| /************************************************************************** |
| * |
| * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| **************************************************************************/ |
| /* |
| * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> |
| */ |
| |
| #include "ttm/ttm_bo_driver.h" |
| #include "ttm/ttm_placement.h" |
| #include <linux/io.h> |
| #include <linux/highmem.h> |
| #include <linux/wait.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/module.h> |
| |
| void ttm_bo_free_old_node(struct ttm_buffer_object *bo) |
| { |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| |
| if (old_mem->mm_node) { |
| spin_lock(&bo->glob->lru_lock); |
| drm_mm_put_block(old_mem->mm_node); |
| spin_unlock(&bo->glob->lru_lock); |
| } |
| old_mem->mm_node = NULL; |
| } |
| |
| int ttm_bo_move_ttm(struct ttm_buffer_object *bo, |
| bool evict, bool no_wait_reserve, |
| bool no_wait_gpu, struct ttm_mem_reg *new_mem) |
| { |
| struct ttm_tt *ttm = bo->ttm; |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| int ret; |
| |
| if (old_mem->mem_type != TTM_PL_SYSTEM) { |
| ttm_tt_unbind(ttm); |
| ttm_bo_free_old_node(bo); |
| ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM, |
| TTM_PL_MASK_MEM); |
| old_mem->mem_type = TTM_PL_SYSTEM; |
| } |
| |
| ret = ttm_tt_set_placement_caching(ttm, new_mem->placement); |
| if (unlikely(ret != 0)) |
| return ret; |
| |
| if (new_mem->mem_type != TTM_PL_SYSTEM) { |
| ret = ttm_tt_bind(ttm, new_mem); |
| if (unlikely(ret != 0)) |
| return ret; |
| } |
| |
| *old_mem = *new_mem; |
| new_mem->mm_node = NULL; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_move_ttm); |
| |
| int ttm_mem_io_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) |
| { |
| int ret; |
| |
| if (!mem->bus.io_reserved) { |
| mem->bus.io_reserved = true; |
| ret = bdev->driver->io_mem_reserve(bdev, mem); |
| if (unlikely(ret != 0)) |
| return ret; |
| } |
| return 0; |
| } |
| |
| void ttm_mem_io_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) |
| { |
| if (bdev->driver->io_mem_reserve) { |
| if (mem->bus.io_reserved) { |
| mem->bus.io_reserved = false; |
| bdev->driver->io_mem_free(bdev, mem); |
| } |
| } |
| } |
| |
| int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, |
| void **virtual) |
| { |
| int ret; |
| void *addr; |
| |
| *virtual = NULL; |
| ret = ttm_mem_io_reserve(bdev, mem); |
| if (ret || !mem->bus.is_iomem) |
| return ret; |
| |
| if (mem->bus.addr) { |
| addr = mem->bus.addr; |
| } else { |
| if (mem->placement & TTM_PL_FLAG_WC) |
| addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size); |
| else |
| addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size); |
| if (!addr) { |
| ttm_mem_io_free(bdev, mem); |
| return -ENOMEM; |
| } |
| } |
| *virtual = addr; |
| return 0; |
| } |
| |
| void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, |
| void *virtual) |
| { |
| struct ttm_mem_type_manager *man; |
| |
| man = &bdev->man[mem->mem_type]; |
| |
| if (virtual && mem->bus.addr == NULL) |
| iounmap(virtual); |
| ttm_mem_io_free(bdev, mem); |
| } |
| |
| static int ttm_copy_io_page(void *dst, void *src, unsigned long page) |
| { |
| uint32_t *dstP = |
| (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT)); |
| uint32_t *srcP = |
| (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT)); |
| |
| int i; |
| for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i) |
| iowrite32(ioread32(srcP++), dstP++); |
| return 0; |
| } |
| |
| static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src, |
| unsigned long page, |
| pgprot_t prot) |
| { |
| struct page *d = ttm_tt_get_page(ttm, page); |
| void *dst; |
| |
| if (!d) |
| return -ENOMEM; |
| |
| src = (void *)((unsigned long)src + (page << PAGE_SHIFT)); |
| |
| #ifdef CONFIG_X86 |
| dst = kmap_atomic_prot(d, KM_USER0, prot); |
| #else |
| if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) |
| dst = vmap(&d, 1, 0, prot); |
| else |
