| #include "builtin.h" |
| #include "perf.h" |
| |
| #include "util/util.h" |
| #include "util/cache.h" |
| #include "util/symbol.h" |
| #include "util/thread.h" |
| #include "util/header.h" |
| #include "util/session.h" |
| |
| #include "util/parse-options.h" |
| #include "util/trace-event.h" |
| |
| #include "util/debug.h" |
| |
| #include <sys/prctl.h> |
| |
| #include <semaphore.h> |
| #include <pthread.h> |
| #include <math.h> |
| |
| static char const *input_name = "perf.data"; |
| |
| static char default_sort_order[] = "avg, max, switch, runtime"; |
| static const char *sort_order = default_sort_order; |
| |
| static int profile_cpu = -1; |
| |
| #define PR_SET_NAME 15 /* Set process name */ |
| #define MAX_CPUS 4096 |
| |
| static u64 run_measurement_overhead; |
| static u64 sleep_measurement_overhead; |
| |
| #define COMM_LEN 20 |
| #define SYM_LEN 129 |
| |
| #define MAX_PID 65536 |
| |
| static unsigned long nr_tasks; |
| |
| struct sched_atom; |
| |
| struct task_desc { |
| unsigned long nr; |
| unsigned long pid; |
| char comm[COMM_LEN]; |
| |
| unsigned long nr_events; |
| unsigned long curr_event; |
| struct sched_atom **atoms; |
| |
| pthread_t thread; |
| sem_t sleep_sem; |
| |
| sem_t ready_for_work; |
| sem_t work_done_sem; |
| |
| u64 cpu_usage; |
| }; |
| |
| enum sched_event_type { |
| SCHED_EVENT_RUN, |
| SCHED_EVENT_SLEEP, |
| SCHED_EVENT_WAKEUP, |
| SCHED_EVENT_MIGRATION, |
| }; |
| |
| struct sched_atom { |
| enum sched_event_type type; |
| int specific_wait; |
| u64 timestamp; |
| u64 duration; |
| unsigned long nr; |
| sem_t *wait_sem; |
| struct task_desc *wakee; |
| }; |
| |
| static struct task_desc *pid_to_task[MAX_PID]; |
| |
| static struct task_desc **tasks; |
| |
| static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER; |
| static u64 start_time; |
| |
| static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER; |
| |
| static unsigned long nr_run_events; |
| static unsigned long nr_sleep_events; |
| static unsigned long nr_wakeup_events; |
| |
| static unsigned long nr_sleep_corrections; |
| static unsigned long nr_run_events_optimized; |
| |
| static unsigned long targetless_wakeups; |
| static unsigned long multitarget_wakeups; |
| |
| static u64 cpu_usage; |
| static u64 runavg_cpu_usage; |
| static u64 parent_cpu_usage; |
| static u64 runavg_parent_cpu_usage; |
| |
| static unsigned long nr_runs; |
| static u64 sum_runtime; |
| static u64 sum_fluct; |
| static u64 run_avg; |
| |
| static unsigned int replay_repeat = 10; |
| static unsigned long nr_timestamps; |
| static unsigned long nr_unordered_timestamps; |
| static unsigned long nr_state_machine_bugs; |
| static unsigned long nr_context_switch_bugs; |
| static unsigned long nr_events; |
| static unsigned long nr_lost_chunks; |
| static unsigned long nr_lost_events; |
| |
| #define TASK_STATE_TO_CHAR_STR "RSDTtZX" |
| |
| enum thread_state { |
| THREAD_SLEEPING = 0, |
| THREAD_WAIT_CPU, |
| THREAD_SCHED_IN, |
| THREAD_IGNORE |
| }; |
| |
| struct work_atom { |
| struct list_head list; |
| enum thread_state state; |
| u64 sched_out_time; |
| u64 wake_up_time; |
| u64 sched_in_time; |
| u64 runtime; |
| }; |
| |
| struct work_atoms { |
| struct list_head work_list; |
| struct thread *thread; |
| struct rb_node node; |
| u64 max_lat; |
| u64 max_lat_at; |
| u64 total_lat; |
| u64 nb_atoms; |
| u64 total_runtime; |
| }; |
| |
| typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); |
| |
| static struct rb_root atom_root, sorted_atom_root; |
| |
| static u64 all_runtime; |
| static u64 all_count; |
| |
| |
| static u64 get_nsecs(void) |
| { |
| struct timespec ts; |
| |
| clock_gettime(CLOCK_MONOTONIC, &ts); |
| |
| return ts.tv_sec * 1000000000ULL + ts.tv_nsec; |
| } |
| |
| static void burn_nsecs(u64 nsecs) |
| { |
| u64 T0 = get_nsecs(), T1; |
| |
| do { |
| T1 = get_nsecs(); |
| } while (T1 + run_measurement_overhead < T0 + nsecs); |
| } |
| |
| static void sleep_nsecs(u64 nsecs) |
| { |
| struct timespec ts; |
| |
| ts.tv_nsec = nsecs % 999999999; |
| ts.tv_sec = nsecs / 999999999; |
| |
| nanosleep(&ts, NULL); |
| } |
| |
| static void calibrate_run_measurement_overhead(void) |
| { |
| u64 T0, T1, delta, min_delta = 1000000000ULL; |
| int i; |
| |
| for (i = 0; i < 10; i++) { |
| T0 = get_nsecs(); |
| burn_nsecs(0); |
| T1 = get_nsecs(); |
| delta = T1-T0; |
| min_delta = min(min_delta, delta); |
| } |
| run_measurement_overhead = min_delta; |
| |
| printf("run measurement overhead: %Ld nsecs\n", min_delta); |
| } |
| |
| static void calibrate_sleep_measurement_overhead(void) |
| { |
| u64 T0, T1, delta, min_delta = 1000000000ULL; |
| int i; |
| |
| for (i = 0; i < 10; i++) { |
| T0 = get_nsecs(); |
| sleep_nsecs(10000); |
| T1 = get_nsecs(); |
| delta = T1-T0; |
| min_delta = min(min_delta, delta); |
| } |
| min_delta -= 10000; |
| sleep_measurement_overhead = min_delta; |
| |
| printf("sleep measurement overhead: %Ld nsecs\n", min_delta); |
| } |
| |
| static struct sched_atom * |
| get_new_event(struct task_desc *task, u64 timestamp) |
| { |
| struct sched_atom *event = zalloc(sizeof(*event)); |
| unsigned long idx = task->nr_events; |
| size_t size; |
| |
| event->timestamp = timestamp; |
| event->nr = idx; |
| |
| task->nr_events++; |
| size = sizeof(struct sched_atom *) * task->nr_events; |
| task->atoms = realloc(task->atoms, size); |
| BUG_ON(!task->atoms); |
| |
| task->atoms[idx] = event; |
| |
| return event; |
| } |
| |
| static struct sched_atom *last_event(struct task_desc *task) |
| { |
| if (!task->nr_events) |
| return NULL; |
| |
| return task->atoms[task->nr_events - 1]; |
| } |
| |
| static void |
| add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration) |
| { |
| struct sched_atom *event, *curr_event = last_event(task); |
| |
| /* |
| * optimize an existing RUN event by merging this one |
| * to it: |
| */ |
| if (curr_event && curr_event->type == SCHED_EVENT_RUN) { |
| nr_run_events_optimized++; |
| curr_event->duration += duration; |
| return; |
| } |
| |
| event = get_new_event(task, timestamp); |
| |
| event->type = SCHED_EVENT_RUN; |
| event->duration = duration; |
| |
