| /* |
| * PowerMac G5 SMU driver |
| * |
| * Copyright 2004 J. Mayer <l_indien@magic.fr> |
| * Copyright 2005 Benjamin Herrenschmidt, IBM Corp. |
| * |
| * Released under the term of the GNU GPL v2. |
| */ |
| |
| /* |
| * For now, this driver includes: |
| * - RTC get & set |
| * - reboot & shutdown commands |
| * all synchronous with IRQ disabled (ugh) |
| * |
| * TODO: |
| * rework in a way the PMU driver works, that is asynchronous |
| * with a queue of commands. I'll do that as soon as I have an |
| * SMU based machine at hand. Some more cleanup is needed too, |
| * like maybe fitting it into a platform device, etc... |
| * Also check what's up with cache coherency, and if we really |
| * can't do better than flushing the cache, maybe build a table |
| * of command len/reply len like the PMU driver to only flush |
| * what is actually necessary. |
| * --BenH. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/device.h> |
| #include <linux/dmapool.h> |
| #include <linux/bootmem.h> |
| #include <linux/vmalloc.h> |
| #include <linux/highmem.h> |
| #include <linux/jiffies.h> |
| #include <linux/interrupt.h> |
| #include <linux/rtc.h> |
| |
| #include <asm/byteorder.h> |
| #include <asm/io.h> |
| #include <asm/prom.h> |
| #include <asm/machdep.h> |
| #include <asm/pmac_feature.h> |
| #include <asm/smu.h> |
| #include <asm/sections.h> |
| #include <asm/abs_addr.h> |
| |
| #define DEBUG_SMU 1 |
| |
| #ifdef DEBUG_SMU |
| #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0) |
| #else |
| #define DPRINTK(fmt, args...) do { } while (0) |
| #endif |
| |
| /* |
| * This is the command buffer passed to the SMU hardware |
| */ |
| struct smu_cmd_buf { |
| u8 cmd; |
| u8 length; |
| u8 data[0x0FFE]; |
| }; |
| |
| struct smu_device { |
| spinlock_t lock; |
| struct device_node *of_node; |
| int db_ack; /* doorbell ack GPIO */ |
| int db_req; /* doorbell req GPIO */ |
| u32 __iomem *db_buf; /* doorbell buffer */ |
| struct smu_cmd_buf *cmd_buf; /* command buffer virtual */ |
| u32 cmd_buf_abs; /* command buffer absolute */ |
| }; |
| |
| /* |
| * I don't think there will ever be more than one SMU, so |
| * for now, just hard code that |
| */ |
| static struct smu_device *smu; |
| |
| /* |
| * SMU low level communication stuff |
| */ |
| static inline int smu_cmd_stat(struct smu_cmd_buf *cmd_buf, u8 cmd_ack) |
| { |
| rmb(); |
| return cmd_buf->cmd == cmd_ack && cmd_buf->length != 0; |
| } |
| |
| static inline u8 smu_save_ack_cmd(struct smu_cmd_buf *cmd_buf) |
| { |
| return (~cmd_buf->cmd) & 0xff; |
| } |
| |
| static void smu_send_cmd(struct smu_device *dev) |
| { |
| /* SMU command buf is currently cacheable, we need a physical |
| * address. This isn't exactly a DMA mapping here, I suspect |
| * the SMU is actually communicating with us via i2c to the |
| * northbridge or the CPU to access RAM. |
| */ |
| writel(dev->cmd_buf_abs, dev->db_buf); |
| |
| /* Ring the SMU doorbell */ |
| pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, dev->db_req, 4); |
| pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, dev->db_req, 4); |
| } |
| |
| static int smu_cmd_done(struct smu_device *dev) |
| { |
| unsigned long wait = 0; |
