |
| u32 i; |
| |
| /* enable PIO send */ |
| pio_send_control(dd, PSC_GLOBAL_ENABLE); |
| |
| /* |
| * Enable kernel ctxts' receive and receive interrupt. |
| * Other ctxts done as user opens and initializes them. |
| */ |
| for (i = 0; i < dd->first_user_ctxt; ++i) { |
| rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; |
| rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ? |
| HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; |
| if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR)) |
| rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; |
| if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL)) |
| rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; |
| if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL)) |
| rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; |
| hfi1_rcvctrl(dd, rcvmask, i); |
| sc_enable(dd->rcd[i]->sc); |
| } |
| } |
| |
| /** |
| * create_workqueues - create per port workqueues |
| * @dd: the hfi1_ib device |
| */ |
| static int create_workqueues(struct hfi1_devdata *dd) |
| { |
| int pidx; |
| struct hfi1_pportdata *ppd; |
| |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| if (!ppd->hfi1_wq) { |
| ppd->hfi1_wq = |
| alloc_workqueue( |
| "hfi%d_%d", |
| WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE, |
| dd->num_sdma, |
| dd->unit, pidx); |
| if (!ppd->hfi1_wq) |
| goto wq_error; |
| } |
| } |
| return 0; |
| wq_error: |
| pr_err("alloc_workqueue failed for port %d\n", pidx + 1); |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| if (ppd->hfi1_wq) { |
| destroy_workqueue(ppd->hfi1_wq); |
| ppd->hfi1_wq = NULL; |
| } |
| } |
| return -ENOMEM; |
| } |
| |
| /** |
| * hfi1_init - do the actual initialization sequence on the chip |
| * @dd: the hfi1_ib device |
| * @reinit: re-initializing, so don't allocate new memory |
| * |
| * Do the actual initialization sequence on the chip. This is done |
| * both from the init routine called from the PCI infrastructure, and |
| * when we reset the chip, or detect that it was reset internally, |
| * or it's administratively re-enabled. |
| * |
| * Memory allocation here and in called routines is only done in |
| * the first case (reinit == 0). We have to be careful, because even |
| * without memory allocation, we need to re-write all the chip registers |
| * TIDs, etc. after the reset or enable has completed. |
| */ |
| int hfi1_init(struct hfi1_devdata *dd, int reinit) |
| { |
| int ret = 0, pidx, lastfail = 0; |
| unsigned i, len; |
| struct hfi1_ctxtdata *rcd; |
| struct hfi1_pportdata *ppd; |
| |
| /* Set up recv low level handlers */ |
| dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] = |
| kdeth_process_expected; |
| dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] = |
| kdeth_process_eager; |
| dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib; |
| dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] = |
| process_receive_error; |
| dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] = |
| process_receive_bypass; |
| dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] = |
| process_receive_invalid; |
| dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] = |
| process_receive_invalid; |
| dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] = |
| process_receive_invalid; |
| dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions; |
| |
| /* Set up send low level handlers */ |
| dd->process_pio_send = hfi1_verbs_send_pio; |
| dd->process_dma_send = hfi1_verbs_send_dma; |
| dd->pio_inline_send = pio_copy; |
| |
| if (is_ax(dd)) { |
| atomic_set(&dd->drop_packet, DROP_PACKET_ON); |
| dd->do_drop = 1; |
| } else { |
| atomic_set(&dd->drop_packet, DROP_PACKET_OFF); |
| dd->do_drop = 0; |
| } |
| |
| /* make sure the link is not "up" */ |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| ppd->linkup = 0; |
| } |
| |
| if (reinit) |
| ret = init_after_reset(dd); |
| else |
| ret = loadtime_init(dd); |
| if (ret) |
| goto done; |
| |
| /* allocate dummy tail memory for all receive contexts */ |
| dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent( |
| &dd->pcidev->dev, sizeof(u64), |
| &dd->rcvhdrtail_dummy_physaddr, |
| GFP_KERNEL); |
| |
| if (!dd->rcvhdrtail_dummy_kvaddr) { |
| dd_dev_err(dd, "cannot allocate dummy tail memory\n"); |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| /* dd->rcd can be NULL if early initialization failed */ |
| for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) { |
| /* |