| nr_run_events++; |
| } |
| |
| static void |
| add_sched_event_wakeup(struct task_desc *task, u64 timestamp, |
| struct task_desc *wakee) |
| { |
| struct sched_atom *event, *wakee_event; |
| |
| event = get_new_event(task, timestamp); |
| event->type = SCHED_EVENT_WAKEUP; |
| event->wakee = wakee; |
| |
| wakee_event = last_event(wakee); |
| if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { |
| targetless_wakeups++; |
| return; |
| } |
| if (wakee_event->wait_sem) { |
| multitarget_wakeups++; |
| return; |
| } |
| |
| wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); |
| sem_init(wakee_event->wait_sem, 0, 0); |
| wakee_event->specific_wait = 1; |
| event->wait_sem = wakee_event->wait_sem; |
| |
| nr_wakeup_events++; |
| } |
| |
| static void |
| add_sched_event_sleep(struct task_desc *task, u64 timestamp, |
| u64 task_state __used) |
| { |
| struct sched_atom *event = get_new_event(task, timestamp); |
| |
| event->type = SCHED_EVENT_SLEEP; |
| |
| nr_sleep_events++; |
| } |
| |
| static struct task_desc *register_pid(unsigned long pid, const char *comm) |
| { |
| struct task_desc *task; |
| |
| BUG_ON(pid >= MAX_PID); |
| |
| task = pid_to_task[pid]; |
| |
| if (task) |
| return task; |
| |
| task = zalloc(sizeof(*task)); |
| task->pid = pid; |
| task->nr = nr_tasks; |
| strcpy(task->comm, comm); |
| /* |
| * every task starts in sleeping state - this gets ignored |
| * if there's no wakeup pointing to this sleep state: |
| */ |
| add_sched_event_sleep(task, 0, 0); |
| |
| pid_to_task[pid] = task; |
| nr_tasks++; |
| tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *)); |
| BUG_ON(!tasks); |
| tasks[task->nr] = task; |
| |
| if (verbose) |
| printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm); |
| |
| return task; |
| } |
| |
| |
| static void print_task_traces(void) |
| { |
| struct task_desc *task; |
| unsigned long i; |
| |
| for (i = 0; i < nr_tasks; i++) { |
| task = tasks[i]; |
| printf("task %6ld (%20s:%10ld), nr_events: %ld\n", |
| task->nr, task->comm, task->pid, task->nr_events); |
| } |
| } |
| |
| static void add_cross_task_wakeups(void) |
| { |
| struct task_desc *task1, *task2; |
| unsigned long i, j; |
| |
| for (i = 0; i < nr_tasks; i++) { |
| task1 = tasks[i]; |
| j = i + 1; |
| if (j == nr_tasks) |
| j = 0; |
| task2 = tasks[j]; |
| add_sched_event_wakeup(task1, 0, task2); |
| } |
| } |
| |
| static void |
| process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom) |
| { |
| int ret = 0; |
| u64 now; |
| long long delta; |
| |
| now = get_nsecs(); |
| delta = start_time + atom->timestamp - now; |
| |
| switch (atom->type) { |
| case SCHED_EVENT_RUN: |
| burn_nsecs(atom->duration); |
| break; |
| case SCHED_EVENT_SLEEP: |
| if (atom->wait_sem) |
| ret = sem_wait(atom->wait_sem); |
| BUG_ON(ret); |
| break; |
| case SCHED_EVENT_WAKEUP: |
| if (atom->wait_sem) |
| ret = sem_post(atom->wait_sem); |
| BUG_ON(ret); |
| break; |
| case SCHED_EVENT_MIGRATION: |
| break; |
| default: |
| BUG_ON(1); |
| } |
| } |
| |
| static u64 get_cpu_usage_nsec_parent(void) |
| { |
| struct rusage ru; |
| u64 sum; |
| int err; |
| |
| err = getrusage(RUSAGE_SELF, &ru); |
| BUG_ON(err); |
| |
| sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3; |
| sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3; |
| |
| return sum; |
| } |
| |
| static int self_open_counters(void) |
| { |
| struct perf_event_attr attr; |
| int fd; |
| |
| memset(&attr, 0, sizeof(attr)); |
| |
| attr.type = PERF_TYPE_SOFTWARE; |
| attr.config = PERF_COUNT_SW_TASK_CLOCK; |
| |
| fd = sys_perf_event_open(&attr, 0, -1, -1, 0); |
| |
| if (fd < 0) |
| die("Error: sys_perf_event_open() syscall returned" |
| "with %d (%s)\n", fd, strerror(errno)); |
| return fd; |
| } |
| |
| static u64 get_cpu_usage_nsec_self(int fd) |
| { |
| u64 runtime; |
| int ret; |
| |
| ret = read(fd, &runtime, sizeof(runtime)); |
| BUG_ON(ret != sizeof(runtime)); |
| |
| return runtime; |
| } |
| |
| static void *thread_func(void *ctx) |
| { |
| struct task_desc *this_task = ctx; |
| u64 cpu_usage_0, cpu_usage_1; |
| unsigned long i, ret; |
| char comm2[22]; |
| int fd; |
| |
| sprintf(comm2, ":%s", this_task->comm); |
| prctl(PR_SET_NAME, comm2); |
| fd = self_open_counters(); |
| |
| again: |
| ret = sem_post(&this_task->ready_for_work); |
| BUG_ON(ret); |
| ret = pthread_mutex_lock(&start_work_mutex); |
| BUG_ON(ret); |
| ret = pthread_mutex_unlock(&start_work_mutex); |
| BUG_ON(ret); |
| |
| cpu_usage_0 = get_cpu_usage_nsec_self(fd); |
| |
| for (i = 0; i < this_task->nr_events; i++) { |
| this_task->curr_event = i; |
| process_sched_event(this_task, this_task->atoms[i]); |
| } |
| |
| cpu_usage_1 = get_cpu_usage_nsec_self(fd); |
| this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; |
| ret = sem_post(&this_task->work_done_sem); |
| BUG_ON(ret); |
| |
| ret = pthread_mutex_lock(&work_done_wait_mutex); |
| BUG_ON(ret); |
| ret = pthread_mutex_unlock(&work_done_wait_mutex); |
| BUG_ON(ret); |
| |
| goto again; |
| } |
| |
| static void create_tasks(void) |
| { |
| struct task_desc *task; |
| pthread_attr_t attr; |
| unsigned long i; |
| int err; |
| |
| err = pthread_attr_init(&attr); |
| BUG_ON(err); |
| err = pthread_attr_setstacksize(&attr, (size_t)(16*1024)); |
| BUG_ON(err); |
| err = pthread_mutex_lock(&start_work_mutex); |
| BUG_ON(err); |
| err = pthread_mutex_lock(&work_done_wait_mutex); |
| BUG_ON(err); |
| for (i = 0; i < nr_tasks; i++) { |
| task = tasks[i]; |
| sem_init(&task->sleep_sem, 0, 0); |
| sem_init(&task->ready_for_work, 0, 0); |
| sem_init(&task->work_done_sem, 0, 0); |
| task->curr_event = 0; |
| err = pthread_create(&task->thread, &attr, thread_func, task); |
| BUG_ON(err); |
| } |
| } |
| |
| static void wait_for_tasks(void) |
| { |
| u64 cpu_usage_0, cpu_usage_1; |
| struct task_desc *task; |
| unsigned long i, ret; |
| |
| start_time = get_nsecs(); |
| cpu_usage = 0; |
| pthread_mutex_unlock(&work_done_wait_mutex); |
| |
| for (i = 0; i < nr_tasks; i++) { |
| task = tasks[i]; |
| ret = sem_wait(&task->ready_for_work); |
| BUG_ON(ret); |
| sem_init(&task->ready_for_work, 0, 0); |
| } |
