| /* -*- mode: c; c-basic-offset: 8; -*- |
| * vim: noexpandtab sw=8 ts=8 sts=0: |
| * |
| * Copyright (C) 2002, 2004 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/slab.h> |
| #include <linux/highmem.h> |
| #include <linux/pagemap.h> |
| #include <asm/byteorder.h> |
| #include <linux/swap.h> |
| #include <linux/pipe_fs_i.h> |
| |
| #define MLOG_MASK_PREFIX ML_FILE_IO |
| #include <cluster/masklog.h> |
| |
| #include "ocfs2.h" |
| |
| #include "alloc.h" |
| #include "aops.h" |
| #include "dlmglue.h" |
| #include "extent_map.h" |
| #include "file.h" |
| #include "inode.h" |
| #include "journal.h" |
| #include "suballoc.h" |
| #include "super.h" |
| #include "symlink.h" |
| |
| #include "buffer_head_io.h" |
| |
| static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh_result, int create) |
| { |
| int err = -EIO; |
| int status; |
| struct ocfs2_dinode *fe = NULL; |
| struct buffer_head *bh = NULL; |
| struct buffer_head *buffer_cache_bh = NULL; |
| struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
| void *kaddr; |
| |
| mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, |
| (unsigned long long)iblock, bh_result, create); |
| |
| BUG_ON(ocfs2_inode_is_fast_symlink(inode)); |
| |
| if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { |
| mlog(ML_ERROR, "block offset > PATH_MAX: %llu", |
| (unsigned long long)iblock); |
| goto bail; |
| } |
| |
| status = ocfs2_read_block(OCFS2_SB(inode->i_sb), |
| OCFS2_I(inode)->ip_blkno, |
| &bh, OCFS2_BH_CACHED, inode); |
| if (status < 0) { |
| mlog_errno(status); |
| goto bail; |
| } |
| fe = (struct ocfs2_dinode *) bh->b_data; |
| |
| if (!OCFS2_IS_VALID_DINODE(fe)) { |
| mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n", |
| (unsigned long long)le64_to_cpu(fe->i_blkno), 7, |
| fe->i_signature); |
| goto bail; |
| } |
| |
| if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, |
| le32_to_cpu(fe->i_clusters))) { |
| mlog(ML_ERROR, "block offset is outside the allocated size: " |
| "%llu\n", (unsigned long long)iblock); |
| goto bail; |
| } |
| |
| /* We don't use the page cache to create symlink data, so if |
| * need be, copy it over from the buffer cache. */ |
| if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { |
| u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + |
| iblock; |
| buffer_cache_bh = sb_getblk(osb->sb, blkno); |
| if (!buffer_cache_bh) { |
| mlog(ML_ERROR, "couldn't getblock for symlink!\n"); |
| goto bail; |
| } |
| |
| /* we haven't locked out transactions, so a commit |
| * could've happened. Since we've got a reference on |
| * the bh, even if it commits while we're doing the |
| * copy, the data is still good. */ |
| if (buffer_jbd(buffer_cache_bh) |
| && ocfs2_inode_is_new(inode)) { |
| kaddr = kmap_atomic(bh_result->b_page, KM_USER0); |
| if (!kaddr) { |
| mlog(ML_ERROR, "couldn't kmap!\n"); |
| goto bail; |
| } |
| memcpy(kaddr + (bh_result->b_size * iblock), |
| buffer_cache_bh->b_data, |
| bh_result->b_size); |
| kunmap_atomic(kaddr, KM_USER0); |
| set_buffer_uptodate(bh_result); |
| } |
| brelse(buffer_cache_bh); |
| } |
| |
| map_bh(bh_result, inode->i_sb, |
| le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); |
| |
| err = 0; |
| |
| bail: |
| if (bh) |
| brelse(bh); |
| |
| mlog_exit(err); |
| return err; |
| } |
| |
| static int ocfs2_get_block(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh_result, int create) |
| { |
| int err = 0; |
| unsigned int ext_flags; |
| u64 p_blkno, past_eof; |
| struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
| |
| mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode, |
| (unsigned long long)iblock, bh_result, create); |
| |
| if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) |
| mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", |
| inode, inode->i_ino); |
| |
| if (S_ISLNK(inode->i_mode)) { |
| /* this always does I/O for some reason. */ |
| err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); |
| goto bail; |
| } |
| |
| err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL, |
| &ext_flags); |
| if (err) { |
| mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " |
| "%llu, NULL)\n", err, inode, (unsigned long long)iblock, |
| (unsigned long long)p_blkno); |
| goto bail; |
| } |
| |
| /* |
| * ocfs2 never allocates in this function - the only time we |
| * need to use BH_New is when we're extending i_size on a file |
| * system which doesn't support holes, in which case BH_New |
| * allows block_prepare_write() to zero. |
| */ |
| mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb), |
| "ino %lu, iblock %llu\n", inode->i_ino, |
| (unsigned long long)iblock); |
| |
| /* Treat the unwritten extent as a hole for zeroing purposes. */ |
| if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) |
| map_bh(bh_result, inode->i_sb, p_blkno); |
| |
| if (!ocfs2_sparse_alloc(osb)) { |
| if (p_blkno == 0) { |
| err = -EIO; |
| mlog(ML_ERROR, |
| "iblock = %llu p_blkno = %llu blkno=(%llu)\n", |
| (unsigned long long)iblock, |
| (unsigned long long)p_blkno, |
| (unsigned long long)OCFS2_I(inode)->ip_blkno); |
| mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); |
| dump_stack(); |
| } |
| |
| past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); |
| mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino, |
| (unsigned long long)past_eof); |
| |
| if (create && (iblock >= past_eof)) |
| set_buffer_new(bh_result); |
| } |
| |
| bail: |
| if (err < 0) |
| err = -EIO; |
| |
| mlog_exit(err); |
| return err; |
| } |
| |
| int ocfs2_read_inline_data(struct inode *inode, struct page *page, |
| struct buffer_head *di_bh) |
| { |
| void *kaddr; |
| unsigned int size; |
| struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; |
| |
| if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { |
| ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno); |
| return -EROFS; |
| } |
| |
| size = i_size_read(inode); |
| |
| if (size > PAGE_CACHE_SIZE || |
| size > ocfs2_max_inline_data(inode->i_sb)) { |
| ocfs2_error(inode->i_sb, |
| "Inode %llu has with inline data has bad size: %u", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, size); |
| return -EROFS; |
| } |
| |
| kaddr = kmap_atomic(page, KM_USER0); |
| if (size) |
| memcpy(kaddr, di->id2.i_data.id_data, size); |
