| #define DEBUG |
| |
| #include <linux/wait.h> |
| #include <linux/ptrace.h> |
| |
| #include <asm/spu.h> |
| #include <asm/spu_priv1.h> |
| #include <asm/io.h> |
| #include <asm/unistd.h> |
| |
| #include "spufs.h" |
| |
| /* interrupt-level stop callback function. */ |
| void spufs_stop_callback(struct spu *spu, int irq) |
| { |
| struct spu_context *ctx = spu->ctx; |
| |
| /* |
| * It should be impossible to preempt a context while an exception |
| * is being processed, since the context switch code is specially |
| * coded to deal with interrupts ... But, just in case, sanity check |
| * the context pointer. It is OK to return doing nothing since |
| * the exception will be regenerated when the context is resumed. |
| */ |
| if (ctx) { |
| /* Copy exception arguments into module specific structure */ |
| switch(irq) { |
| case 0 : |
| ctx->csa.class_0_pending = spu->class_0_pending; |
| ctx->csa.class_0_dar = spu->class_0_dar; |
| break; |
| case 1 : |
| ctx->csa.class_1_dsisr = spu->class_1_dsisr; |
| ctx->csa.class_1_dar = spu->class_1_dar; |
| break; |
| case 2 : |
| break; |
| } |
| |
| /* ensure that the exception status has hit memory before a |
| * thread waiting on the context's stop queue is woken */ |
| smp_wmb(); |
| |
| wake_up_all(&ctx->stop_wq); |
| } |
| } |
| |
| int spu_stopped(struct spu_context *ctx, u32 *stat) |
| { |
| u64 dsisr; |
| u32 stopped; |
| |
| stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | |
| SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; |
| |
| top: |
| *stat = ctx->ops->status_read(ctx); |
| if (*stat & stopped) { |
| /* |
| * If the spu hasn't finished stopping, we need to |
| * re-read the register to get the stopped value. |
| */ |
| if (*stat & SPU_STATUS_RUNNING) |
| goto top; |
| return 1; |
| } |
| |
| if (test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags)) |
| return 1; |
| |
| dsisr = ctx->csa.class_1_dsisr; |
| if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED)) |
| return 1; |
| |
| if (ctx->csa.class_0_pending) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int spu_setup_isolated(struct spu_context *ctx) |
| { |
| int ret; |
| u64 __iomem *mfc_cntl; |
| u64 sr1; |
| u32 status; |
| unsigned long timeout; |
| const u32 status_loading = SPU_STATUS_RUNNING |
| | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS; |
| |
| ret = -ENODEV; |
| if (!isolated_loader) |
| goto out; |
| |
| /* |
| * We need to exclude userspace access to the context. |
| * |
| * To protect against memory access we invalidate all ptes |
| * and make sure the pagefault handlers block on the mutex. |
| */ |
| spu_unmap_mappings(ctx); |
| |
| mfc_cntl = &ctx->spu->priv2->mfc_control_RW; |
| |
| /* purge the MFC DMA queue to ensure no spurious accesses before we |
| * enter kernel mode */ |
| timeout = jiffies + HZ; |
| out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST); |
| while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK) |
| != MFC_CNTL_PURGE_DMA_COMPLETE) { |
| if (time_after(jiffies, timeout)) { |
| printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n", |
| __func__); |
| ret = -EIO; |
| goto out; |
| } |
| cond_resched(); |
| } |
| |
| /* put the SPE in kernel mode to allow access to the loader */ |
| sr1 = spu_mfc_sr1_get(ctx->spu); |
| sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK; |
| spu_mfc_sr1_set(ctx->spu, sr1); |
| |
| /* start the loader */ |
| ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32); |
| ctx->ops->signal2_write(ctx, |
| (unsigned long)isolated_loader & 0xffffffff); |
| |
| ctx->ops->runcntl_write(ctx, |
| SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE); |
| |
| ret = 0; |
| timeout = jiffies + HZ; |
| while (((status = ctx->ops->status_read(ctx)) & status_loading) == |
| status_loading) { |
| if (time_after(jiffies, timeout)) { |
| printk(KERN_ERR "%s: timeout waiting for loader\n", |
| __func__); |
| ret = -EIO; |
| goto out_drop_priv; |
| } |
| cond_resched(); |
| } |
| |
| if (!(status & SPU_STATUS_RUNNING)) { |
| /* If isolated LOAD has failed: run SPU, we will get a stop-and |