| ret = pthread_mutex_lock(&work_done_wait_mutex); |
| BUG_ON(ret); |
| |
| cpu_usage_0 = get_cpu_usage_nsec_parent(); |
| |
| pthread_mutex_unlock(&start_work_mutex); |
| |
| for (i = 0; i < nr_tasks; i++) { |
| task = tasks[i]; |
| ret = sem_wait(&task->work_done_sem); |
| BUG_ON(ret); |
| sem_init(&task->work_done_sem, 0, 0); |
| cpu_usage += task->cpu_usage; |
| task->cpu_usage = 0; |
| } |
| |
| cpu_usage_1 = get_cpu_usage_nsec_parent(); |
| if (!runavg_cpu_usage) |
| runavg_cpu_usage = cpu_usage; |
| runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10; |
| |
| parent_cpu_usage = cpu_usage_1 - cpu_usage_0; |
| if (!runavg_parent_cpu_usage) |
| runavg_parent_cpu_usage = parent_cpu_usage; |
| runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 + |
| parent_cpu_usage)/10; |
| |
| ret = pthread_mutex_lock(&start_work_mutex); |
| BUG_ON(ret); |
| |
| for (i = 0; i < nr_tasks; i++) { |
| task = tasks[i]; |
| sem_init(&task->sleep_sem, 0, 0); |
| task->curr_event = 0; |
| } |
| } |
| |
| static void run_one_test(void) |
| { |
| u64 T0, T1, delta, avg_delta, fluct, std_dev; |
| |
| T0 = get_nsecs(); |
| wait_for_tasks(); |
| T1 = get_nsecs(); |
| |
| delta = T1 - T0; |
| sum_runtime += delta; |
| nr_runs++; |
| |
| avg_delta = sum_runtime / nr_runs; |
| if (delta < avg_delta) |
| fluct = avg_delta - delta; |
| else |
| fluct = delta - avg_delta; |
| sum_fluct += fluct; |
| std_dev = sum_fluct / nr_runs / sqrt(nr_runs); |
| if (!run_avg) |
| run_avg = delta; |
| run_avg = (run_avg*9 + delta)/10; |
| |
| printf("#%-3ld: %0.3f, ", |
| nr_runs, (double)delta/1000000.0); |
| |
| printf("ravg: %0.2f, ", |
| (double)run_avg/1e6); |
| |
| printf("cpu: %0.2f / %0.2f", |
| (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6); |
| |
| #if 0 |
| /* |
| * rusage statistics done by the parent, these are less |
| * accurate than the sum_exec_runtime based statistics: |
| */ |
| printf(" [%0.2f / %0.2f]", |
| (double)parent_cpu_usage/1e6, |
| (double)runavg_parent_cpu_usage/1e6); |
| #endif |
| |
| printf("\n"); |
| |
| if (nr_sleep_corrections) |
| printf(" (%ld sleep corrections)\n", nr_sleep_corrections); |
| nr_sleep_corrections = 0; |
| } |
| |
| static void test_calibrations(void) |
| { |
| u64 T0, T1; |
| |
| T0 = get_nsecs(); |
| burn_nsecs(1e6); |
| T1 = get_nsecs(); |
| |
| printf("the run test took %Ld nsecs\n", T1-T0); |
| |
| T0 = get_nsecs(); |
| sleep_nsecs(1e6); |
| T1 = get_nsecs(); |
| |
| printf("the sleep test took %Ld nsecs\n", T1-T0); |
| } |
| |
| #define FILL_FIELD(ptr, field, event, data) \ |
| ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data) |
| |
| #define FILL_ARRAY(ptr, array, event, data) \ |
| do { \ |
| void *__array = raw_field_ptr(event, #array, data); \ |
| memcpy(ptr.array, __array, sizeof(ptr.array)); \ |
| } while(0) |
| |
| #define FILL_COMMON_FIELDS(ptr, event, data) \ |
| do { \ |
| FILL_FIELD(ptr, common_type, event, data); \ |
| FILL_FIELD(ptr, common_flags, event, data); \ |
| FILL_FIELD(ptr, common_preempt_count, event, data); \ |
| FILL_FIELD(ptr, common_pid, event, data); \ |
| FILL_FIELD(ptr, common_tgid, event, data); \ |
| } while (0) |
| |
| |
| |
| struct trace_switch_event { |
| u32 size; |
| |
| u16 common_type; |
| u8 common_flags; |
| u8 common_preempt_count; |
| u32 common_pid; |
| u32 common_tgid; |
| |
| char prev_comm[16]; |
| u32 prev_pid; |
| u32 prev_prio; |
| u64 prev_state; |
| char next_comm[16]; |
| u32 next_pid; |
| u32 next_prio; |
| }; |
| |
| struct trace_runtime_event { |
| u32 size; |
| |
| u16 common_type; |
| u8 common_flags; |
| u8 common_preempt_count; |
| u32 common_pid; |
| u32 common_tgid; |
| |
| char comm[16]; |
| u32 pid; |
| u64 runtime; |
| u64 vruntime; |
| }; |
| |
| struct trace_wakeup_event { |
| u32 size; |
| |
| u16 common_type; |
| u8 common_flags; |
| u8 common_preempt_count; |
| u32 common_pid; |
| u32 common_tgid; |
| |
| char comm[16]; |
| u32 pid; |
| |
| u32 prio; |
| u32 success; |
| u32 cpu; |
| }; |
| |
| struct trace_fork_event { |
| u32 size; |
| |
| u16 common_type; |
| u8 common_flags; |
| u8 common_preempt_count; |
| u32 common_pid; |
| u32 common_tgid; |
| |
| char parent_comm[16]; |
| u32 parent_pid; |
| char child_comm[16]; |
| u32 child_pid; |
| }; |
| |
| struct trace_migrate_task_event { |
| u32 size; |
| |
| u16 common_type; |
| u8 common_flags; |
| u8 common_preempt_count; |
| u32 common_pid; |
| u32 common_tgid; |
| |
| char comm[16]; |
| u32 pid; |
| |
| u32 prio; |
| u32 cpu; |
| }; |
| |
| struct trace_sched_handler { |
| void (*switch_event)(struct trace_switch_event *, |
| struct perf_session *, |
| struct event *, |
| int cpu, |
| u64 timestamp, |
| struct thread *thread); |
| |
| void (*runtime_event)(struct trace_runtime_event *, |
| struct perf_session *, |
| struct event *, |
| int cpu, |
| u64 timestamp, |
| struct thread *thread); |
| |
| void (*wakeup_event)(struct trace_wakeup_event *, |
| struct perf_session *, |
| struct event *, |
| int cpu, |
| u64 timestamp, |
| struct thread *thread); |
| |
| void (*fork_event)(struct trace_fork_event *, |
| struct event *, |
| int cpu, |
| u64 timestamp, |
| struct thread *thread); |
| |
| void (*migrate_task_event)(struct trace_migrate_task_event *, |
| struct perf_session *session, |
| struct event *, |
| int cpu, |
| u64 timestamp, |
| struct thread *thread); |
| }; |
| |
| |
| static void |
| replay_wakeup_event(struct trace_wakeup_event *wakeup_event, |
| struct perf_session *session __used, |
| struct event *event, |
| int cpu __used, |
| u64 timestamp __used, |
| struct thread *thread __used) |
| { |
| struct task_desc *waker, *wakee; |
| |
| if (verbose) { |
| printf("sched_wakeup event %p\n", event); |
| |
| printf(" ... pid %d woke up %s/%d\n", |
| wakeup_event->common_pid, |
| wakeup_event->comm, |
| wakeup_event->pid); |
| } |
| |
| waker = register_pid(wakeup_event->common_pid, "<unknown>"); |
| wakee = register_pid(wakeup_event->pid, wakeup_event->comm); |
| |
| add_sched_event_wakeup(waker, timestamp, wakee); |
| } |
| |
| static u64 cpu_last_switched[MAX_CPUS]; |
| |
| static void |
| replay_switch_event(struct trace_switch_event *switch_event, |