| * Set up the (kernel) rcvhdr queue and egr TIDs. If doing |
| * re-init, the simplest way to handle this is to free |
| * existing, and re-allocate. |
| * Need to re-create rest of ctxt 0 ctxtdata as well. |
| */ |
| rcd = dd->rcd[i]; |
| if (!rcd) |
| continue; |
| |
| rcd->do_interrupt = &handle_receive_interrupt; |
| |
| lastfail = hfi1_create_rcvhdrq(dd, rcd); |
| if (!lastfail) |
| lastfail = hfi1_setup_eagerbufs(rcd); |
| if (lastfail) { |
| dd_dev_err(dd, |
| "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); |
| ret = lastfail; |
| } |
| } |
| |
| /* Allocate enough memory for user event notification. */ |
| len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS * |
| sizeof(*dd->events)); |
| dd->events = vmalloc_user(len); |
| if (!dd->events) |
| dd_dev_err(dd, "Failed to allocate user events page\n"); |
| /* |
| * Allocate a page for device and port status. |
| * Page will be shared amongst all user processes. |
| */ |
| dd->status = vmalloc_user(PAGE_SIZE); |
| if (!dd->status) |
| dd_dev_err(dd, "Failed to allocate dev status page\n"); |
| else |
| dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) - |
| sizeof(dd->status->freezemsg)); |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| if (dd->status) |
| /* Currently, we only have one port */ |
| ppd->statusp = &dd->status->port; |
| |
| set_mtu(ppd); |
| } |
| |
| /* enable chip even if we have an error, so we can debug cause */ |
| enable_chip(dd); |
| |
| done: |
| /* |
| * Set status even if port serdes is not initialized |
| * so that diags will work. |
| */ |
| if (dd->status) |
| dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | |
| HFI1_STATUS_INITTED; |
| if (!ret) { |
| /* enable all interrupts from the chip */ |
| set_intr_state(dd, 1); |
| |
| /* chip is OK for user apps; mark it as initialized */ |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| |
| /* |
| * start the serdes - must be after interrupts are |
| * enabled so we are notified when the link goes up |
| */ |
| lastfail = bringup_serdes(ppd); |
| if (lastfail) |
| dd_dev_info(dd, |
| "Failed to bring up port %u\n", |
| ppd->port); |
| |
| /* |
| * Set status even if port serdes is not initialized |
| * so that diags will work. |
| */ |
| if (ppd->statusp) |
| *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | |
| HFI1_STATUS_INITTED; |
| if (!ppd->link_speed_enabled) |
| continue; |
| } |
| } |
| |
| /* if ret is non-zero, we probably should do some cleanup here... */ |
| return ret; |
| } |
| |
| static inline struct hfi1_devdata *__hfi1_lookup(int unit) |
| { |
| return idr_find(&hfi1_unit_table, unit); |
| } |
| |
| struct hfi1_devdata *hfi1_lookup(int unit) |
| { |
| struct hfi1_devdata *dd; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&hfi1_devs_lock, flags); |
| dd = __hfi1_lookup(unit); |
| spin_unlock_irqrestore(&hfi1_devs_lock, flags); |
| |
| return dd; |
| } |
| |
| /* |
| * Stop the timers during unit shutdown, or after an error late |
| * in initialization. |
| */ |
| static void stop_timers(struct hfi1_devdata *dd) |
| { |
| struct hfi1_pportdata *ppd; |
| int pidx; |
| |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| if (ppd->led_override_timer.data) { |
| del_timer_sync(&ppd->led_override_timer); |
| atomic_set(&ppd->led_override_timer_active, 0); |
| } |
| } |
| } |
| |
| /** |
| * shutdown_device - shut down a device |
| * @dd: the hfi1_ib device |
| * |
| * This is called to make the device quiet when we are about to |
| * unload the driver, and also when the device is administratively |
| * disabled. It does not free any data structures. |
| * Everything it does has to be setup again by hfi1_init(dd, 1) |
| */ |
| static void shutdown_device(struct hfi1_devdata *dd) |
| { |
| struct hfi1_pportdata *ppd; |
| unsigned pidx; |
| int i; |
| |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| |
| ppd->linkup = 0; |
| if (ppd->statusp) |
| *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | |
| HFI1_STATUS_IB_READY); |
| } |
| dd->flags &= ~HFI1_INITTED; |
| |
| /* mask interrupts, but not errors */ |
| set_intr_state(dd, 0); |
| |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| for (i = 0; i < dd->num_rcv_contexts; i++) |
| hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | |
| HFI1_RCVCTRL_CTXT_DIS | |
| HFI1_RCVCTRL_INTRAVAIL_DIS | |
| HFI1_RCVCTRL_PKEY_DIS | |
| HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i); |
| /* |
| * Gracefully stop all sends allowing any in progress to |
| * trickle out first. |
| */ |