| /* Clear the remaining part of the page */ |
| memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); |
| flush_dcache_page(page); |
| kunmap_atomic(kaddr, KM_USER0); |
| |
| SetPageUptodate(page); |
| |
| return 0; |
| } |
| |
| static int ocfs2_readpage_inline(struct inode *inode, struct page *page) |
| { |
| int ret; |
| struct buffer_head *di_bh = NULL; |
| struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
| |
| BUG_ON(!PageLocked(page)); |
| BUG_ON(!OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL); |
| |
| ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh, |
| OCFS2_BH_CACHED, inode); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_read_inline_data(inode, page, di_bh); |
| out: |
| unlock_page(page); |
| |
| brelse(di_bh); |
| return ret; |
| } |
| |
| static int ocfs2_readpage(struct file *file, struct page *page) |
| { |
| struct inode *inode = page->mapping->host; |
| struct ocfs2_inode_info *oi = OCFS2_I(inode); |
| loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; |
| int ret, unlock = 1; |
| |
| mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0)); |
| |
| ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page); |
| if (ret != 0) { |
| if (ret == AOP_TRUNCATED_PAGE) |
| unlock = 0; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (down_read_trylock(&oi->ip_alloc_sem) == 0) { |
| ret = AOP_TRUNCATED_PAGE; |
| goto out_meta_unlock; |
| } |
| |
| /* |
| * i_size might have just been updated as we grabed the meta lock. We |
| * might now be discovering a truncate that hit on another node. |
| * block_read_full_page->get_block freaks out if it is asked to read |
| * beyond the end of a file, so we check here. Callers |
| * (generic_file_read, vm_ops->fault) are clever enough to check i_size |
| * and notice that the page they just read isn't needed. |
| * |
| * XXX sys_readahead() seems to get that wrong? |
| */ |
| if (start >= i_size_read(inode)) { |
| zero_user_page(page, 0, PAGE_SIZE, KM_USER0); |
| SetPageUptodate(page); |
| ret = 0; |
| goto out_alloc; |
| } |
| |
| ret = ocfs2_data_lock_with_page(inode, 0, page); |
| if (ret != 0) { |
| if (ret == AOP_TRUNCATED_PAGE) |
| unlock = 0; |
| mlog_errno(ret); |
| goto out_alloc; |
| } |
| |
| if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) |
| ret = ocfs2_readpage_inline(inode, page); |
| else |
| ret = block_read_full_page(page, ocfs2_get_block); |
| unlock = 0; |
| |
| ocfs2_data_unlock(inode, 0); |
| out_alloc: |
| up_read(&OCFS2_I(inode)->ip_alloc_sem); |
| out_meta_unlock: |
| ocfs2_meta_unlock(inode, 0); |
| out: |
| if (unlock) |
| unlock_page(page); |
| mlog_exit(ret); |
| return ret; |
| } |
| |
| /* Note: Because we don't support holes, our allocation has |
| * already happened (allocation writes zeros to the file data) |
| * so we don't have to worry about ordered writes in |
| * ocfs2_writepage. |
| * |
| * ->writepage is called during the process of invalidating the page cache |
| * during blocked lock processing. It can't block on any cluster locks |
| * to during block mapping. It's relying on the fact that the block |
| * mapping can't have disappeared under the dirty pages that it is |
| * being asked to write back. |
| */ |
| static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) |
| { |
| int ret; |
| |
| mlog_entry("(0x%p)\n", page); |
| |
| ret = block_write_full_page(page, ocfs2_get_block, wbc); |
| |
| mlog_exit(ret); |
| |
| return ret; |
| } |
| |
| /* |
| * This is called from ocfs2_write_zero_page() which has handled it's |
| * own cluster locking and has ensured allocation exists for those |
| * blocks to be written. |
| */ |
| int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page, |
| unsigned from, unsigned to) |
| { |
| int ret; |
| |
| ret = block_prepare_write(page, from, to, ocfs2_get_block); |
| |
| return ret; |
| } |
| |
| /* Taken from ext3. We don't necessarily need the full blown |
| * functionality yet, but IMHO it's better to cut and paste the whole |
| * thing so we can avoid introducing our own bugs (and easily pick up |
| * their fixes when they happen) --Mark */ |
| int walk_page_buffers( handle_t *handle, |
| struct buffer_head *head, |
| unsigned from, |
| unsigned to, |
| int *partial, |
| int (*fn)( handle_t *handle, |
| struct buffer_head *bh)) |
| { |
| struct buffer_head *bh; |
| unsigned block_start, block_end; |
| unsigned blocksize = head->b_size; |
| int err, ret = 0; |
| struct buffer_head *next; |
| |
| for ( bh = head, block_start = 0; |
| ret == 0 && (bh != head || !block_start); |
| block_start = block_end, bh = next) |
| { |
| next = bh->b_this_page; |
| block_end = block_start + blocksize; |
| if (block_end <= from || block_start >= to) { |
| if (partial && !buffer_uptodate(bh)) |
| *partial = 1; |
| continue; |
| } |
| err = (*fn)(handle, bh); |
| if (!ret) |
| ret = err; |
| } |
| return ret; |
| } |
| |
| handle_t *ocfs2_start_walk_page_trans(struct inode *inode, |
| struct page *page, |
| unsigned from, |
| unsigned to) |
| { |
| struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
| handle_t *handle = NULL; |
| int ret = 0; |
| |
| handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); |
| if (!handle) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (ocfs2_should_order_data(inode)) { |
| ret = walk_page_buffers(handle, |
| page_buffers(page), |
| from, to, NULL, |
| ocfs2_journal_dirty_data); |
| if (ret < 0) |
| mlog_errno(ret); |
| } |
| out: |
| if (ret) { |
| if (handle) |
| ocfs2_commit_trans(osb, handle); |
| handle = ERR_PTR(ret); |
| } |
| return handle; |
| } |
| |
| static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) |
| { |
| sector_t status; |
| u64 p_blkno = 0; |
| int err = 0; |
| struct inode *inode = mapping->host; |
| |
| mlog_entry("(block = %llu)\n", (unsigned long long)block); |
| |
| /* We don't need to lock journal system files, since they aren't |
| * accessed concurrently from multiple nodes. |
| */ |
| if (!INODE_JOURNAL(inode)) { |
| err = ocfs2_meta_lock(inode, NULL, 0); |
| if (err) { |
| if (err != -ENOENT) |
| mlog_errno(err); |
| goto bail; |
| } |
| down_read(&OCFS2_I(inode)->ip_alloc_sem); |
| } |
| |
| if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) |
| err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, |