| struct perf_session *session __used, |
| struct event *event, |
| int cpu, |
| u64 timestamp, |
| struct thread *thread __used) |
| { |
| struct task_desc *prev, *next; |
| u64 timestamp0; |
| s64 delta; |
| |
| if (verbose) |
| printf("sched_switch event %p\n", event); |
| |
| if (cpu >= MAX_CPUS || cpu < 0) |
| return; |
| |
| timestamp0 = cpu_last_switched[cpu]; |
| if (timestamp0) |
| delta = timestamp - timestamp0; |
| else |
| delta = 0; |
| |
| if (delta < 0) |
| die("hm, delta: %Ld < 0 ?\n", delta); |
| |
| if (verbose) { |
| printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n", |
| switch_event->prev_comm, switch_event->prev_pid, |
| switch_event->next_comm, switch_event->next_pid, |
| delta); |
| } |
| |
| prev = register_pid(switch_event->prev_pid, switch_event->prev_comm); |
| next = register_pid(switch_event->next_pid, switch_event->next_comm); |
| |
| cpu_last_switched[cpu] = timestamp; |
| |
| add_sched_event_run(prev, timestamp, delta); |
| add_sched_event_sleep(prev, timestamp, switch_event->prev_state); |
| } |
| |
| |
| static void |
| replay_fork_event(struct trace_fork_event *fork_event, |
| struct event *event, |
| int cpu __used, |
| u64 timestamp __used, |
| struct thread *thread __used) |
| { |
| if (verbose) { |
| printf("sched_fork event %p\n", event); |
| printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid); |
| printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid); |
| } |
| register_pid(fork_event->parent_pid, fork_event->parent_comm); |
| register_pid(fork_event->child_pid, fork_event->child_comm); |
| } |
| |
| static struct trace_sched_handler replay_ops = { |
| .wakeup_event = replay_wakeup_event, |
| .switch_event = replay_switch_event, |
| .fork_event = replay_fork_event, |
| }; |
| |
| struct sort_dimension { |
| const char *name; |
| sort_fn_t cmp; |
| struct list_head list; |
| }; |
| |
| static LIST_HEAD(cmp_pid); |
| |
| static int |
| thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) |
| { |
| struct sort_dimension *sort; |
| int ret = 0; |
| |
| BUG_ON(list_empty(list)); |
| |
| list_for_each_entry(sort, list, list) { |
| ret = sort->cmp(l, r); |
| if (ret) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static struct work_atoms * |
| thread_atoms_search(struct rb_root *root, struct thread *thread, |
| struct list_head *sort_list) |
| { |
| struct rb_node *node = root->rb_node; |
| struct work_atoms key = { .thread = thread }; |
| |
| while (node) { |
| struct work_atoms *atoms; |
| int cmp; |
| |
| atoms = container_of(node, struct work_atoms, node); |
| |
| cmp = thread_lat_cmp(sort_list, &key, atoms); |
| if (cmp > 0) |
| node = node->rb_left; |
| else if (cmp < 0) |
| node = node->rb_right; |
| else { |
| BUG_ON(thread != atoms->thread); |
| return atoms; |
| } |
| } |
| return NULL; |
| } |
| |
| static void |
| __thread_latency_insert(struct rb_root *root, struct work_atoms *data, |
| struct list_head *sort_list) |
| { |
| struct rb_node **new = &(root->rb_node), *parent = NULL; |
| |
| while (*new) { |
| struct work_atoms *this; |
| int cmp; |
| |
| this = container_of(*new, struct work_atoms, node); |
| parent = *new; |
| |
| cmp = thread_lat_cmp(sort_list, data, this); |
| |
| if (cmp > 0) |
| new = &((*new)->rb_left); |
| else |
| new = &((*new)->rb_right); |
| } |
| |
| rb_link_node(&data->node, parent, new); |
| rb_insert_color(&data->node, root); |
| } |
| |
| static void thread_atoms_insert(struct thread *thread) |
| { |
| struct work_atoms *atoms = zalloc(sizeof(*atoms)); |
| if (!atoms) |
| die("No memory"); |
| |
| atoms->thread = thread; |
| INIT_LIST_HEAD(&atoms->work_list); |
| __thread_latency_insert(&atom_root, atoms, &cmp_pid); |
| } |
| |
| static void |
| latency_fork_event(struct trace_fork_event *fork_event __used, |
| struct event *event __used, |
| int cpu __used, |
| u64 timestamp __used, |
| struct thread *thread __used) |
| { |
| /* should insert the newcomer */ |
| } |
| |
| __used |
| static char sched_out_state(struct trace_switch_event *switch_event) |
| { |
| const char *str = TASK_STATE_TO_CHAR_STR; |
| |
| return str[switch_event->prev_state]; |
| } |
| |
| static void |
| add_sched_out_event(struct work_atoms *atoms, |
| char run_state, |
| u64 timestamp) |
| { |
| struct work_atom *atom = zalloc(sizeof(*atom)); |
| if (!atom) |
| die("Non memory"); |
| |
| atom->sched_out_time = timestamp; |
| |
| if (run_state == 'R') { |
| atom->state = THREAD_WAIT_CPU; |
| atom->wake_up_time = atom->sched_out_time; |
| } |
| |
| list_add_tail(&atom->list, &atoms->work_list); |
| } |
| |
| static void |
| add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used) |
| { |
| struct work_atom *atom; |
| |
| BUG_ON(list_empty(&atoms->work_list)); |
| |
| atom = list_entry(atoms->work_list.prev, struct work_atom, list); |
| |
| atom->runtime += delta; |
| atoms->total_runtime += delta; |
| } |
| |
| static void |
| add_sched_in_event(struct work_atoms *atoms, u64 timestamp) |
| { |
| struct work_atom *atom; |
| u64 delta; |
| |
| if (list_empty(&atoms->work_list)) |
| return; |
| |
| atom = list_entry(atoms->work_list.prev, struct work_atom, list); |
| |
| if (atom->state != THREAD_WAIT_CPU) |
| return; |
| |
| if (timestamp < atom->wake_up_time) { |
| atom->state = THREAD_IGNORE; |
| return; |
| } |
| |
| atom->state = THREAD_SCHED_IN; |
| atom->sched_in_time = timestamp; |
| |
| delta = atom->sched_in_time - atom->wake_up_time; |
| atoms->total_lat += delta; |
| if (delta > atoms->max_lat) { |
| atoms->max_lat = delta; |
| atoms->max_lat_at = timestamp; |
| } |
| atoms->nb_atoms++; |
| } |
| |
| static void |
| latency_switch_event(struct trace_switch_event *switch_event, |
| struct perf_session *session, |
| struct event *event __used, |
| int cpu, |
| u64 timestamp, |
| struct thread *thread __used) |
| { |
| struct work_atoms *out_events, *in_events; |
| struct thread *sched_out, *sched_in; |
| u64 timestamp0; |
| s64 delta; |
| |
| BUG_ON(cpu >= MAX_CPUS || cpu < 0); |
| |
| timestamp0 = cpu_last_switched[cpu]; |
| cpu_last_switched[cpu] = timestamp; |
| if (timestamp0) |
| delta = timestamp - timestamp0; |
| else |