| for (i = 0; i < dd->num_send_contexts; i++) |
| sc_flush(dd->send_contexts[i].sc); |
| } |
| |
| /* |
| * Enough for anything that's going to trickle out to have actually |
| * done so. |
| */ |
| udelay(20); |
| |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| ppd = dd->pport + pidx; |
| |
| /* disable all contexts */ |
| for (i = 0; i < dd->num_send_contexts; i++) |
| sc_disable(dd->send_contexts[i].sc); |
| /* disable the send device */ |
| pio_send_control(dd, PSC_GLOBAL_DISABLE); |
| |
| shutdown_led_override(ppd); |
| |
| /* |
| * Clear SerdesEnable. |
| * We can't count on interrupts since we are stopping. |
| */ |
| hfi1_quiet_serdes(ppd); |
| |
| if (ppd->hfi1_wq) { |
| destroy_workqueue(ppd->hfi1_wq); |
| ppd->hfi1_wq = NULL; |
| } |
| } |
| sdma_exit(dd); |
| } |
| |
| /** |
| * hfi1_free_ctxtdata - free a context's allocated data |
| * @dd: the hfi1_ib device |
| * @rcd: the ctxtdata structure |
| * |
| * free up any allocated data for a context |
| * This should not touch anything that would affect a simultaneous |
| * re-allocation of context data, because it is called after hfi1_mutex |
| * is released (and can be called from reinit as well). |
| * It should never change any chip state, or global driver state. |
| */ |
| void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) |
| { |
| unsigned e; |
| |
| if (!rcd) |
| return; |
| |
| if (rcd->rcvhdrq) { |
| dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size, |
| rcd->rcvhdrq, rcd->rcvhdrq_phys); |
| rcd->rcvhdrq = NULL; |
| if (rcd->rcvhdrtail_kvaddr) { |
| dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, |
| (void *)rcd->rcvhdrtail_kvaddr, |
| rcd->rcvhdrqtailaddr_phys); |
| rcd->rcvhdrtail_kvaddr = NULL; |
| } |
| } |
| |
| /* all the RcvArray entries should have been cleared by now */ |
| kfree(rcd->egrbufs.rcvtids); |
| |
| for (e = 0; e < rcd->egrbufs.alloced; e++) { |
| if (rcd->egrbufs.buffers[e].phys) |
| dma_free_coherent(&dd->pcidev->dev, |
| rcd->egrbufs.buffers[e].len, |
| rcd->egrbufs.buffers[e].addr, |
| rcd->egrbufs.buffers[e].phys); |
| } |
| kfree(rcd->egrbufs.buffers); |
| |
| sc_free(rcd->sc); |
| vfree(rcd->user_event_mask); |
| vfree(rcd->subctxt_uregbase); |
| vfree(rcd->subctxt_rcvegrbuf); |
| vfree(rcd->subctxt_rcvhdr_base); |
| kfree(rcd->opstats); |
| kfree(rcd); |
| } |
| |
| /* |
| * Release our hold on the shared asic data. If we are the last one, |
| * return the structure to be finalized outside the lock. Must be |
| * holding hfi1_devs_lock. |
| */ |
| static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) |
| { |
| struct hfi1_asic_data *ad; |
| int other; |
| |
| if (!dd->asic_data) |
| return NULL; |
| dd->asic_data->dds[dd->hfi1_id] = NULL; |
| other = dd->hfi1_id ? 0 : 1; |
| ad = dd->asic_data; |
| dd->asic_data = NULL; |
| /* return NULL if the other dd still has a link */ |
| return ad->dds[other] ? NULL : ad; |
| } |
| |
| static void finalize_asic_data(struct hfi1_devdata *dd, |
| struct hfi1_asic_data *ad) |
| { |
| clean_up_i2c(dd, ad); |
| kfree(ad); |
| } |
| |
| static void __hfi1_free_devdata(struct kobject *kobj) |
| { |
| struct hfi1_devdata *dd = |
| container_of(kobj, struct hfi1_devdata, kobj); |
| struct hfi1_asic_data *ad; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&hfi1_devs_lock, flags); |
| idr_remove(&hfi1_unit_table, dd->unit); |
| list_del(&dd->list); |
| ad = release_asic_data(dd); |
| spin_unlock_irqrestore(&hfi1_devs_lock, flags); |
| if (ad) |
| finalize_asic_data(dd, ad); |
| free_platform_config(dd); |
| rcu_barrier(); /* wait for rcu callbacks to complete */ |
| free_percpu(dd->int_counter); |
| free_percpu(dd->rcv_limit); |
| free_percpu(dd->send_schedule); |
| rvt_dealloc_device(&dd->verbs_dev.rdi); |
| } |
| |
| static struct kobj_type hfi1_devdata_type = { |
| .release = __hfi1_free_devdata, |
| }; |
| |
| void hfi1_free_devdata(struct hfi1_devdata *dd) |
| { |
| kobject_put(&dd->kobj); |
| } |
| |
| /* |
| * Allocate our primary per-unit data structure. Must be done via verbs |
| * allocator, because the verbs cleanup process both does cleanup and |
| * free of the data structure. |
| * "extra" is for chip-specific data. |
| * |
| * Use the idr mechanism to get a unit number for this unit. |
| */ |
| struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra) |
| { |
| unsigned long flags; |
| struct hfi1_devdata *dd; |
| int ret, nports; |
| |
| /* extra is * number of ports */ |
| nports = extra / sizeof(struct hfi1_pportdata); |
| |
| dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, |
| nports); |
| if (!dd) |
| return ERR_PTR(-ENOMEM); |
| dd->num_pports = nports; |
| dd->pport = (struct hfi1_pportdata *)(dd + 1); |
| |
| INIT_LIST_HEAD(&dd->list); |
| idr_preload(GFP_KERNEL); |
| spin_lock_irqsave(&hfi1_devs_lock, flags); |
| |
| ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT); |
| if (ret >= 0) { |
| dd->unit = ret; |
| list_add(&dd->list, &hfi1_dev_list); |
| } |
| |
| spin_unlock_irqrestore(&hfi1_devs_lock, flags); |
| idr_preload_end(); |
| |
| if (ret < 0) { |
| hfi1_early_err(&pdev->dev, |
| "Could not allocate unit ID: error %d\n", -ret); |
| goto bail; |
| } |
| /* |
| * Initialize all locks for the device. This needs to be as early as |
| * possible so locks are usable. |
| */ |
| spin_lock_init(&dd->sc_lock); |
| spin_lock_init(&dd->sendctrl_lock); |
| spin_lock_init(&dd->rcvctrl_lock); |
| spin_lock_init(&dd->uctxt_lock); |
| spin_lock_init(&dd->hfi1_diag_trans_lock); |
| spin_lock_init(&dd->sc_init_lock); |
| spin_lock_init(&dd->dc8051_lock); |
| spin_lock_init(&dd->dc8051_memlock); |
| seqlock_init(&dd->sc2vl_lock); |
| spin_lock_init(&dd->sde_map_lock); |
| spin_lock_init(&dd->pio_map_lock); |
| init_waitqueue_head(&dd->event_queue); |
| |
| dd->int_counter = alloc_percpu(u64); |
| if (!dd->int_counter) { |
| ret = -ENOMEM; |
| hfi1_early_err(&pdev->dev, |
| "Could not allocate per-cpu int_counter\n"); |
| goto bail; |
| } |
| |
| dd->rcv_limit = alloc_percpu(u64); |
| if (!dd->rcv_limit) { |
| ret = -ENOMEM; |
| hfi1_early_err(&pdev->dev, |
| "Could not allocate per-cpu rcv_limit\n"); |
| goto bail; |
| } |
| |
| dd->send_schedule = alloc_percpu(u64); |
| if (!dd->send_schedule) { |
| ret = -ENOMEM; |
| hfi1_early_err(&pdev->dev, |
| "Could not allocate per-cpu int_counter\n"); |
| goto bail; |
| } |
| |
| if (!hfi1_cpulist_count) { |
| u32 count = num_online_cpus(); |
| |
| hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long), |
| GFP_KERNEL); |
| if (hfi1_cpulist) |
| hfi1_cpulist_count = count; |
| else |
| hfi1_early_err( |
| &pdev->dev, |
| "Could not alloc cpulist info, cpu affinity might be wrong\n"); |
| } |
| kobject_init(&dd->kobj, &hfi1_devdata_type); |
| return dd; |
| |
| bail: |
| if (!list_empty(&dd->list)) |
| list_del_init(&dd->list); |
| rvt_dealloc_device(&dd->verbs_dev.rdi); |
| return ERR_PTR(ret); |
| } |
| |
| /* |
| * Called from freeze mode handlers, and from PCI error |
| * reporting code. Should be paranoid about state of |
| * system and data structures. |
| */ |
| void hfi1_disable_after_error(struct hfi1_devdata *dd) |
| { |
| if (dd->flags & HFI1_INITTED) { |
| u32 pidx; |
| |
| dd->flags &= ~HFI1_INITTED; |
| if (dd->pport) |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| struct hfi1_pportdata *ppd; |
| |
| ppd = dd->pport + pidx; |
| if (dd->flags & HFI1_PRESENT) |
| set_link_state(ppd, HLS_DN_DISABLE); |
| |
| if (ppd->statusp) |
| *ppd->statusp &= ~HFI1_STATUS_IB_READY; |
| } |
| } |
| |
| /* |
| * Mark as having had an error for driver, and also |
| * for /sys and status word mapped to user programs. |
| * This marks unit as not usable, until reset. |
| */ |
| if (dd->status) |
| dd->status->dev |= HFI1_STATUS_HWERROR; |
| } |
| |
| static void remove_one(struct pci_dev *); |
| static int init_one(struct pci_dev *, const struct pci_device_id *); |
| |
| #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: " |
| #define PFX DRIVER_NAME ": " |
| |
| const struct pci_device_id hfi1_pci_tbl[] = { |
| { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); |
| |
| static struct pci_driver hfi1_pci_driver = { |
| .name = DRIVER_NAME, |
| .probe = init_one, |
| .remove = remove_one, |
| .id_table = hfi1_pci_tbl, |
| .err_handler = &hfi1_pci_err_handler, |
| }; |
| |
| static void __init compute_krcvqs(void) |
| { |
| int i; |
| |
| for (i = 0; i < krcvqsset; i++) |
| n_krcvqs += krcvqs[i]; |
| } |
| |
| /* |
| * Do all the generic driver unit- and chip-independent memory |
| * allocation and initialization. |
| */ |
| static int __init hfi1_mod_init(void) |
| { |
| int ret; |
| |
| ret = dev_init(); |
| if (ret) |
| goto bail; |
| |
| ret = node_affinity_init(); |
| if (ret) |
| goto bail; |
| |
| /* validate max MTU before any devices start */ |
| if (!valid_opa_max_mtu(hfi1_max_mtu)) { |
| pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", |
| hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); |
| hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; |
| } |