| int gpio; |
| |
| /* Check the SMU doorbell */ |
| do { |
| gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, |
| NULL, dev->db_ack); |
| if ((gpio & 7) == 7) |
| return 0; |
| udelay(100); |
| } while(++wait < 10000); |
| |
| printk(KERN_ERR "SMU timeout !\n"); |
| return -ENXIO; |
| } |
| |
| static int smu_do_cmd(struct smu_device *dev) |
| { |
| int rc; |
| u8 cmd_ack; |
| |
| DPRINTK("SMU do_cmd %02x len=%d %02x\n", |
| dev->cmd_buf->cmd, dev->cmd_buf->length, |
| dev->cmd_buf->data[0]); |
| |
| cmd_ack = smu_save_ack_cmd(dev->cmd_buf); |
| |
| /* Clear cmd_buf cache lines */ |
| flush_inval_dcache_range((unsigned long)dev->cmd_buf, |
| ((unsigned long)dev->cmd_buf) + |
| sizeof(struct smu_cmd_buf)); |
| smu_send_cmd(dev); |
| rc = smu_cmd_done(dev); |
| if (rc == 0) |
| rc = smu_cmd_stat(dev->cmd_buf, cmd_ack) ? 0 : -1; |
| |
| DPRINTK("SMU do_cmd %02x len=%d %02x => %d (%02x)\n", |
| dev->cmd_buf->cmd, dev->cmd_buf->length, |
| dev->cmd_buf->data[0], rc, cmd_ack); |
| |
| return rc; |
| } |
| |
| /* RTC low level commands */ |
| static inline int bcd2hex (int n) |
| { |
| return (((n & 0xf0) >> 4) * 10) + (n & 0xf); |
| } |
| |
| static inline int hex2bcd (int n) |
| { |
| return ((n / 10) << 4) + (n % 10); |
| } |
| |
| #if 0 |
| static inline void smu_fill_set_pwrup_timer_cmd(struct smu_cmd_buf *cmd_buf) |
| { |
| cmd_buf->cmd = 0x8e; |
| cmd_buf->length = 8; |
| cmd_buf->data[0] = 0x00; |
| memset(cmd_buf->data + 1, 0, 7); |
| } |
| |
| static inline void smu_fill_get_pwrup_timer_cmd(struct smu_cmd_buf *cmd_buf) |
| { |
| cmd_buf->cmd = 0x8e; |
| cmd_buf->length = 1; |
| cmd_buf->data[0] = 0x01; |
| } |
| |
| static inline void smu_fill_dis_pwrup_timer_cmd(struct smu_cmd_buf *cmd_buf) |
| { |
| cmd_buf->cmd = 0x8e; |
| cmd_buf->length = 1; |
| cmd_buf->data[0] = 0x02; |
| } |
| #endif |
| |
| static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf, |
| struct rtc_time *time) |
| { |
| cmd_buf->cmd = 0x8e; |
| cmd_buf->length = 8; |
| cmd_buf->data[0] = 0x80; |
| cmd_buf->data[1] = hex2bcd(time->tm_sec); |
| cmd_buf->data[2] = hex2bcd(time->tm_min); |
| cmd_buf->data[3] = hex2bcd(time->tm_hour); |
| cmd_buf->data[4] = time->tm_wday; |
| cmd_buf->data[5] = hex2bcd(time->tm_mday); |
| cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1; |
| cmd_buf->data[7] = hex2bcd(time->tm_year - 100); |
| } |
| |
| static inline void smu_fill_get_rtc_cmd(struct smu_cmd_buf *cmd_buf) |
| { |
| cmd_buf->cmd = 0x8e; |
| cmd_buf->length = 1; |
| cmd_buf->data[0] = 0x81; |
| } |
| |
| static void smu_parse_get_rtc_reply(struct smu_cmd_buf *cmd_buf, |
| struct rtc_time *time) |
| { |
| time->tm_sec = bcd2hex(cmd_buf->data[0]); |
| time->tm_min = bcd2hex(cmd_buf->data[1]); |
| time->tm_hour = bcd2hex(cmd_buf->data[2]); |
| time->tm_wday = bcd2hex(cmd_buf->data[3]); |
| time->tm_mday = bcd2hex(cmd_buf->data[4]); |
| time->tm_mon = bcd2hex(cmd_buf->data[5]) - 1; |
| time->tm_year = bcd2hex(cmd_buf->data[6]) + 100; |
| } |
| |
| int smu_get_rtc_time(struct rtc_time *time) |
| { |
| unsigned long flags; |
| int rc; |
| |
| if (smu == NULL) |
| return -ENODEV; |
| |
| memset(time, 0, sizeof(struct rtc_time)); |
| spin_lock_irqsave(&smu->lock, flags); |