| delta = 0; |
| |
| if (delta < 0) |
| die("hm, delta: %Ld < 0 ?\n", delta); |
| |
| |
| sched_out = perf_session__findnew(session, switch_event->prev_pid); |
| sched_in = perf_session__findnew(session, switch_event->next_pid); |
| |
| out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid); |
| if (!out_events) { |
| thread_atoms_insert(sched_out); |
| out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid); |
| if (!out_events) |
| die("out-event: Internal tree error"); |
| } |
| add_sched_out_event(out_events, sched_out_state(switch_event), timestamp); |
| |
| in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid); |
| if (!in_events) { |
| thread_atoms_insert(sched_in); |
| in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid); |
| if (!in_events) |
| die("in-event: Internal tree error"); |
| /* |
| * Take came in we have not heard about yet, |
| * add in an initial atom in runnable state: |
| */ |
| add_sched_out_event(in_events, 'R', timestamp); |
| } |
| add_sched_in_event(in_events, timestamp); |
| } |
| |
| static void |
| latency_runtime_event(struct trace_runtime_event *runtime_event, |
| struct perf_session *session, |
| struct event *event __used, |
| int cpu, |
| u64 timestamp, |
| struct thread *this_thread __used) |
| { |
| struct thread *thread = perf_session__findnew(session, runtime_event->pid); |
| struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid); |
| |
| BUG_ON(cpu >= MAX_CPUS || cpu < 0); |
| if (!atoms) { |
| thread_atoms_insert(thread); |
| atoms = thread_atoms_search(&atom_root, thread, &cmp_pid); |
| if (!atoms) |
| die("in-event: Internal tree error"); |
| add_sched_out_event(atoms, 'R', timestamp); |
| } |
| |
| add_runtime_event(atoms, runtime_event->runtime, timestamp); |
| } |
| |
| static void |
| latency_wakeup_event(struct trace_wakeup_event *wakeup_event, |
| struct perf_session *session, |
| struct event *__event __used, |
| int cpu __used, |
| u64 timestamp, |
| struct thread *thread __used) |
| { |
| struct work_atoms *atoms; |
| struct work_atom *atom; |
| struct thread *wakee; |
| |
| /* Note for later, it may be interesting to observe the failing cases */ |
| if (!wakeup_event->success) |
| return; |
| |
| wakee = perf_session__findnew(session, wakeup_event->pid); |
| atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid); |
| if (!atoms) { |
| thread_atoms_insert(wakee); |
| atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid); |
| if (!atoms) |
| die("wakeup-event: Internal tree error"); |
| add_sched_out_event(atoms, 'S', timestamp); |
| } |
| |
| BUG_ON(list_empty(&atoms->work_list)); |
| |
| atom = list_entry(atoms->work_list.prev, struct work_atom, list); |
| |
| /* |
| * You WILL be missing events if you've recorded only |
| * one CPU, or are only looking at only one, so don't |
| * make useless noise. |
| */ |
| if (profile_cpu == -1 && atom->state != THREAD_SLEEPING) |
| nr_state_machine_bugs++; |
| |
| nr_timestamps++; |
| if (atom->sched_out_time > timestamp) { |
| nr_unordered_timestamps++; |
| return; |
| } |
| |
| atom->state = THREAD_WAIT_CPU; |
| atom->wake_up_time = timestamp; |
| } |
| |
| static void |
| latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event, |
| struct perf_session *session, |
| struct event *__event __used, |
| int cpu __used, |
| u64 timestamp, |
| struct thread *thread __used) |
| { |
| struct work_atoms *atoms; |
| struct work_atom *atom; |
| struct thread *migrant; |
| |
| /* |
| * Only need to worry about migration when profiling one CPU. |
| */ |
| if (profile_cpu == -1) |
| return; |
| |
| migrant = perf_session__findnew(session, migrate_task_event->pid); |
| atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid); |
| if (!atoms) { |
| thread_atoms_insert(migrant); |
| register_pid(migrant->pid, migrant->comm); |
| atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid); |
| if (!atoms) |
| die("migration-event: Internal tree error"); |
| add_sched_out_event(atoms, 'R', timestamp); |
| } |
| |
| BUG_ON(list_empty(&atoms->work_list)); |
| |
| atom = list_entry(atoms->work_list.prev, struct work_atom, list); |
| atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; |
| |
| nr_timestamps++; |
| |
| if (atom->sched_out_time > timestamp) |
| nr_unordered_timestamps++; |
| } |
| |
| static struct trace_sched_handler lat_ops = { |
| .wakeup_event = latency_wakeup_event, |
| .switch_event = latency_switch_event, |
| .runtime_event = latency_runtime_event, |
| .fork_event = latency_fork_event, |
| .migrate_task_event = latency_migrate_task_event, |
| }; |
| |
| static void output_lat_thread(struct work_atoms *work_list) |
| { |
| int i; |
| int ret; |
| u64 avg; |
| |
| if (!work_list->nb_atoms) |
| return; |
| /* |
| * Ignore idle threads: |
| */ |
| if (!strcmp(work_list->thread->comm, "swapper")) |
| return; |
| |
| all_runtime += work_list->total_runtime; |
| all_count += work_list->nb_atoms; |
| |
| ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid); |
| |
| for (i = 0; i < 24 - ret; i++) |
| printf(" "); |
| |
| avg = work_list->total_lat / work_list->nb_atoms; |
| |
| printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n", |
| (double)work_list->total_runtime / 1e6, |
| work_list->nb_atoms, (double)avg / 1e6, |
| (double)work_list->max_lat / 1e6, |
| (double)work_list->max_lat_at / 1e9); |
| } |
| |
| static int pid_cmp(struct work_atoms *l, struct work_atoms *r) |
| { |
| if (l->thread->pid < r->thread->pid) |
| return -1; |
| if (l->thread->pid > r->thread->pid) |
| return 1; |
| |
| return 0; |
| } |
| |
| static struct sort_dimension pid_sort_dimension = { |
| .name = "pid", |
| .cmp = pid_cmp, |
| }; |
| |
| static int avg_cmp(struct work_atoms *l, struct work_atoms *r) |
| { |
| u64 avgl, avgr; |
| |
| if (!l->nb_atoms) |
| return -1; |
| |
| if (!r->nb_atoms) |
| return 1; |
| |
| avgl = l->total_lat / l->nb_atoms; |
| avgr = r->total_lat / r->nb_atoms; |
| |
| if (avgl < avgr) |
| return -1; |
| if (avgl > avgr) |
| return 1; |
| |
| return 0; |
| } |
| |
| static struct sort_dimension avg_sort_dimension = { |
| .name = "avg", |
| .cmp = avg_cmp, |
| }; |
| |