| NULL); |
| |
| if (!INODE_JOURNAL(inode)) { |
| up_read(&OCFS2_I(inode)->ip_alloc_sem); |
| ocfs2_meta_unlock(inode, 0); |
| } |
| |
| if (err) { |
| mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", |
| (unsigned long long)block); |
| mlog_errno(err); |
| goto bail; |
| } |
| |
| bail: |
| status = err ? 0 : p_blkno; |
| |
| mlog_exit((int)status); |
| |
| return status; |
| } |
| |
| /* |
| * TODO: Make this into a generic get_blocks function. |
| * |
| * From do_direct_io in direct-io.c: |
| * "So what we do is to permit the ->get_blocks function to populate |
| * bh.b_size with the size of IO which is permitted at this offset and |
| * this i_blkbits." |
| * |
| * This function is called directly from get_more_blocks in direct-io.c. |
| * |
| * called like this: dio->get_blocks(dio->inode, fs_startblk, |
| * fs_count, map_bh, dio->rw == WRITE); |
| */ |
| static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, |
| struct buffer_head *bh_result, int create) |
| { |
| int ret; |
| u64 p_blkno, inode_blocks, contig_blocks; |
| unsigned int ext_flags; |
| unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; |
| unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; |
| |
| /* This function won't even be called if the request isn't all |
| * nicely aligned and of the right size, so there's no need |
| * for us to check any of that. */ |
| |
| inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); |
| |
| /* |
| * Any write past EOF is not allowed because we'd be extending. |
| */ |
| if (create && (iblock + max_blocks) > inode_blocks) { |
| ret = -EIO; |
| goto bail; |
| } |
| |
| /* This figures out the size of the next contiguous block, and |
| * our logical offset */ |
| ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, |
| &contig_blocks, &ext_flags); |
| if (ret) { |
| mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", |
| (unsigned long long)iblock); |
| ret = -EIO; |
| goto bail; |
| } |
| |
| if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) { |
| ocfs2_error(inode->i_sb, |
| "Inode %llu has a hole at block %llu\n", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, |
| (unsigned long long)iblock); |
| ret = -EROFS; |
| goto bail; |
| } |
| |
| /* |
| * get_more_blocks() expects us to describe a hole by clearing |
| * the mapped bit on bh_result(). |
| * |
| * Consider an unwritten extent as a hole. |
| */ |
| if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) |
| map_bh(bh_result, inode->i_sb, p_blkno); |
| else { |
| /* |
| * ocfs2_prepare_inode_for_write() should have caught |
| * the case where we'd be filling a hole and triggered |
| * a buffered write instead. |
| */ |
| if (create) { |
| ret = -EIO; |
| mlog_errno(ret); |
| goto bail; |
| } |
| |
| clear_buffer_mapped(bh_result); |
| } |
| |
| /* make sure we don't map more than max_blocks blocks here as |
| that's all the kernel will handle at this point. */ |
| if (max_blocks < contig_blocks) |
| contig_blocks = max_blocks; |
| bh_result->b_size = contig_blocks << blocksize_bits; |
| bail: |
| return ret; |
| } |
| |
| /* |
| * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're |
| * particularly interested in the aio/dio case. Like the core uses |
| * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from |
| * truncation on another. |
| */ |
| static void ocfs2_dio_end_io(struct kiocb *iocb, |
| loff_t offset, |
| ssize_t bytes, |
| void *private) |
| { |
| struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; |
| int level; |
| |
| /* this io's submitter should not have unlocked this before we could */ |
| BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); |
| |
| ocfs2_iocb_clear_rw_locked(iocb); |
| |
| level = ocfs2_iocb_rw_locked_level(iocb); |
| if (!level) |
| up_read(&inode->i_alloc_sem); |
| ocfs2_rw_unlock(inode, level); |
| } |
| |
| /* |
| * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen |
| * from ext3. PageChecked() bits have been removed as OCFS2 does not |
| * do journalled data. |
| */ |
| static void ocfs2_invalidatepage(struct page *page, unsigned long offset) |
| { |
| journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; |
| |
| journal_invalidatepage(journal, page, offset); |
| } |
| |
| static int ocfs2_releasepage(struct page *page, gfp_t wait) |
| { |
| journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal; |
| |
| if (!page_has_buffers(page)) |
| return 0; |
| return journal_try_to_free_buffers(journal, page, wait); |
| } |
| |
| static ssize_t ocfs2_direct_IO(int rw, |
| struct kiocb *iocb, |
| const struct iovec *iov, |
| loff_t offset, |
| unsigned long nr_segs) |
| { |
| struct file *file = iocb->ki_filp; |
| struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host; |
| int ret; |
| |
| mlog_entry_void(); |
| |
| /* |
| * Fallback to buffered I/O if we see an inode without |
| * extents. |
| */ |
| if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) |
| return 0; |
| |
| if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) { |
| /* |
| * We get PR data locks even for O_DIRECT. This |
| * allows concurrent O_DIRECT I/O but doesn't let |
| * O_DIRECT with extending and buffered zeroing writes |
| * race. If they did race then the buffered zeroing |
| * could be written back after the O_DIRECT I/O. It's |
| * one thing to tell people not to mix buffered and |
| * O_DIRECT writes, but expecting them to understand |
| * that file extension is also an implicit buffered |
| * write is too much. By getting the PR we force |
| * writeback of the buffered zeroing before |
| * proceeding. |
| */ |
| ret = ocfs2_data_lock(inode, 0); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| ocfs2_data_unlock(inode, 0); |
| } |
| |
| ret = blockdev_direct_IO_no_locking(rw, iocb, inode, |
| inode->i_sb->s_bdev, iov, offset, |
| nr_segs, |
| ocfs2_direct_IO_get_blocks, |
| ocfs2_dio_end_io); |
| out: |
| mlog_exit(ret); |
| return ret; |
| } |
| |
| static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, |
| u32 cpos, |
| unsigned int *start, |
| unsigned int *end) |
| { |
| unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; |
| |
| if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { |
| unsigned int cpp; |
| |
| cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); |
| |
| cluster_start = cpos % cpp; |
| cluster_start = cluster_start << osb->s_clustersize_bits; |
| |
| cluster_end = cluster_start + osb->s_clustersize; |
| } |
| |
| BUG_ON(cluster_start > PAGE_SIZE); |
| BUG_ON(cluster_end > PAGE_SIZE); |
| |
| if (start) |
| *start = cluster_start; |
| if (end) |
| *end = cluster_end; |
| } |
| |
| /* |
| * 'from' and 'to' are the region in the page to avoid zeroing. |
| * |
| * If pagesize > clustersize, this function will avoid zeroing outside |
| * of the cluster boundary. |
| * |
| * from == to == 0 is code for "zero the entire cluster region" |
| */ |
| static void ocfs2_clear_page_regions(struct page *page, |
| struct ocfs2_super *osb, u32 cpos, |
| unsigned from, unsigned to) |
| { |
| void *kaddr; |
| unsigned int cluster_start, cluster_end; |
| |
| ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); |
| |
| kaddr = kmap_atomic(page, KM_USER0); |
| |
| if (from || to) { |
| if (from > cluster_start) |
| memset(kaddr + cluster_start, 0, from - cluster_start); |
| if (to < cluster_end) |
| memset(kaddr + to, 0, cluster_end - to); |
| } else { |
| memset(kaddr + cluster_start, 0, cluster_end - cluster_start); |
| } |
| |
| kunmap_atomic(kaddr, KM_USER0); |
| } |
| |
| /* |
| * Some of this taken from block_prepare_write(). We already have our |
| * mapping by now though, and the entire write will be allocating or |
| * it won't, so not much need to use BH_New. |
| * |
| * This will also skip zeroing, which is handled externally. |
| */ |
| int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, |
| struct inode *inode, unsigned int from, |
| unsigned int to, int new) |
| { |
| int ret = 0; |
| struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; |
| unsigned int block_end, block_start; |
| unsigned int bsize = 1 << inode->i_blkbits; |
| |
| if (!page_has_buffers(page)) |
| create_empty_buffers(page, bsize, 0); |
| |
| head = page_buffers(page); |
| for (bh = head, block_start = 0; bh != head || !block_start; |
| bh = bh->b_this_page, block_start += bsize) { |
| block_end = block_start + bsize; |
| |
| clear_buffer_new(bh); |
| |
| /* |
| * Ignore blocks outside of our i/o range - |
| * they may belong to unallocated clusters. |
| */ |
| if (block_start >= to || block_end <= from) { |
| if (PageUptodate(page)) |
| set_buffer_uptodate(bh); |
| continue; |
| } |
| |
| /* |
| * For an allocating write with cluster size >= page |
| * size, we always write the entire page. |
| */ |
| if (new) |
| set_buffer_new(bh); |
| |
| if (!buffer_mapped(bh)) { |
| map_bh(bh, inode->i_sb, *p_blkno); |
| unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); |
| } |
| |
| if (PageUptodate(page)) { |
| if (!buffer_uptodate(bh)) |
| set_buffer_uptodate(bh); |
| } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && |
| !buffer_new(bh) && |
| (block_start < from || block_end > to)) { |
| ll_rw_block(READ, 1, &bh); |
| *wait_bh++=bh; |
| } |
| |
| *p_blkno = *p_blkno + 1; |
| } |
| |
| /* |
| * If we issued read requests - let them complete. |
| */ |
| while(wait_bh > wait) { |
| wait_on_buffer(*--wait_bh); |
| if (!buffer_uptodate(*wait_bh)) |
| ret = -EIO; |
| } |
| |
| if (ret == 0 || !new) |
| return ret; |
| |
| /* |
| * If we get -EIO above, zero out any newly allocated blocks |
| * to avoid exposing stale data. |
| */ |
| bh = head; |
| block_start = 0; |
| do { |
| block_end = block_start + bsize; |
| if (block_end <= from) |
| goto next_bh; |
| if (block_start >= to) |
| break; |
| |
| zero_user_page(page, block_start, bh->b_size, KM_USER0); |
| set_buffer_uptodate(bh); |
| mark_buffer_dirty(bh); |
| |
| next_bh: |
| block_start = block_end; |
| bh = bh->b_this_page; |
| } while (bh != head); |
| |
| return ret; |
| } |
| |
| #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) |
| #define OCFS2_MAX_CTXT_PAGES 1 |
| #else |
| #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) |
| #endif |
| |
| #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) |
| |
| /* |
| * Describe the state of a single cluster to be written to. |
| */ |
| struct ocfs2_write_cluster_desc { |
| u32 c_cpos; |
| u32 c_phys; |
| /* |
| * Give this a unique field because c_phys eventually gets |
| * filled. |
| */ |
| unsigned c_new; |
| unsigned c_unwritten; |
| }; |
| |
| static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d) |
| { |
| return d->c_new || d->c_unwritten; |
| } |
| |
| struct ocfs2_write_ctxt { |
| /* Logical cluster position / len of write */ |
| u32 w_cpos; |
| u32 w_clen; |
| |
| struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; |
| |
| /* |
| * This is true if page_size > cluster_size. |
| * |
| * It triggers a set of special cases during write which might |
| * have to deal with allocating writes to partial pages. |
| */ |
| unsigned int w_large_pages; |
| |
| /* |
| * Pages involved in this write. |
| * |
| * w_target_page is the page being written to by the user. |
| * |
| * w_pages is an array of pages which always contains |
| * w_target_page, and in the case of an allocating write with |
| * page_size < cluster size, it will contain zero'd and mapped |
| * pages adjacent to w_target_page which need to be written |
| * out in so that future reads from that region will get |
| * zero's. |
| */ |
| struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; |
| unsigned int w_num_pages; |
| struct page *w_target_page; |
| |
| /* |
| * ocfs2_write_end() uses this to know what the real range to |
| * write in the target should be. |
| */ |
| unsigned int w_target_from; |
| unsigned int w_target_to; |
| |
| /* |
| * We could use journal_current_handle() but this is cleaner, |
| * IMHO -Mark |
| */ |
| handle_t *w_handle; |
| |
| struct buffer_head *w_di_bh; |
| |
| struct ocfs2_cached_dealloc_ctxt w_dealloc; |
| }; |
| |
| void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) |
| { |
| int i; |
| |
| for(i = 0; i < num_pages; i++) { |
| if (pages[i]) { |
| unlock_page(pages[i]); |
| mark_page_accessed(pages[i]); |
| page_cache_release(pages[i]); |
| } |
| } |
| } |
| |
| static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) |
| { |
| ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); |
| |
| brelse(wc->w_di_bh); |
| kfree(wc); |
| } |
| |