| /* valid CUs run from 1-128 in powers of 2 */ |
| if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) |
| hfi1_cu = 1; |
| /* valid credit return threshold is 0-100, variable is unsigned */ |
| if (user_credit_return_threshold > 100) |
| user_credit_return_threshold = 100; |
| |
| compute_krcvqs(); |
| /* |
| * sanitize receive interrupt count, time must wait until after |
| * the hardware type is known |
| */ |
| if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) |
| rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; |
| /* reject invalid combinations */ |
| if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { |
| pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); |
| rcv_intr_count = 1; |
| } |
| if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { |
| /* |
| * Avoid indefinite packet delivery by requiring a timeout |
| * if count is > 1. |
| */ |
| pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); |
| rcv_intr_timeout = 1; |
| } |
| if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { |
| /* |
| * The dynamic algorithm expects a non-zero timeout |
| * and a count > 1. |
| */ |
| pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); |
| rcv_intr_dynamic = 0; |
| } |
| |
| /* sanitize link CRC options */ |
| link_crc_mask &= SUPPORTED_CRCS; |
| |
| /* |
| * These must be called before the driver is registered with |
| * the PCI subsystem. |
| */ |
| idr_init(&hfi1_unit_table); |
| |
| hfi1_dbg_init(); |
| ret = hfi1_wss_init(); |
| if (ret < 0) |
| goto bail_wss; |
| ret = pci_register_driver(&hfi1_pci_driver); |
| if (ret < 0) { |
| pr_err("Unable to register driver: error %d\n", -ret); |
| goto bail_dev; |
| } |
| goto bail; /* all OK */ |
| |
| bail_dev: |
| hfi1_wss_exit(); |
| bail_wss: |
| hfi1_dbg_exit(); |
| idr_destroy(&hfi1_unit_table); |
| dev_cleanup(); |
| bail: |
| return ret; |
| } |
| |
| module_init(hfi1_mod_init); |
| |
| /* |
| * Do the non-unit driver cleanup, memory free, etc. at unload. |
| */ |
| static void __exit hfi1_mod_cleanup(void) |
| { |
| pci_unregister_driver(&hfi1_pci_driver); |
| node_affinity_destroy(); |
| hfi1_wss_exit(); |
| hfi1_dbg_exit(); |
| hfi1_cpulist_count = 0; |
| kfree(hfi1_cpulist); |
| |
| idr_destroy(&hfi1_unit_table); |
| dispose_firmware(); /* asymmetric with obtain_firmware() */ |
| dev_cleanup(); |
| } |
| |
| module_exit(hfi1_mod_cleanup); |
| |
| /* this can only be called after a successful initialization */ |
| static void cleanup_device_data(struct hfi1_devdata *dd) |
| { |
| int ctxt; |
| int pidx; |
| struct hfi1_ctxtdata **tmp; |
| unsigned long flags; |
| |
| /* users can't do anything more with chip */ |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| struct hfi1_pportdata *ppd = &dd->pport[pidx]; |
| struct cc_state *cc_state; |
| int i; |
| |
| if (ppd->statusp) |
| *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; |
| |
| for (i = 0; i < OPA_MAX_SLS; i++) |
| hrtimer_cancel(&ppd->cca_timer[i].hrtimer); |
| |
| spin_lock(&ppd->cc_state_lock); |
| cc_state = get_cc_state_protected(ppd); |
| RCU_INIT_POINTER(ppd->cc_state, NULL); |
| spin_unlock(&ppd->cc_state_lock); |
| |
| if (cc_state) |
| kfree_rcu(cc_state, rcu); |
| } |
| |
| free_credit_return(dd); |
| |
| /* |
| * Free any resources still in use (usually just kernel contexts) |
| * at unload; we do for ctxtcnt, because that's what we allocate. |
| * We acquire lock to be really paranoid that rcd isn't being |
| * accessed from some interrupt-related code (that should not happen, |
| * but best to be sure). |
| */ |
| spin_lock_irqsave(&dd->uctxt_lock, flags); |
| tmp = dd->rcd; |
| dd->rcd = NULL; |
| spin_unlock_irqrestore(&dd->uctxt_lock, flags); |
| |
| if (dd->rcvhdrtail_dummy_kvaddr) { |
| dma_free_coherent(&dd->pcidev->dev, sizeof(u64), |
| (void *)dd->rcvhdrtail_dummy_kvaddr, |
| dd->rcvhdrtail_dummy_physaddr); |
| dd->rcvhdrtail_dummy_kvaddr = NULL; |
| } |
| |
| for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) { |
| struct hfi1_ctxtdata *rcd = tmp[ctxt]; |
| |
| tmp[ctxt] = NULL; /* debugging paranoia */ |
| if (rcd) { |
| hfi1_clear_tids(rcd); |
| hfi1_free_ctxtdata(dd, rcd); |
| } |
| } |
| kfree(tmp); |
| free_pio_map(dd); |
| /* must follow rcv context free - need to remove rcv's hooks */ |
| for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) |
| sc_free(dd->send_contexts[ctxt].sc); |
| dd->num_send_contexts = 0; |
| kfree(dd->send_contexts); |
| dd->send_contexts = NULL; |
| kfree(dd->hw_to_sw); |
| dd->hw_to_sw = NULL; |