| static int max_cmp(struct work_atoms *l, struct work_atoms *r) |
| { |
| if (l->max_lat < r->max_lat) |
| return -1; |
| if (l->max_lat > r->max_lat) |
| return 1; |
| |
| return 0; |
| } |
| |
| static struct sort_dimension max_sort_dimension = { |
| .name = "max", |
| .cmp = max_cmp, |
| }; |
| |
| static int switch_cmp(struct work_atoms *l, struct work_atoms *r) |
| { |
| if (l->nb_atoms < r->nb_atoms) |
| return -1; |
| if (l->nb_atoms > r->nb_atoms) |
| return 1; |
| |
| return 0; |
| } |
| |
| static struct sort_dimension switch_sort_dimension = { |
| .name = "switch", |
| .cmp = switch_cmp, |
| }; |
| |
| static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) |
| { |
| if (l->total_runtime < r->total_runtime) |
| return -1; |
| if (l->total_runtime > r->total_runtime) |
| return 1; |
| |
| return 0; |
| } |
| |
| static struct sort_dimension runtime_sort_dimension = { |
| .name = "runtime", |
| .cmp = runtime_cmp, |
| }; |
| |
| static struct sort_dimension *available_sorts[] = { |
| &pid_sort_dimension, |
| &avg_sort_dimension, |
| &max_sort_dimension, |
| &switch_sort_dimension, |
| &runtime_sort_dimension, |
| }; |
| |
| #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *)) |
| |
| static LIST_HEAD(sort_list); |
| |
| static int sort_dimension__add(const char *tok, struct list_head *list) |
| { |
| int i; |
| |
| for (i = 0; i < NB_AVAILABLE_SORTS; i++) { |
| if (!strcmp(available_sorts[i]->name, tok)) { |
| list_add_tail(&available_sorts[i]->list, list); |
| |
| return 0; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static void setup_sorting(void); |
| |
| static void sort_lat(void) |
| { |
| struct rb_node *node; |
| |
| for (;;) { |
| struct work_atoms *data; |
| node = rb_first(&atom_root); |
| if (!node) |
| break; |
| |
| rb_erase(node, &atom_root); |
| data = rb_entry(node, struct work_atoms, node); |
| __thread_latency_insert(&sorted_atom_root, data, &sort_list); |
| } |
| } |
| |
| static struct trace_sched_handler *trace_handler; |
| |
| static void |
| process_sched_wakeup_event(void *data, struct perf_session *session, |
| struct event *event, |
| int cpu __used, |
| u64 timestamp __used, |
| struct thread *thread __used) |
| { |
| struct trace_wakeup_event wakeup_event; |
| |
| FILL_COMMON_FIELDS(wakeup_event, event, data); |
| |
| FILL_ARRAY(wakeup_event, comm, event, data); |
| FILL_FIELD(wakeup_event, pid, event, data); |
| FILL_FIELD(wakeup_event, prio, event, data); |
| FILL_FIELD(wakeup_event, success, event, data); |
| FILL_FIELD(wakeup_event, cpu, event, data); |
| |
| if (trace_handler->wakeup_event) |
| trace_handler->wakeup_event(&wakeup_event, session, event, |
| cpu, timestamp, thread); |
| } |
| |
| /* |
| * Track the current task - that way we can know whether there's any |
| * weird events, such as a task being switched away that is not current. |
| */ |
| static int max_cpu; |
| |
| static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 }; |
| |
| static struct thread *curr_thread[MAX_CPUS]; |
| |
| static char next_shortname1 = 'A'; |
| static char next_shortname2 = '0'; |
| |
| static void |
| map_switch_event(struct trace_switch_event *switch_event, |
| struct perf_session *session, |
| struct event *event __used, |
| int this_cpu, |
| u64 timestamp, |
| struct thread *thread __used) |
| { |
| struct thread *sched_out, *sched_in; |
| int new_shortname; |
| u64 timestamp0; |
| s64 delta; |
| int cpu; |
| |
| BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0); |
| |
| if (this_cpu > max_cpu) |
| max_cpu = this_cpu; |
| |
| timestamp0 = cpu_last_switched[this_cpu]; |
| cpu_last_switched[this_cpu] = timestamp; |
| if (timestamp0) |
| delta = timestamp - timestamp0; |
| else |
| delta = 0; |
| |
| if (delta < 0) |
| die("hm, delta: %Ld < 0 ?\n", delta); |
| |
| |
| sched_out = perf_session__findnew(session, switch_event->prev_pid); |
| sched_in = perf_session__findnew(session, switch_event->next_pid); |
| |
| curr_thread[this_cpu] = sched_in; |
| |
| printf(" "); |
| |
| new_shortname = 0; |
| if (!sched_in->shortname[0]) { |
| sched_in->shortname[0] = next_shortname1; |
| sched_in->shortname[1] = next_shortname2; |
| |
| if (next_shortname1 < 'Z') { |
| next_shortname1++; |
| } else { |
| next_shortname1='A'; |
| if (next_shortname2 < '9') { |
| next_shortname2++; |
| } else { |
| next_shortname2='0'; |
| } |
| } |
| new_shortname = 1; |
| } |
| |
| for (cpu = 0; cpu <= max_cpu; cpu++) { |
| if (cpu != this_cpu) |
| printf(" "); |
| else |
| printf("*"); |
| |
| if (curr_thread[cpu]) { |
| if (curr_thread[cpu]->pid) |
| printf("%2s ", curr_thread[cpu]->shortname); |
| else |
| printf(". "); |
| } else |
| printf(" "); |
| } |
| |
| printf(" %12.6f secs ", (double)timestamp/1e9); |
| if (new_shortname) { |
| printf("%s => %s:%d\n", |
| sched_in->shortname, sched_in->comm, sched_in->pid); |
| } else { |
| printf("\n"); |
| } |
| } |
| |
| |
| static void |
| process_sched_switch_event(void *data, struct perf_session *session, |
| struct event *event, |
| int this_cpu, |
| u64 timestamp __used, |
| struct thread *thread __used) |
| { |
| struct trace_switch_event switch_event; |
| |
| FILL_COMMON_FIELDS(switch_event, event, data); |
| |
| FILL_ARRAY(switch_event, prev_comm, event, data); |
| FILL_FIELD(switch_event, prev_pid, event, data); |
| FILL_FIELD(switch_event, prev_prio, event, data); |
| FILL_FIELD(switch_event, prev_state, event, data); |
| FILL_ARRAY(switch_event, next_comm, event, data); |
| FILL_FIELD(switch_event, next_pid, event, data); |
| FILL_FIELD(switch_event, next_prio, event, data); |
| |
| if (curr_pid[this_cpu] != (u32)-1) { |
| /* |
| * Are we trying to switch away a PID that is |
| * not current? |
| */ |
| if (curr_pid[this_cpu] != switch_event.prev_pid) |
| nr_context_switch_bugs++; |
| } |
| if (trace_handler->switch_event) |
| trace_handler->switch_event(&switch_event, session, event, |
| this_cpu, timestamp, thread); |
| |
| curr_pid[this_cpu] = switch_event.next_pid; |
| } |
| |
| static void |
| process_sched_runtime_event(void *data, struct perf_session *session, |
| struct event *event, |
| int cpu __used, |