| smu_fill_get_rtc_cmd(smu->cmd_buf); |
| rc = smu_do_cmd(smu); |
| if (rc == 0) |
| smu_parse_get_rtc_reply(smu->cmd_buf, time); |
| spin_unlock_irqrestore(&smu->lock, flags); |
| |
| return rc; |
| } |
| |
| int smu_set_rtc_time(struct rtc_time *time) |
| { |
| unsigned long flags; |
| int rc; |
| |
| if (smu == NULL) |
| return -ENODEV; |
| |
| spin_lock_irqsave(&smu->lock, flags); |
| smu_fill_set_rtc_cmd(smu->cmd_buf, time); |
| rc = smu_do_cmd(smu); |
| spin_unlock_irqrestore(&smu->lock, flags); |
| |
| return rc; |
| } |
| |
| void smu_shutdown(void) |
| { |
| const unsigned char *command = "SHUTDOWN"; |
| unsigned long flags; |
| |
| if (smu == NULL) |
| return; |
| |
| spin_lock_irqsave(&smu->lock, flags); |
| smu->cmd_buf->cmd = 0xaa; |
| smu->cmd_buf->length = strlen(command); |
| strcpy(smu->cmd_buf->data, command); |
| smu_do_cmd(smu); |
| for (;;) |
| ; |
| spin_unlock_irqrestore(&smu->lock, flags); |
| } |
| |
| void smu_restart(void) |
| { |
| const unsigned char *command = "RESTART"; |
| unsigned long flags; |
| |
| if (smu == NULL) |
| return; |
| |
| spin_lock_irqsave(&smu->lock, flags); |
| smu->cmd_buf->cmd = 0xaa; |
| smu->cmd_buf->length = strlen(command); |
| strcpy(smu->cmd_buf->data, command); |
| smu_do_cmd(smu); |
| for (;;) |
| ; |
| spin_unlock_irqrestore(&smu->lock, flags); |
| } |
| |
| int smu_present(void) |
| { |
| return smu != NULL; |
| } |
| |
| |
| int smu_init (void) |
| { |
| struct device_node *np; |
| u32 *data; |
| |
| np = of_find_node_by_type(NULL, "smu"); |
| if (np == NULL) |
| return -ENODEV; |
| |
| if (smu_cmdbuf_abs == 0) { |
| printk(KERN_ERR "SMU: Command buffer not allocated !\n"); |
| return -EINVAL; |
| } |
| |
| smu = alloc_bootmem(sizeof(struct smu_device)); |
| if (smu == NULL) |
| return -ENOMEM; |
| memset(smu, 0, sizeof(*smu)); |
| |
| spin_lock_init(&smu->lock); |
| smu->of_node = np; |
| /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a |
| * 32 bits value safely |
| */ |
| smu->cmd_buf_abs = (u32)smu_cmdbuf_abs; |
| smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs); |
| |
| np = of_find_node_by_name(NULL, "smu-doorbell"); |
| if (np == NULL) { |
| printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n"); |
| goto fail; |
| } |
| data = (u32 *)get_property(np, "reg", NULL); |
| of_node_put(np); |
| if (data == NULL) { |
| printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n"); |
| goto fail; |
| } |
| |
| /* Current setup has one doorbell GPIO that does both doorbell |
| * and ack. GPIOs are at 0x50, best would be to find that out |
| * in the device-tree though. |
| */ |
| smu->db_req = 0x50 + *data; |
| smu->db_ack = 0x50 + *data; |
| |
| /* Doorbell buffer is currently hard-coded, I didn't find a proper |
| * device-tree entry giving the address. Best would probably to use |
| * an offset for K2 base though, but let's do it that way for now. |
| */ |
| smu->db_buf = ioremap(0x8000860c, 0x1000); |
| if (smu->db_buf == NULL) { |
| printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n"); |
| goto fail; |
| } |
| |
| sys_ctrler = SYS_CTRLER_SMU; |
| return 0; |
| |
| fail: |
| smu = NULL; |
| return -ENXIO; |
| |
| } |