| kfree(dd->boardname); |
| vfree(dd->events); |
| vfree(dd->status); |
| } |
| |
| /* |
| * Clean up on unit shutdown, or error during unit load after |
| * successful initialization. |
| */ |
| static void postinit_cleanup(struct hfi1_devdata *dd) |
| { |
| hfi1_start_cleanup(dd); |
| |
| hfi1_pcie_ddcleanup(dd); |
| hfi1_pcie_cleanup(dd->pcidev); |
| |
| cleanup_device_data(dd); |
| |
| hfi1_free_devdata(dd); |
| } |
| |
| static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| int ret = 0, j, pidx, initfail; |
| struct hfi1_devdata *dd = ERR_PTR(-EINVAL); |
| struct hfi1_pportdata *ppd; |
| |
| /* First, lock the non-writable module parameters */ |
| HFI1_CAP_LOCK(); |
| |
| /* Validate some global module parameters */ |
| if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) { |
| hfi1_early_err(&pdev->dev, "Header queue count too small\n"); |
| ret = -EINVAL; |
| goto bail; |
| } |
| if (rcvhdrcnt > HFI1_MAX_HDRQ_EGRBUF_CNT) { |
| hfi1_early_err(&pdev->dev, |
| "Receive header queue count cannot be greater than %u\n", |
| HFI1_MAX_HDRQ_EGRBUF_CNT); |
| ret = -EINVAL; |
| goto bail; |
| } |
| /* use the encoding function as a sanitization check */ |
| if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { |
| hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n", |
| hfi1_hdrq_entsize); |
| ret = -EINVAL; |
| goto bail; |
| } |
| |
| /* The receive eager buffer size must be set before the receive |
| * contexts are created. |
| * |
| * Set the eager buffer size. Validate that it falls in a range |
| * allowed by the hardware - all powers of 2 between the min and |
| * max. The maximum valid MTU is within the eager buffer range |
| * so we do not need to cap the max_mtu by an eager buffer size |
| * setting. |
| */ |
| if (eager_buffer_size) { |
| if (!is_power_of_2(eager_buffer_size)) |
| eager_buffer_size = |
| roundup_pow_of_two(eager_buffer_size); |
| eager_buffer_size = |
| clamp_val(eager_buffer_size, |
| MIN_EAGER_BUFFER * 8, |
| MAX_EAGER_BUFFER_TOTAL); |
| hfi1_early_info(&pdev->dev, "Eager buffer size %u\n", |
| eager_buffer_size); |
| } else { |
| hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n"); |
| ret = -EINVAL; |
| goto bail; |
| } |
| |
| /* restrict value of hfi1_rcvarr_split */ |
| hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); |
| |
| ret = hfi1_pcie_init(pdev, ent); |
| if (ret) |
| goto bail; |
| |
| /* |
| * Do device-specific initialization, function table setup, dd |
| * allocation, etc. |
| */ |
| switch (ent->device) { |
| case PCI_DEVICE_ID_INTEL0: |
| case PCI_DEVICE_ID_INTEL1: |
| dd = hfi1_init_dd(pdev, ent); |
| break; |
| default: |
| hfi1_early_err(&pdev->dev, |
| "Failing on unknown Intel deviceid 0x%x\n", |
| ent->device); |
| ret = -ENODEV; |
| } |
| |
| if (IS_ERR(dd)) |
| ret = PTR_ERR(dd); |
| if (ret) |
| goto clean_bail; /* error already printed */ |
| |
| ret = create_workqueues(dd); |
| if (ret) |
| goto clean_bail; |
| |
| /* do the generic initialization */ |
| initfail = hfi1_init(dd, 0); |
| |
| ret = hfi1_register_ib_device(dd); |
| |
| /* |
| * Now ready for use. this should be cleared whenever we |
| * detect a reset, or initiate one. If earlier failure, |
| * we still create devices, so diags, etc. can be used |
| * to determine cause of problem. |
| */ |
| if (!initfail && !ret) { |
| dd->flags |= HFI1_INITTED; |
| /* create debufs files after init and ib register */ |
| hfi1_dbg_ibdev_init(&dd->verbs_dev); |
| } |
| |
| j = hfi1_device_create(dd); |
| if (j) |
| dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); |
| |
| if (initfail || ret) { |
| stop_timers(dd); |
| flush_workqueue(ib_wq); |
| for (pidx = 0; pidx < dd->num_pports; ++pidx) { |
| hfi1_quiet_serdes(dd->pport + pidx); |
| ppd = dd->pport + pidx; |
| if (ppd->hfi1_wq) { |
| destroy_workqueue(ppd->hfi1_wq); |
| ppd->hfi1_wq = NULL; |
| } |
| } |
| if (!j) |
| hfi1_device_remove(dd); |
| if (!ret) |
| hfi1_unregister_ib_device(dd); |
| postinit_cleanup(dd); |
| if (initfail) |
| ret = initfail; |
| goto bail; /* everything already cleaned */ |
| } |
| |
| sdma_start(dd); |
| |
| return 0; |
| |
| clean_bail: |
| hfi1_pcie_cleanup(pdev); |
| bail: |
| return ret; |
| } |
| |
| static void remove_one(struct pci_dev *pdev) |
| { |
| struct hfi1_devdata *dd = pci_get_drvdata(pdev); |
| |
| /* close debugfs files before ib unregister */ |
| hfi1_dbg_ibdev_exit(&dd->verbs_dev); |
| /* unregister from IB core */ |
| hfi1_unregister_ib_device(dd); |
| |
| /* |