| u64 timestamp __used, |
| struct thread *thread __used) |
| { |
| struct trace_runtime_event runtime_event; |
| |
| FILL_ARRAY(runtime_event, comm, event, data); |
| FILL_FIELD(runtime_event, pid, event, data); |
| FILL_FIELD(runtime_event, runtime, event, data); |
| FILL_FIELD(runtime_event, vruntime, event, data); |
| |
| if (trace_handler->runtime_event) |
| trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread); |
| } |
| |
| static void |
| process_sched_fork_event(void *data, |
| struct event *event, |
| int cpu __used, |
| u64 timestamp __used, |
| struct thread *thread __used) |
| { |
| struct trace_fork_event fork_event; |
| |
| FILL_COMMON_FIELDS(fork_event, event, data); |
| |
| FILL_ARRAY(fork_event, parent_comm, event, data); |
| FILL_FIELD(fork_event, parent_pid, event, data); |
| FILL_ARRAY(fork_event, child_comm, event, data); |
| FILL_FIELD(fork_event, child_pid, event, data); |
| |
| if (trace_handler->fork_event) |
| trace_handler->fork_event(&fork_event, event, |
| cpu, timestamp, thread); |
| } |
| |
| static void |
| process_sched_exit_event(struct event *event, |
| int cpu __used, |
| u64 timestamp __used, |
| struct thread *thread __used) |
| { |
| if (verbose) |
| printf("sched_exit event %p\n", event); |
| } |
| |
| static void |
| process_sched_migrate_task_event(void *data, struct perf_session *session, |
| struct event *event, |
| int cpu __used, |
| u64 timestamp __used, |
| struct thread *thread __used) |
| { |
| struct trace_migrate_task_event migrate_task_event; |
| |
| FILL_COMMON_FIELDS(migrate_task_event, event, data); |
| |
| FILL_ARRAY(migrate_task_event, comm, event, data); |
| FILL_FIELD(migrate_task_event, pid, event, data); |
| FILL_FIELD(migrate_task_event, prio, event, data); |
| FILL_FIELD(migrate_task_event, cpu, event, data); |
| |
| if (trace_handler->migrate_task_event) |
| trace_handler->migrate_task_event(&migrate_task_event, session, |
| event, cpu, timestamp, thread); |
| } |
| |
| static void |
| process_raw_event(event_t *raw_event __used, struct perf_session *session, |
| void *data, int cpu, u64 timestamp, struct thread *thread) |
| { |
| struct event *event; |
| int type; |
| |
| |
| type = trace_parse_common_type(data); |
| event = trace_find_event(type); |
| |
| if (!strcmp(event->name, "sched_switch")) |
| process_sched_switch_event(data, session, event, cpu, timestamp, thread); |
| if (!strcmp(event->name, "sched_stat_runtime")) |
| process_sched_runtime_event(data, session, event, cpu, timestamp, thread); |
| if (!strcmp(event->name, "sched_wakeup")) |
| process_sched_wakeup_event(data, session, event, cpu, timestamp, thread); |
| if (!strcmp(event->name, "sched_wakeup_new")) |
| process_sched_wakeup_event(data, session, event, cpu, timestamp, thread); |
| if (!strcmp(event->name, "sched_process_fork")) |
| process_sched_fork_event(data, event, cpu, timestamp, thread); |
| if (!strcmp(event->name, "sched_process_exit")) |
| process_sched_exit_event(event, cpu, timestamp, thread); |
| if (!strcmp(event->name, "sched_migrate_task")) |
| process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread); |
| } |
| |
| static int process_sample_event(event_t *event, struct perf_session *session) |
| { |
| struct sample_data data; |
| struct thread *thread; |
| |
| if (!(session->sample_type & PERF_SAMPLE_RAW)) |
| return 0; |
| |
| memset(&data, 0, sizeof(data)); |
| data.time = -1; |
| data.cpu = -1; |
| data.period = -1; |
| |
| event__parse_sample(event, session->sample_type, &data); |
| |
| dump_printf("(IP, %d): %d/%d: %#Lx period: %Ld\n", event->header.misc, |
| data.pid, data.tid, data.ip, data.period); |
| |
| thread = perf_session__findnew(session, data.pid); |
| if (thread == NULL) { |
| pr_debug("problem processing %d event, skipping it.\n", |
| event->header.type); |
| return -1; |
| } |
| |
| dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid); |
| |
| if (profile_cpu != -1 && profile_cpu != (int)data.cpu) |
| return 0; |
| |
| process_raw_event(event, session, data.raw_data, data.cpu, data.time, thread); |
| |
| return 0; |
| } |
| |
| static struct perf_event_ops event_ops = { |
| .sample = process_sample_event, |
| .comm = event__process_comm, |
| .lost = event__process_lost, |
| .ordered_samples = true, |
| }; |
| |
| static int read_events(void) |
| { |
| int err = -EINVAL; |
| struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0, false); |
| if (session == NULL) |
| return -ENOMEM; |
| |
| if (perf_session__has_traces(session, "record -R")) { |
| err = perf_session__process_events(session, &event_ops); |
| nr_events = session->hists.stats.nr_events[0]; |
| nr_lost_events = session->hists.stats.total_lost; |
| nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST]; |
| } |
| |
| perf_session__delete(session); |
| return err; |
| } |
| |
| static void print_bad_events(void) |
| { |
| if (nr_unordered_timestamps && nr_timestamps) { |
| printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", |
| (double)nr_unordered_timestamps/(double)nr_timestamps*100.0, |
| nr_unordered_timestamps, nr_timestamps); |
| } |
| if (nr_lost_events && nr_events) { |
| printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", |
| (double)nr_lost_events/(double)nr_events*100.0, |
| nr_lost_events, nr_events, nr_lost_chunks); |
| } |
| if (nr_state_machine_bugs && nr_timestamps) { |
| printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)", |
| (double)nr_state_machine_bugs/(double)nr_timestamps*100.0, |
| nr_state_machine_bugs, nr_timestamps); |
| if (nr_lost_events) |
| printf(" (due to lost events?)"); |
| printf("\n"); |
| } |
| if (nr_context_switch_bugs && nr_timestamps) { |
| printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", |
| (double)nr_context_switch_bugs/(double)nr_timestamps*100.0, |
| nr_context_switch_bugs, nr_timestamps); |
| if (nr_lost_events) |
| printf(" (due to lost events?)"); |
| printf("\n"); |
| } |
| } |
| |
| static void __cmd_lat(void) |
| { |
| struct rb_node *next; |
| |
| setup_pager(); |
| read_events(); |
| sort_lat(); |
| |
| printf("\n ---------------------------------------------------------------------------------------------------------------\n"); |
| printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n"); |
| printf(" ---------------------------------------------------------------------------------------------------------------\n"); |
| |
| next = rb_first(&sorted_atom_root); |
| |
| while (next) { |
| struct work_atoms *work_list; |
| |
| work_list = rb_entry(next, struct work_atoms, node); |
| output_lat_thread(work_list); |
| next = rb_next(next); |
| } |
| |
| printf(" -----------------------------------------------------------------------------------------\n"); |
| printf(" TOTAL: |%11.3f ms |%9Ld |\n", |
| (double)all_runtime/1e6, all_count); |
| |
| printf(" ---------------------------------------------------\n"); |
| |
| print_bad_events(); |
| printf("\n"); |
| |
| } |
| |
| static struct trace_sched_handler map_ops = { |
| .wakeup_event = NULL, |
| .switch_event = map_switch_event, |
| .runtime_event = NULL, |
| .fork_event = NULL, |
| }; |
| |
| static void __cmd_map(void) |
| { |
| max_cpu = sysconf(_SC_NPROCESSORS_CONF); |
| |
| setup_pager(); |
| read_events(); |
| print_bad_events(); |
| } |
| |
| static void __cmd_replay(void) |
| { |
| unsigned long i; |
| |
| calibrate_run_measurement_overhead(); |
| calibrate_sleep_measurement_overhead(); |
| |
| test_calibrations(); |
| |
| read_events(); |
| |
| printf("nr_run_events: %ld\n", nr_run_events); |
| printf("nr_sleep_events: %ld\n", nr_sleep_events); |
| printf("nr_wakeup_events: %ld\n", nr_wakeup_events); |
| |
| if (targetless_wakeups) |
| printf("target-less wakeups: %ld\n", targetless_wakeups); |
| if (multitarget_wakeups) |
| printf("multi-target wakeups: %ld\n", multitarget_wakeups); |
| if (nr_run_events_optimized) |
| printf("run atoms optimized: %ld\n", |
| nr_run_events_optimized); |
| |
| print_task_traces(); |
| add_cross_task_wakeups(); |
| |
| create_tasks(); |
| printf("------------------------------------------------------------\n"); |
| for (i = 0; i < replay_repeat; i++) |
| run_one_test(); |
| } |
| |
| |
| static const char * const sched_usage[] = { |
| "perf sched [<options>] {record|latency|map|replay|trace}", |
| NULL |
| }; |
| |
| static const struct option sched_options[] = { |
| OPT_STRING('i', "input", &input_name, "file", |
| "input file name"), |
| OPT_INCR('v', "verbose", &verbose, |
| "be more verbose (show symbol address, etc)"), |
| OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, |
| "dump raw trace in ASCII"), |
| OPT_END() |
| }; |
| |
| static const char * const latency_usage[] = { |
| "perf sched latency [<options>]", |
| NULL |
| }; |
| |
| static const struct option latency_options[] = { |
| OPT_STRING('s', "sort", &sort_order, "key[,key2...]", |
| "sort by key(s): runtime, switch, avg, max"), |
| OPT_INCR('v', "verbose", &verbose, |
| "be more verbose (show symbol address, etc)"), |
| OPT_INTEGER('C', "CPU", &profile_cpu, |
| "CPU to profile on"), |
| OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, |
| "dump raw trace in ASCII"), |
| OPT_END() |
| }; |
| |
| static const char * const replay_usage[] = { |
| "perf sched replay [<options>]", |
| NULL |
| }; |
| |
| static const struct option replay_options[] = { |
| OPT_UINTEGER('r', "repeat", &replay_repeat, |
| "repeat the workload replay N times (-1: infinite)"), |
| OPT_INCR('v', "verbose", &verbose, |
| "be more verbose (show symbol address, etc)"), |
| OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, |
| "dump raw trace in ASCII"), |
| OPT_END() |
| }; |
| |
| static void setup_sorting(void) |
| { |
| char *tmp, *tok, *str = strdup(sort_order); |
| |
| for (tok = strtok_r(str, ", ", &tmp); |
| tok; tok = strtok_r(NULL, ", ", &tmp)) { |
| if (sort_dimension__add(tok, &sort_list) < 0) { |
| error("Unknown --sort key: `%s'", tok); |
| usage_with_options(latency_usage, latency_options); |
| } |
| } |
| |
| free(str); |
| |
| sort_dimension__add("pid", &cmp_pid); |
| } |
| |
| static const char *record_args[] = { |
| "record", |
| "-a", |
| "-R", |
| "-f", |
| "-m", "1024", |
| "-c", "1", |
| "-e", "sched:sched_switch:r", |
| "-e", "sched:sched_stat_wait:r", |
| "-e", "sched:sched_stat_sleep:r", |
| "-e", "sched:sched_stat_iowait:r", |
| "-e", "sched:sched_stat_runtime:r", |
| "-e", "sched:sched_process_exit:r", |
| "-e", "sched:sched_process_fork:r", |
| "-e", "sched:sched_wakeup:r", |
| "-e", "sched:sched_migrate_task:r", |
| }; |
| |
| static int __cmd_record(int argc, const char **argv) |
| { |
| unsigned int rec_argc, i, j; |
| const char **rec_argv; |
| |
| rec_argc = ARRAY_SIZE(record_args) + argc - 1; |
| rec_argv = calloc(rec_argc + 1, sizeof(char *)); |
| |
| for (i = 0; i < ARRAY_SIZE(record_args); i++) |
| rec_argv[i] = strdup(record_args[i]); |
| |
| for (j = 1; j < (unsigned int)argc; j++, i++) |
| rec_argv[i] = argv[j]; |
| |
| BUG_ON(i != rec_argc); |
| |
| return cmd_record(i, rec_argv, NULL); |
| } |
| |
| int cmd_sched(int argc, const char **argv, const char *prefix __used) |
| { |
| argc = parse_options(argc, argv, sched_options, sched_usage, |
| PARSE_OPT_STOP_AT_NON_OPTION); |
| if (!argc) |
| usage_with_options(sched_usage, sched_options); |
| |
| /* |
| * Aliased to 'perf trace' for now: |
| */ |
| if (!strcmp(argv[0], "trace")) |
| return cmd_trace(argc, argv, prefix); |
| |
| symbol__init(); |
| if (!strncmp(argv[0], "rec", 3)) { |
| return __cmd_record(argc, argv); |
| } else if (!strncmp(argv[0], "lat", 3)) { |
| trace_handler = &lat_ops; |
| if (argc > 1) { |
| argc = parse_options(argc, argv, latency_options, latency_usage, 0); |
| if (argc) |
| usage_with_options(latency_usage, latency_options); |
| } |
| setup_sorting(); |
| __cmd_lat(); |
| } else if (!strcmp(argv[0], "map")) { |
| trace_handler = &map_ops; |
| setup_sorting(); |
| __cmd_map(); |
| } else if (!strncmp(argv[0], "rep", 3)) { |
| trace_handler = &replay_ops; |
| if (argc) { |
| argc = parse_options(argc, argv, replay_options, replay_usage, 0); |
| if (argc) |
| usage_with_options(replay_usage, replay_options); |
| } |
| __cmd_replay(); |
| } else { |
| usage_with_options(sched_usage, sched_options); |
| } |
| |
| return 0; |
| } |