| static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, |
| struct ocfs2_super *osb, loff_t pos, |
| unsigned len, struct buffer_head *di_bh) |
| { |
| u32 cend; |
| struct ocfs2_write_ctxt *wc; |
| |
| wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); |
| if (!wc) |
| return -ENOMEM; |
| |
| wc->w_cpos = pos >> osb->s_clustersize_bits; |
| cend = (pos + len - 1) >> osb->s_clustersize_bits; |
| wc->w_clen = cend - wc->w_cpos + 1; |
| get_bh(di_bh); |
| wc->w_di_bh = di_bh; |
| |
| if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) |
| wc->w_large_pages = 1; |
| else |
| wc->w_large_pages = 0; |
| |
| ocfs2_init_dealloc_ctxt(&wc->w_dealloc); |
| |
| *wcp = wc; |
| |
| return 0; |
| } |
| |
| /* |
| * If a page has any new buffers, zero them out here, and mark them uptodate |
| * and dirty so they'll be written out (in order to prevent uninitialised |
| * block data from leaking). And clear the new bit. |
| */ |
| static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) |
| { |
| unsigned int block_start, block_end; |
| struct buffer_head *head, *bh; |
| |
| BUG_ON(!PageLocked(page)); |
| if (!page_has_buffers(page)) |
| return; |
| |
| bh = head = page_buffers(page); |
| block_start = 0; |
| do { |
| block_end = block_start + bh->b_size; |
| |
| if (buffer_new(bh)) { |
| if (block_end > from && block_start < to) { |
| if (!PageUptodate(page)) { |
| unsigned start, end; |
| |
| start = max(from, block_start); |
| end = min(to, block_end); |
| |
| zero_user_page(page, start, end - start, KM_USER0); |
| set_buffer_uptodate(bh); |
| } |
| |
| clear_buffer_new(bh); |
| mark_buffer_dirty(bh); |
| } |
| } |
| |
| block_start = block_end; |
| bh = bh->b_this_page; |
| } while (bh != head); |
| } |
| |
| /* |
| * Only called when we have a failure during allocating write to write |
| * zero's to the newly allocated region. |
| */ |
| static void ocfs2_write_failure(struct inode *inode, |
| struct ocfs2_write_ctxt *wc, |
| loff_t user_pos, unsigned user_len) |
| { |
| int i; |
| unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), |
| to = user_pos + user_len; |
| struct page *tmppage; |
| |
| ocfs2_zero_new_buffers(wc->w_target_page, from, to); |
| |
| for(i = 0; i < wc->w_num_pages; i++) { |
| tmppage = wc->w_pages[i]; |
| |
| if (ocfs2_should_order_data(inode)) |
| walk_page_buffers(wc->w_handle, page_buffers(tmppage), |
| from, to, NULL, |
| ocfs2_journal_dirty_data); |
| |
| block_commit_write(tmppage, from, to); |
| } |
| } |
| |
| static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, |
| struct ocfs2_write_ctxt *wc, |
| struct page *page, u32 cpos, |
| loff_t user_pos, unsigned user_len, |
| int new) |
| { |
| int ret; |
| unsigned int map_from = 0, map_to = 0; |
| unsigned int cluster_start, cluster_end; |
| unsigned int user_data_from = 0, user_data_to = 0; |
| |
| ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, |
| &cluster_start, &cluster_end); |
| |
| if (page == wc->w_target_page) { |
| map_from = user_pos & (PAGE_CACHE_SIZE - 1); |
| map_to = map_from + user_len; |
| |
| if (new) |
| ret = ocfs2_map_page_blocks(page, p_blkno, inode, |
| cluster_start, cluster_end, |
| new); |
| else |
| ret = ocfs2_map_page_blocks(page, p_blkno, inode, |
| map_from, map_to, new); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| user_data_from = map_from; |
| user_data_to = map_to; |
| if (new) { |
| map_from = cluster_start; |
| map_to = cluster_end; |
| } |
| } else { |
| /* |
| * If we haven't allocated the new page yet, we |
| * shouldn't be writing it out without copying user |
| * data. This is likely a math error from the caller. |
| */ |
| BUG_ON(!new); |
| |
| map_from = cluster_start; |
| map_to = cluster_end; |
| |
| ret = ocfs2_map_page_blocks(page, p_blkno, inode, |
| cluster_start, cluster_end, new); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| /* |
| * Parts of newly allocated pages need to be zero'd. |
| * |
| * Above, we have also rewritten 'to' and 'from' - as far as |
| * the rest of the function is concerned, the entire cluster |
| * range inside of a page needs to be written. |
| * |
| * We can skip this if the page is up to date - it's already |
| * been zero'd from being read in as a hole. |
| */ |
| if (new && !PageUptodate(page)) |
| ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), |
| cpos, user_data_from, user_data_to); |
| |
| flush_dcache_page(page); |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * This function will only grab one clusters worth of pages. |
| */ |
| static int ocfs2_grab_pages_for_write(struct address_space *mapping, |
| struct ocfs2_write_ctxt *wc, |
| u32 cpos, loff_t user_pos, int new, |
| struct page *mmap_page) |
| { |
| int ret = 0, i; |
| unsigned long start, target_index, index; |
| struct inode *inode = mapping->host; |
| |
| target_index = user_pos >> PAGE_CACHE_SHIFT; |
| |
| /* |
| * Figure out how many pages we'll be manipulating here. For |
| * non allocating write, we just change the one |
| * page. Otherwise, we'll need a whole clusters worth. |
| */ |
| if (new) { |
| wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); |
| start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); |
| } else { |
| wc->w_num_pages = 1; |
| start = target_index; |
| } |
| |
| for(i = 0; i < wc->w_num_pages; i++) { |
| index = start + i; |
| |
| if (index == target_index && mmap_page) { |
| /* |
| * ocfs2_pagemkwrite() is a little different |
| * and wants us to directly use the page |
| * passed in. |
| */ |
| lock_page(mmap_page); |
| |
| if (mmap_page->mapping != mapping) { |
| unlock_page(mmap_page); |
| /* |
| * Sanity check - the locking in |
| * ocfs2_pagemkwrite() should ensure |
| * that this code doesn't trigger. |
| */ |
| ret = -EINVAL; |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| page_cache_get(mmap_page); |
| wc->w_pages[i] = mmap_page; |
| } else { |
| wc->w_pages[i] = find_or_create_page(mapping, index, |
| GFP_NOFS); |
| if (!wc->w_pages[i]) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| if (index == target_index) |
| wc->w_target_page = wc->w_pages[i]; |
| } |
| out: |
| return ret; |
| } |
| |
| /* |
| * Prepare a single cluster for write one cluster into the file. |
| */ |
| static int ocfs2_write_cluster(struct address_space *mapping, |