| * Disable the IB link, disable interrupts on the device, |
| * clear dma engines, etc. |
| */ |
| shutdown_device(dd); |
| |
| stop_timers(dd); |
| |
| /* wait until all of our (qsfp) queue_work() calls complete */ |
| flush_workqueue(ib_wq); |
| |
| hfi1_device_remove(dd); |
| |
| postinit_cleanup(dd); |
| } |
| |
| /** |
| * hfi1_create_rcvhdrq - create a receive header queue |
| * @dd: the hfi1_ib device |
| * @rcd: the context data |
| * |
| * This must be contiguous memory (from an i/o perspective), and must be |
| * DMA'able (which means for some systems, it will go through an IOMMU, |
| * or be forced into a low address range). |
| */ |
| int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) |
| { |
| unsigned amt; |
| u64 reg; |
| |
| if (!rcd->rcvhdrq) { |
| dma_addr_t phys_hdrqtail; |
| gfp_t gfp_flags; |
| |
| /* |
| * rcvhdrqentsize is in DWs, so we have to convert to bytes |
| * (* sizeof(u32)). |
| */ |
| amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize * |
| sizeof(u32)); |
| |
| gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ? |
| GFP_USER : GFP_KERNEL; |
| rcd->rcvhdrq = dma_zalloc_coherent( |
| &dd->pcidev->dev, amt, &rcd->rcvhdrq_phys, |
| gfp_flags | __GFP_COMP); |
| |
| if (!rcd->rcvhdrq) { |
| dd_dev_err(dd, |
| "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", |
| amt, rcd->ctxt); |
| goto bail; |
| } |
| |
| if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { |
| rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent( |
| &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail, |
| gfp_flags); |
| if (!rcd->rcvhdrtail_kvaddr) |
| goto bail_free; |
| rcd->rcvhdrqtailaddr_phys = phys_hdrqtail; |
| } |
| |
| rcd->rcvhdrq_size = amt; |
| } |
| /* |
| * These values are per-context: |
| * RcvHdrCnt |
| * RcvHdrEntSize |
| * RcvHdrSize |
| */ |
| reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT) |
| & RCV_HDR_CNT_CNT_MASK) |
| << RCV_HDR_CNT_CNT_SHIFT; |
| write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg); |
| reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize) |
| & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) |
| << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT; |
| write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg); |
| reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK) |
| << RCV_HDR_SIZE_HDR_SIZE_SHIFT; |
| write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg); |
| |
| /* |
| * Program dummy tail address for every receive context |
| * before enabling any receive context |
| */ |
| write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR, |
| dd->rcvhdrtail_dummy_physaddr); |
| |
| return 0; |
| |
| bail_free: |
| dd_dev_err(dd, |
| "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", |
| rcd->ctxt); |
| vfree(rcd->user_event_mask); |
| rcd->user_event_mask = NULL; |
| dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, |
| rcd->rcvhdrq_phys); |
| rcd->rcvhdrq = NULL; |
| bail: |
| return -ENOMEM; |
| } |
| |
| /** |
| * allocate eager buffers, both kernel and user contexts. |
| * @rcd: the context we are setting up. |
| * |
| * Allocate the eager TID buffers and program them into hip. |
| * They are no longer completely contiguous, we do multiple allocation |
| * calls. Otherwise we get the OOM code involved, by asking for too |
| * much per call, with disastrous results on some kernels. |
| */ |
| int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) |
| { |
| struct hfi1_devdata *dd = rcd->dd; |
| u32 max_entries, egrtop, alloced_bytes = 0, idx = 0; |
| gfp_t gfp_flags; |
| u16 order; |
| int ret = 0; |
| u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); |
| |
| /* |
| * GFP_USER, but without GFP_FS, so buffer cache can be |
| * coalesced (we hope); otherwise, even at order 4, |
| * heavy filesystem activity makes these fail, and we can |
| * use compound pages. |
| */ |
| gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP; |
| |
| /* |
| * The minimum size of the eager buffers is a groups of MTU-sized |
| * buffers. |
| * The global eager_buffer_size parameter is checked against the |
| * theoretical lower limit of the value. Here, we check against the |
| * MTU. |
| */ |
| if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) |
| rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; |
| /* |
| * If using one-pkt-per-egr-buffer, lower the eager buffer |
| * size to the max MTU (page-aligned). |
| */ |
| if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) |