| * signal later. */ |
| pr_debug("%s: isolated LOAD failed\n", __func__); |
| ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE); |
| ret = -EACCES; |
| goto out_drop_priv; |
| } |
| |
| if (!(status & SPU_STATUS_ISOLATED_STATE)) { |
| /* This isn't allowed by the CBEA, but check anyway */ |
| pr_debug("%s: SPU fell out of isolated mode?\n", __func__); |
| ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP); |
| ret = -EINVAL; |
| goto out_drop_priv; |
| } |
| |
| out_drop_priv: |
| /* Finished accessing the loader. Drop kernel mode */ |
| sr1 |= MFC_STATE1_PROBLEM_STATE_MASK; |
| spu_mfc_sr1_set(ctx->spu, sr1); |
| |
| out: |
| return ret; |
| } |
| |
| static int spu_run_init(struct spu_context *ctx, u32 *npc) |
| { |
| unsigned long runcntl = SPU_RUNCNTL_RUNNABLE; |
| int ret; |
| |
| spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); |
| |
| /* |
| * NOSCHED is synchronous scheduling with respect to the caller. |
| * The caller waits for the context to be loaded. |
| */ |
| if (ctx->flags & SPU_CREATE_NOSCHED) { |
| if (ctx->state == SPU_STATE_SAVED) { |
| ret = spu_activate(ctx, 0); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| /* |
| * Apply special setup as required. |
| */ |
| if (ctx->flags & SPU_CREATE_ISOLATE) { |
| if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) { |
| ret = spu_setup_isolated(ctx); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * If userspace has set the runcntrl register (eg, to |
| * issue an isolated exit), we need to re-set it here |
| */ |
| runcntl = ctx->ops->runcntl_read(ctx) & |
| (SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE); |
| if (runcntl == 0) |
| runcntl = SPU_RUNCNTL_RUNNABLE; |
| } |
| |
| if (ctx->flags & SPU_CREATE_NOSCHED) { |
| spuctx_switch_state(ctx, SPU_UTIL_USER); |
| ctx->ops->runcntl_write(ctx, runcntl); |
| } else { |
| unsigned long privcntl; |
| |
| if (test_thread_flag(TIF_SINGLESTEP)) |
| privcntl = SPU_PRIVCNTL_MODE_SINGLE_STEP; |
| else |
| privcntl = SPU_PRIVCNTL_MODE_NORMAL; |
| |
| ctx->ops->npc_write(ctx, *npc); |
| ctx->ops->privcntl_write(ctx, privcntl); |
| ctx->ops->runcntl_write(ctx, runcntl); |
| |
| if (ctx->state == SPU_STATE_SAVED) { |
| ret = spu_activate(ctx, 0); |
| if (ret) |
| return ret; |
| } else { |
| spuctx_switch_state(ctx, SPU_UTIL_USER); |
| } |
| } |
| |
| set_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags); |
| return 0; |
| } |
| |
| static int spu_run_fini(struct spu_context *ctx, u32 *npc, |
| u32 *status) |
| { |
| int ret = 0; |
| |
| spu_del_from_rq(ctx); |
| |
| *status = ctx->ops->status_read(ctx); |
| *npc = ctx->ops->npc_read(ctx); |
| |
| spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); |
| clear_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags); |
| spu_release(ctx); |
| |
| if (signal_pending(current)) |
| ret = -ERESTARTSYS; |
| |
| return ret; |
| } |
| |
| /* |
| * SPU syscall restarting is tricky because we violate the basic |
| * assumption that the signal handler is running on the interrupted |
| * thread. Here instead, the handler runs on PowerPC user space code, |
| * while the syscall was called from the SPU. |
| * This means we can only do a very rough approximation of POSIX |
| * signal semantics. |
| */ |
| static int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret, |
| unsigned int *npc) |
| { |
| int ret; |
| |
| switch (*spu_ret) { |
| case -ERESTARTSYS: |
| case -ERESTARTNOINTR: |
| /* |
| * Enter the regular syscall restarting for |
| * sys_spu_run, then restart the SPU syscall |
| * callback. |
| */ |
| *npc -= 8; |
| ret = -ERESTARTSYS; |
| break; |
| case -ERESTARTNOHAND: |
| case -ERESTART_RESTARTBLOCK: |
| /* |
| * Restart block is too hard for now, just return -EINTR |
| * to the SPU. |
| * ERESTARTNOHAND comes from sys_pause, we also return |
| * -EINTR from there. |
| * Assume that we need to be restarted ourselves though. |
| */ |
| *spu_ret = -EINTR; |
| ret = -ERESTARTSYS; |
| break; |
| default: |
| printk(KERN_WARNING "%s: unexpected return code %ld\n", |