| u32 phys, unsigned int unwritten, |
| struct ocfs2_alloc_context *data_ac, |
| struct ocfs2_alloc_context *meta_ac, |
| struct ocfs2_write_ctxt *wc, u32 cpos, |
| loff_t user_pos, unsigned user_len) |
| { |
| int ret, i, new, should_zero = 0; |
| u64 v_blkno, p_blkno; |
| struct inode *inode = mapping->host; |
| |
| new = phys == 0 ? 1 : 0; |
| if (new || unwritten) |
| should_zero = 1; |
| |
| if (new) { |
| u32 tmp_pos; |
| |
| /* |
| * This is safe to call with the page locks - it won't take |
| * any additional semaphores or cluster locks. |
| */ |
| tmp_pos = cpos; |
| ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode, |
| &tmp_pos, 1, 0, wc->w_di_bh, |
| wc->w_handle, data_ac, |
| meta_ac, NULL); |
| /* |
| * This shouldn't happen because we must have already |
| * calculated the correct meta data allocation required. The |
| * internal tree allocation code should know how to increase |
| * transaction credits itself. |
| * |
| * If need be, we could handle -EAGAIN for a |
| * RESTART_TRANS here. |
| */ |
| mlog_bug_on_msg(ret == -EAGAIN, |
| "Inode %llu: EAGAIN return during allocation.\n", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } else if (unwritten) { |
| ret = ocfs2_mark_extent_written(inode, wc->w_di_bh, |
| wc->w_handle, cpos, 1, phys, |
| meta_ac, &wc->w_dealloc); |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| if (should_zero) |
| v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); |
| else |
| v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; |
| |
| /* |
| * The only reason this should fail is due to an inability to |
| * find the extent added. |
| */ |
| ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, |
| NULL); |
| if (ret < 0) { |
| ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, " |
| "at logical block %llu", |
| (unsigned long long)OCFS2_I(inode)->ip_blkno, |
| (unsigned long long)v_blkno); |
| goto out; |
| } |
| |
| BUG_ON(p_blkno == 0); |
| |
| for(i = 0; i < wc->w_num_pages; i++) { |
| int tmpret; |
| |
| tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, |
| wc->w_pages[i], cpos, |
| user_pos, user_len, |
| should_zero); |
| if (tmpret) { |
| mlog_errno(tmpret); |
| if (ret == 0) |
| tmpret = ret; |
| } |
| } |
| |
| /* |
| * We only have cleanup to do in case of allocating write. |
| */ |
| if (ret && new) |
| ocfs2_write_failure(inode, wc, user_pos, user_len); |
| |
| out: |
| |
| return ret; |
| } |
| |
| static int ocfs2_write_cluster_by_desc(struct address_space *mapping, |
| struct ocfs2_alloc_context *data_ac, |
| struct ocfs2_alloc_context *meta_ac, |
| struct ocfs2_write_ctxt *wc, |
| loff_t pos, unsigned len) |
| { |
| int ret, i; |
| loff_t cluster_off; |
| unsigned int local_len = len; |
| struct ocfs2_write_cluster_desc *desc; |
| struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); |
| |
| for (i = 0; i < wc->w_clen; i++) { |
| desc = &wc->w_desc[i]; |
| |
| /* |
| * We have to make sure that the total write passed in |
| * doesn't extend past a single cluster. |
| */ |
| local_len = len; |
| cluster_off = pos & (osb->s_clustersize - 1); |
| if ((cluster_off + local_len) > osb->s_clustersize) |
| local_len = osb->s_clustersize - cluster_off; |
| |
| ret = ocfs2_write_cluster(mapping, desc->c_phys, |
| desc->c_unwritten, data_ac, meta_ac, |
| wc, desc->c_cpos, pos, local_len); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| len -= local_len; |
| pos += local_len; |
| } |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| /* |
| * ocfs2_write_end() wants to know which parts of the target page it |
| * should complete the write on. It's easiest to compute them ahead of |
| * time when a more complete view of the write is available. |
| */ |
| static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, |
| struct ocfs2_write_ctxt *wc, |
| loff_t pos, unsigned len, int alloc) |
| { |
| struct ocfs2_write_cluster_desc *desc; |
| |
| wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); |
| wc->w_target_to = wc->w_target_from + len; |
| |
| if (alloc == 0) |
| return; |
| |
| /* |
| * Allocating write - we may have different boundaries based |
| * on page size and cluster size. |
| * |
| * NOTE: We can no longer compute one value from the other as |
| * the actual write length and user provided length may be |
| * different. |
| */ |
| |
| if (wc->w_large_pages) { |
| /* |
| * We only care about the 1st and last cluster within |
| * our range and whether they should be zero'd or not. Either |
| * value may be extended out to the start/end of a |
| * newly allocated cluster. |
| */ |
| desc = &wc->w_desc[0]; |
| if (ocfs2_should_zero_cluster(desc)) |
| ocfs2_figure_cluster_boundaries(osb, |
| desc->c_cpos, |
| &wc->w_target_from, |
| NULL); |
| |
| desc = &wc->w_desc[wc->w_clen - 1]; |
| if (ocfs2_should_zero_cluster(desc)) |
| ocfs2_figure_cluster_boundaries(osb, |
| desc->c_cpos, |
| NULL, |
| &wc->w_target_to); |
| } else { |
| wc->w_target_from = 0; |
| wc->w_target_to = PAGE_CACHE_SIZE; |
| } |
| } |
| |
| /* |
| * Populate each single-cluster write descriptor in the write context |
| * with information about the i/o to be done. |
| * |
| * Returns the number of clusters that will have to be allocated, as |
| * well as a worst case estimate of the number of extent records that |
| * would have to be created during a write to an unwritten region. |
| */ |
| static int ocfs2_populate_write_desc(struct inode *inode, |
| struct ocfs2_write_ctxt *wc, |
| unsigned int *clusters_to_alloc, |
| unsigned int *extents_to_split) |
| { |
| int ret; |
| struct ocfs2_write_cluster_desc *desc; |
| unsigned int num_clusters = 0; |
| unsigned int ext_flags = 0; |
| u32 phys = 0; |
| int i; |
| |
| *clusters_to_alloc = 0; |
| *extents_to_split = 0; |
| |
| for (i = 0; i < wc->w_clen; i++) { |
| desc = &wc->w_desc[i]; |
| desc->c_cpos = wc->w_cpos + i; |
| |
| if (num_clusters == 0) { |
| /* |
| * Need to look up the next extent record. |
| */ |
| ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, |
| &num_clusters, &ext_flags); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * Assume worst case - that we're writing in |
| * the middle of the extent. |
| * |
| * We can assume that the write proceeds from |
| * left to right, in which case the extent |