| rcd->egrbufs.rcvtid_size = round_mtu; |
| |
| /* |
| * Eager buffers sizes of 1MB or less require smaller TID sizes |
| * to satisfy the "multiple of 8 RcvArray entries" requirement. |
| */ |
| if (rcd->egrbufs.size <= (1 << 20)) |
| rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, |
| rounddown_pow_of_two(rcd->egrbufs.size / 8)); |
| |
| while (alloced_bytes < rcd->egrbufs.size && |
| rcd->egrbufs.alloced < rcd->egrbufs.count) { |
| rcd->egrbufs.buffers[idx].addr = |
| dma_zalloc_coherent(&dd->pcidev->dev, |
| rcd->egrbufs.rcvtid_size, |
| &rcd->egrbufs.buffers[idx].phys, |
| gfp_flags); |
| if (rcd->egrbufs.buffers[idx].addr) { |
| rcd->egrbufs.buffers[idx].len = |
| rcd->egrbufs.rcvtid_size; |
| rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = |
| rcd->egrbufs.buffers[idx].addr; |
| rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].phys = |
| rcd->egrbufs.buffers[idx].phys; |
| rcd->egrbufs.alloced++; |
| alloced_bytes += rcd->egrbufs.rcvtid_size; |
| idx++; |
| } else { |
| u32 new_size, i, j; |
| u64 offset = 0; |
| |
| /* |
| * Fail the eager buffer allocation if: |
| * - we are already using the lowest acceptable size |
| * - we are using one-pkt-per-egr-buffer (this implies |
| * that we are accepting only one size) |
| */ |
| if (rcd->egrbufs.rcvtid_size == round_mtu || |
| !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { |
| dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", |
| rcd->ctxt); |
| goto bail_rcvegrbuf_phys; |
| } |
| |
| new_size = rcd->egrbufs.rcvtid_size / 2; |
| |
| /* |
| * If the first attempt to allocate memory failed, don't |
| * fail everything but continue with the next lower |
| * size. |
| */ |
| if (idx == 0) { |
| rcd->egrbufs.rcvtid_size = new_size; |
| continue; |
| } |
| |
| /* |
| * Re-partition already allocated buffers to a smaller |
| * size. |
| */ |
| rcd->egrbufs.alloced = 0; |
| for (i = 0, j = 0, offset = 0; j < idx; i++) { |
| if (i >= rcd->egrbufs.count) |
| break; |
| rcd->egrbufs.rcvtids[i].phys = |
| rcd->egrbufs.buffers[j].phys + offset; |
| rcd->egrbufs.rcvtids[i].addr = |
| rcd->egrbufs.buffers[j].addr + offset; |
| rcd->egrbufs.alloced++; |
| if ((rcd->egrbufs.buffers[j].phys + offset + |
| new_size) == |
| (rcd->egrbufs.buffers[j].phys + |
| rcd->egrbufs.buffers[j].len)) { |
| j++; |
| offset = 0; |
| } else { |
| offset += new_size; |
| } |
| } |
| rcd->egrbufs.rcvtid_size = new_size; |
| } |
| } |
| rcd->egrbufs.numbufs = idx; |
| rcd->egrbufs.size = alloced_bytes; |
| |
| hfi1_cdbg(PROC, |
| "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n", |
| rcd->ctxt, rcd->egrbufs.alloced, |
| rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); |
| |
| /* |
| * Set the contexts rcv array head update threshold to the closest |
| * power of 2 (so we can use a mask instead of modulo) below half |
| * the allocated entries. |
| */ |
| rcd->egrbufs.threshold = |
| rounddown_pow_of_two(rcd->egrbufs.alloced / 2); |
| /* |
| * Compute the expected RcvArray entry base. This is done after |
| * allocating the eager buffers in order to maximize the |
| * expected RcvArray entries for the context. |
| */ |
| max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; |
| egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); |
| rcd->expected_count = max_entries - egrtop; |
| if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) |
| rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; |
| |
| rcd->expected_base = rcd->eager_base + egrtop; |
| hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n", |
| rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, |
| rcd->eager_base, rcd->expected_base); |
| |
| if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { |
| hfi1_cdbg(PROC, |
| "ctxt%u: current Eager buffer size is invalid %u\n", |
| rcd->ctxt, rcd->egrbufs.rcvtid_size); |
| ret = -EINVAL; |
| goto bail; |
| } |
| |
| for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { |
| hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, |
| rcd->egrbufs.rcvtids[idx].phys, order); |
| cond_resched(); |
| } |
| goto bail; |
| |
| bail_rcvegrbuf_phys: |
| for (idx = 0; idx < rcd->egrbufs.alloced && |
| rcd->egrbufs.buffers[idx].addr; |
| idx++) { |
| dma_free_coherent(&dd->pcidev->dev, |
| rcd->egrbufs.buffers[idx].len, |
| rcd->egrbufs.buffers[idx].addr, |
| rcd->egrbufs.buffers[idx].phys); |
| rcd->egrbufs.buffers[idx].addr = NULL; |
| rcd->egrbufs.buffers[idx].phys = 0; |
| rcd->egrbufs.buffers[idx].len = 0; |
| } |
| bail: |
| return ret; |
| } |