| __func__, *spu_ret); |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| static int spu_process_callback(struct spu_context *ctx) |
| { |
| struct spu_syscall_block s; |
| u32 ls_pointer, npc; |
| void __iomem *ls; |
| long spu_ret; |
| int ret; |
| |
| /* get syscall block from local store */ |
| npc = ctx->ops->npc_read(ctx) & ~3; |
| ls = (void __iomem *)ctx->ops->get_ls(ctx); |
| ls_pointer = in_be32(ls + npc); |
| if (ls_pointer > (LS_SIZE - sizeof(s))) |
| return -EFAULT; |
| memcpy_fromio(&s, ls + ls_pointer, sizeof(s)); |
| |
| /* do actual syscall without pinning the spu */ |
| ret = 0; |
| spu_ret = -ENOSYS; |
| npc += 4; |
| |
| if (s.nr_ret < __NR_syscalls) { |
| spu_release(ctx); |
| /* do actual system call from here */ |
| spu_ret = spu_sys_callback(&s); |
| if (spu_ret <= -ERESTARTSYS) { |
| ret = spu_handle_restartsys(ctx, &spu_ret, &npc); |
| } |
| mutex_lock(&ctx->state_mutex); |
| if (ret == -ERESTARTSYS) |
| return ret; |
| } |
| |
| /* need to re-get the ls, as it may have changed when we released the |
| * spu */ |
| ls = (void __iomem *)ctx->ops->get_ls(ctx); |
| |
| /* write result, jump over indirect pointer */ |
| memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret)); |
| ctx->ops->npc_write(ctx, npc); |
| ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE); |
| return ret; |
| } |
| |
| long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event) |
| { |
| int ret; |
| struct spu *spu; |
| u32 status; |
| |
| if (mutex_lock_interruptible(&ctx->run_mutex)) |
| return -ERESTARTSYS; |
| |
| ctx->event_return = 0; |
| |
| ret = spu_acquire(ctx); |
| if (ret) |
| goto out_unlock; |
| |
| spu_enable_spu(ctx); |
| |
| spu_update_sched_info(ctx); |
| |
| ret = spu_run_init(ctx, npc); |
| if (ret) { |
| spu_release(ctx); |
| goto out; |
| } |
| |
| do { |
| ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status)); |
| if (unlikely(ret)) { |
| /* |
| * This is nasty: we need the state_mutex for all the |
| * bookkeeping even if the syscall was interrupted by |
| * a signal. ewww. |
| */ |
| mutex_lock(&ctx->state_mutex); |
| break; |
| } |
| spu = ctx->spu; |
| if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE, |
| &ctx->sched_flags))) { |
| if (!(status & SPU_STATUS_STOPPED_BY_STOP)) { |
| spu_switch_notify(spu, ctx); |
| continue; |
| } |
| } |
| |
| spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); |
| |
| if ((status & SPU_STATUS_STOPPED_BY_STOP) && |
| (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) { |
| ret = spu_process_callback(ctx); |
| if (ret) |
| break; |
| status &= ~SPU_STATUS_STOPPED_BY_STOP; |
| } |
| ret = spufs_handle_class1(ctx); |
| if (ret) |
| break; |
| |
| ret = spufs_handle_class0(ctx); |
| if (ret) |
| break; |
| |
| if (signal_pending(current)) |
| ret = -ERESTARTSYS; |
| } while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP | |
| SPU_STATUS_STOPPED_BY_HALT | |
| SPU_STATUS_SINGLE_STEP))); |
| |
| spu_disable_spu(ctx); |
| ret = spu_run_fini(ctx, npc, &status); |
| spu_yield(ctx); |
| |
| spu_switch_log_notify(NULL, ctx, SWITCH_LOG_EXIT, status); |
| |
| if ((status & SPU_STATUS_STOPPED_BY_STOP) && |
| (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100)) |
| ctx->stats.libassist++; |
| |
| if ((ret == 0) || |
| ((ret == -ERESTARTSYS) && |
| ((status & SPU_STATUS_STOPPED_BY_HALT) || |
| (status & SPU_STATUS_SINGLE_STEP) || |
| ((status & SPU_STATUS_STOPPED_BY_STOP) && |
| (status >> SPU_STOP_STATUS_SHIFT != 0x2104))))) |
| ret = status; |
| |
| /* Note: we don't need to force_sig SIGTRAP on single-step |
| * since we have TIF_SINGLESTEP set, thus the kernel will do |
| * it upon return from the syscall anyawy |
| */ |
| if (unlikely(status & SPU_STATUS_SINGLE_STEP)) |
| ret = -ERESTARTSYS; |
| |
| else if (unlikely((status & SPU_STATUS_STOPPED_BY_STOP) |
| && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff)) { |
| force_sig(SIGTRAP, current); |
| ret = -ERESTARTSYS; |
| } |
| |
| out: |
| *event = ctx->event_return; |
| out_unlock: |
| mutex_unlock(&ctx->run_mutex); |
| return ret; |
| } |