| * insert code is smart enough to coalesce the |
| * next splits into the previous records created. |
| */ |
| if (ext_flags & OCFS2_EXT_UNWRITTEN) |
| *extents_to_split = *extents_to_split + 2; |
| } else if (phys) { |
| /* |
| * Only increment phys if it doesn't describe |
| * a hole. |
| */ |
| phys++; |
| } |
| |
| desc->c_phys = phys; |
| if (phys == 0) { |
| desc->c_new = 1; |
| *clusters_to_alloc = *clusters_to_alloc + 1; |
| } |
| if (ext_flags & OCFS2_EXT_UNWRITTEN) |
| desc->c_unwritten = 1; |
| |
| num_clusters--; |
| } |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| static int ocfs2_write_begin_inline(struct address_space *mapping, |
| struct inode *inode, |
| struct ocfs2_write_ctxt *wc) |
| { |
| int ret; |
| struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
| struct page *page; |
| handle_t *handle; |
| struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; |
| |
| page = find_or_create_page(mapping, 0, GFP_NOFS); |
| if (!page) { |
| ret = -ENOMEM; |
| mlog_errno(ret); |
| goto out; |
| } |
| /* |
| * If we don't set w_num_pages then this page won't get unlocked |
| * and freed on cleanup of the write context. |
| */ |
| wc->w_pages[0] = wc->w_target_page = page; |
| wc->w_num_pages = 1; |
| |
| handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); |
| if (IS_ERR(handle)) { |
| ret = PTR_ERR(handle); |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_journal_access(handle, inode, wc->w_di_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| ocfs2_commit_trans(osb, handle); |
| |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) |
| ocfs2_set_inode_data_inline(inode, di); |
| |
| if (!PageUptodate(page)) { |
| ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); |
| if (ret) { |
| ocfs2_commit_trans(osb, handle); |
| |
| goto out; |
| } |
| } |
| |
| wc->w_handle = handle; |
| out: |
| return ret; |
| } |
| |
| int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) |
| { |
| struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; |
| |
| if (new_size < le16_to_cpu(di->id2.i_data.id_count)) |
| return 1; |
| return 0; |
| } |
| |
| static int ocfs2_try_to_write_inline_data(struct address_space *mapping, |
| struct inode *inode, loff_t pos, |
| unsigned len, struct page *mmap_page, |
| struct ocfs2_write_ctxt *wc) |
| { |
| int ret, written = 0; |
| loff_t end = pos + len; |
| struct ocfs2_inode_info *oi = OCFS2_I(inode); |
| |
| mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n", |
| (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos, |
| oi->ip_dyn_features); |
| |
| /* |
| * Handle inodes which already have inline data 1st. |
| */ |
| if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { |
| if (mmap_page == NULL && |
| ocfs2_size_fits_inline_data(wc->w_di_bh, end)) |
| goto do_inline_write; |
| |
| /* |
| * The write won't fit - we have to give this inode an |
| * inline extent list now. |
| */ |
| ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); |
| if (ret) |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * Check whether the inode can accept inline data. |
| */ |
| if (oi->ip_clusters != 0 || i_size_read(inode) != 0) |
| return 0; |
| |
| /* |
| * Check whether the write can fit. |
| */ |
| if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb)) |
| return 0; |
| |
| do_inline_write: |
| ret = ocfs2_write_begin_inline(mapping, inode, wc); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| /* |
| * This signals to the caller that the data can be written |
| * inline. |
| */ |
| written = 1; |
| out: |
| return written ? written : ret; |
| } |
| |
| /* |
| * This function only does anything for file systems which can't |
| * handle sparse files. |
| * |
| * What we want to do here is fill in any hole between the current end |
| * of allocation and the end of our write. That way the rest of the |
| * write path can treat it as an non-allocating write, which has no |
| * special case code for sparse/nonsparse files. |
| */ |
| static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos, |
| unsigned len, |
| struct ocfs2_write_ctxt *wc) |
| { |
| int ret; |
| struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
| loff_t newsize = pos + len; |
| |
| if (ocfs2_sparse_alloc(osb)) |
| return 0; |
| |
| if (newsize <= i_size_read(inode)) |
| return 0; |
| |
| ret = ocfs2_extend_no_holes(inode, newsize, newsize - len); |
| if (ret) |
| mlog_errno(ret); |
| |
| return ret; |
| } |
| |
| int ocfs2_write_begin_nolock(struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned flags, |
| struct page **pagep, void **fsdata, |
| struct buffer_head *di_bh, struct page *mmap_page) |
| { |
| int ret, credits = OCFS2_INODE_UPDATE_CREDITS; |
| unsigned int clusters_to_alloc, extents_to_split; |
| struct ocfs2_write_ctxt *wc; |
| struct inode *inode = mapping->host; |
| struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
| struct ocfs2_dinode *di; |
| struct ocfs2_alloc_context *data_ac = NULL; |
| struct ocfs2_alloc_context *meta_ac = NULL; |
| handle_t *handle; |
| |
| ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); |
| if (ret) { |
| mlog_errno(ret); |
| return ret; |
| } |
| |
| if (ocfs2_supports_inline_data(osb)) { |
| ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, |
| mmap_page, wc); |
| if (ret == 1) { |
| ret = 0; |
| goto success; |
| } |
| if (ret < 0) { |
| mlog_errno(ret); |
| goto out; |
| } |
| } |
| |
| ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, |
| &extents_to_split); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; |
| |
| /* |
| * We set w_target_from, w_target_to here so that |
| * ocfs2_write_end() knows which range in the target page to |
| * write out. An allocation requires that we write the entire |
| * cluster range. |
| */ |
| if (clusters_to_alloc || extents_to_split) { |
| /* |
| * XXX: We are stretching the limits of |
| * ocfs2_lock_allocators(). It greatly over-estimates |
| * the work to be done. |
| */ |
| ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc, |
| extents_to_split, &data_ac, &meta_ac); |
| if (ret) { |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| credits = ocfs2_calc_extend_credits(inode->i_sb, di, |
| clusters_to_alloc); |
| |
| } |
| |
| ocfs2_set_target_boundaries(osb, wc, pos, len, |
| clusters_to_alloc + extents_to_split); |
| |
| handle = ocfs2_start_trans(osb, credits); |
| if (IS_ERR(handle)) { |
| ret = PTR_ERR(handle); |
| mlog_errno(ret); |
| goto out; |
| } |
| |
| wc->w_handle = handle; |
| |
| /* |
| * We don't want this to fail in ocfs2_write_end(), so do it |
| * here. |
| */ |
| ret = ocfs2_journal_access(handle, inode, wc->w_di_bh, |
| OCFS2_JOURNAL_ACCESS_WRITE); |
| if (ret) { |
| mlog_errno(ret); |
| goto out_commit; |
| } |
| |
| /* |
| * Fill our page array first. That way we've grabbed enough so |
| * that we can zero and flush if we error after adding the |
| * extent. |
| */ |
| ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, |
| clusters_to_alloc + extents_to_split, |
| mmap_page); |
| if (ret) { |
| mlog_errno(ret); |
| goto out_commit; |
| } |
| |
| ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, |
| len); |
| if (ret) { |
| mlog_errno(ret); |
| goto out_commit; |
| } |
| |
| if (data_ac) |
| ocfs2_free_alloc_context(data_ac); |
| if (meta_ac) |
| ocfs2_free_alloc_context(meta_ac); |
| |
| success: |
| *pagep = wc->w_target_page; |
| *fsdata = wc; |
| return 0; |
| out_commit: |
| ocfs2_commit_trans(osb, handle); |
| |
| out: |
| ocfs2_free_write_ctxt(wc); |
| |
| if (data_ac) |
| ocfs2_free_alloc_context(data_ac); |
| if (meta_ac) |
| ocfs2_free_alloc_context(meta_ac); |
| return ret; |
| } |
| |
| static int ocfs2_write_begin(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned flags, |
| struct page **pagep, void **fsdata) |
| { |
| int ret; |
| struct buffer_head *di_bh = NULL; |
| struct inode *inode = mapping->host; |
| |
| ret = ocfs2_meta_lock(inode, &di_bh, 1); |
| if (ret) { |
| mlog_errno(ret); |
| return ret; |
| } |
| |
| /* |
| * Take alloc sem here to prevent concurrent lookups. That way |
| * the mapping, zeroing and tree manipulation within |
| * ocfs2_write() will be safe against ->readpage(). This |
| * should also serve to lock out allocation from a shared |
| * writeable region. |
| */ |
| down_write(&OCFS2_I(inode)->ip_alloc_sem); |
| |
| ret = ocfs2_data_lock(inode, 1); |
| if (ret) { |
| mlog_errno(ret); |
| goto out_fail; |
| } |
| |
| ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep, |
| fsdata, di_bh, NULL); |
| if (ret) { |
| mlog_errno(ret); |
| goto out_fail_data; |
| } |
| |
| brelse(di_bh); |
| |
| return 0; |
| |
| out_fail_data: |
| ocfs2_data_unlock(inode, 1); |
| out_fail: |
| up_write(&OCFS2_I(inode)->ip_alloc_sem); |
| |
| brelse(di_bh); |
| ocfs2_meta_unlock(inode, 1); |
| |
| return ret; |
| } |
| |
| static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, |
| unsigned len, unsigned *copied, |
| struct ocfs2_dinode *di, |
| struct ocfs2_write_ctxt *wc) |
| { |
| void *kaddr; |
| |
| if (unlikely(*copied < len)) { |
| if (!PageUptodate(wc->w_target_page)) { |
| *copied = 0; |
| return; |
| } |
| } |
| |
| kaddr = kmap_atomic(wc->w_target_page, KM_USER0); |
| memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); |
| kunmap_atomic(kaddr, KM_USER0); |
| |
| mlog(0, "Data written to inode at offset %llu. " |
| "id_count = %u, copied = %u, i_dyn_features = 0x%x\n", |
| (unsigned long long)pos, *copied, |
| le16_to_cpu(di->id2.i_data.id_count), |
| le16_to_cpu(di->i_dyn_features)); |
| } |
| |
| int ocfs2_write_end_nolock(struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned copied, |
| struct page *page, void *fsdata) |
| { |
| int i; |
| unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); |
| struct inode *inode = mapping->host; |
| struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); |
| struct ocfs2_write_ctxt *wc = fsdata; |
| struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; |
| handle_t *handle = wc->w_handle; |
| struct page *tmppage; |
| |
| if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { |
| ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); |
| goto out_write_size; |
| } |
| |
| if (unlikely(copied < len)) { |
| if (!PageUptodate(wc->w_target_page)) |
| copied = 0; |
| |
| ocfs2_zero_new_buffers(wc->w_target_page, start+copied, |
| start+len); |
| } |
| flush_dcache_page(wc->w_target_page); |
| |
| for(i = 0; i < wc->w_num_pages; i++) { |
| tmppage = wc->w_pages[i]; |
| |
| if (tmppage == wc->w_target_page) { |
| from = wc->w_target_from; |
| to = wc->w_target_to; |
| |
| BUG_ON(from > PAGE_CACHE_SIZE || |
| to > PAGE_CACHE_SIZE || |
| to < from); |
| } else { |
| /* |
| * Pages adjacent to the target (if any) imply |
| * a hole-filling write in which case we want |
| * to flush their entire range. |
| */ |
| from = 0; |
| to = PAGE_CACHE_SIZE; |
| } |
| |
| if (ocfs2_should_order_data(inode)) |
| walk_page_buffers(wc->w_handle, page_buffers(tmppage), |
| from, to, NULL, |
| ocfs2_journal_dirty_data); |
| |
| block_commit_write(tmppage, from, to); |
| } |
| |
| out_write_size: |
| pos += copied; |
| if (pos > inode->i_size) { |
| i_size_write(inode, pos); |
| mark_inode_dirty(inode); |
| } |
| inode->i_blocks = ocfs2_inode_sector_count(inode); |
| di->i_size = cpu_to_le64((u64)i_size_read(inode)); |
| inode->i_mtime = inode->i_ctime = CURRENT_TIME; |
| di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); |
| di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); |
| ocfs2_journal_dirty(handle, wc->w_di_bh); |
| |
| ocfs2_commit_trans(osb, handle); |
| |
| ocfs2_run_deallocs(osb, &wc->w_dealloc); |
| |
| ocfs2_free_write_ctxt(wc); |
| |
| return copied; |
| } |
| |
| static int ocfs2_write_end(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned copied, |
| struct page *page, void *fsdata) |
| { |
| int ret; |
| struct inode *inode = mapping->host; |
| |
| ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); |
| |
| ocfs2_data_unlock(inode, 1); |
| up_write(&OCFS2_I(inode)->ip_alloc_sem); |
| ocfs2_meta_unlock(inode, 1); |
| |
| return ret; |
| } |
| |
| const struct address_space_operations ocfs2_aops = { |
| .readpage = ocfs2_readpage, |
| .writepage = ocfs2_writepage, |
| .write_begin = ocfs2_write_begin, |
| .write_end = ocfs2_write_end, |
| .bmap = ocfs2_bmap, |
| .sync_page = block_sync_page, |
| .direct_IO = ocfs2_direct_IO, |
| .invalidatepage = ocfs2_invalidatepage, |
| .releasepage = ocfs2_releasepage, |
| .migratepage = buffer_migrate_page, |
| }; |