| dst = kmap(d); |
| #endif |
| if (!dst) |
| return -ENOMEM; |
| |
| memcpy_fromio(dst, src, PAGE_SIZE); |
| |
| #ifdef CONFIG_X86 |
| kunmap_atomic(dst, KM_USER0); |
| #else |
| if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) |
| vunmap(dst); |
| else |
| kunmap(d); |
| #endif |
| |
| return 0; |
| } |
| |
| static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst, |
| unsigned long page, |
| pgprot_t prot) |
| { |
| struct page *s = ttm_tt_get_page(ttm, page); |
| void *src; |
| |
| if (!s) |
| return -ENOMEM; |
| |
| dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT)); |
| #ifdef CONFIG_X86 |
| src = kmap_atomic_prot(s, KM_USER0, prot); |
| #else |
| if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) |
| src = vmap(&s, 1, 0, prot); |
| else |
| src = kmap(s); |
| #endif |
| if (!src) |
| return -ENOMEM; |
| |
| memcpy_toio(dst, src, PAGE_SIZE); |
| |
| #ifdef CONFIG_X86 |
| kunmap_atomic(src, KM_USER0); |
| #else |
| if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) |
| vunmap(src); |
| else |
| kunmap(s); |
| #endif |
| |
| return 0; |
| } |
| |
| int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, |
| bool evict, bool no_wait_reserve, bool no_wait_gpu, |
| struct ttm_mem_reg *new_mem) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type]; |
| struct ttm_tt *ttm = bo->ttm; |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| struct ttm_mem_reg old_copy = *old_mem; |
| void *old_iomap; |
| void *new_iomap; |
| int ret; |
| unsigned long i; |
| unsigned long page; |
| unsigned long add = 0; |
| int dir; |
| |
| ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap); |
| if (ret) |
| return ret; |
| ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap); |
| if (ret) |
| goto out; |
| |
| if (old_iomap == NULL && new_iomap == NULL) |
| goto out2; |
| if (old_iomap == NULL && ttm == NULL) |
| goto out2; |
| |
| add = 0; |
| dir = 1; |
| |
| if ((old_mem->mem_type == new_mem->mem_type) && |
| (new_mem->mm_node->start < |
| old_mem->mm_node->start + old_mem->mm_node->size)) { |
| dir = -1; |
| add = new_mem->num_pages - 1; |
| } |
| |
| for (i = 0; i < new_mem->num_pages; ++i) { |
| page = i * dir + add; |
| if (old_iomap == NULL) { |
| pgprot_t prot = ttm_io_prot(old_mem->placement, |
| PAGE_KERNEL); |
| ret = ttm_copy_ttm_io_page(ttm, new_iomap, page, |
| prot); |
| } else if (new_iomap == NULL) { |
| pgprot_t prot = ttm_io_prot(new_mem->placement, |
| PAGE_KERNEL); |
| ret = ttm_copy_io_ttm_page(ttm, old_iomap, page, |
| prot); |
| } else |
| ret = ttm_copy_io_page(new_iomap, old_iomap, page); |
| if (ret) |
| goto out1; |
| } |
| mb(); |
| out2: |
| ttm_bo_free_old_node(bo); |
| |
| *old_mem = *new_mem; |
| new_mem->mm_node = NULL; |
| |
| if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (ttm != NULL)) { |
| ttm_tt_unbind(ttm); |
| ttm_tt_destroy(ttm); |
| bo->ttm = NULL; |
| } |
| |
| out1: |
| ttm_mem_reg_iounmap(bdev, new_mem, new_iomap); |
| out: |
| ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap); |
| return ret; |
| } |
| EXPORT_SYMBOL(ttm_bo_move_memcpy); |
| |
| static void ttm_transfered_destroy(struct ttm_buffer_object *bo) |
| { |
| kfree(bo); |
| } |
| |
| /** |
| * ttm_buffer_object_transfer |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, |
| * holding the data of @bo with the old placement. |
| * |
| * This is a utility function that may be called after an accelerated move |
| * has been scheduled. A new buffer object is created as a placeholder for |
| * the old data while it's being copied. When that buffer object is idle, |
| * it can be destroyed, releasing the space of the old placement. |
| * Returns: |
| * !0: Failure. |
| */ |
| |
| static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, |
| struct ttm_buffer_object **new_obj) |
| { |
| struct ttm_buffer_object *fbo; |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_bo_driver *driver = bdev->driver; |
| |
| fbo = kzalloc(sizeof(*fbo), GFP_KERNEL); |
| if (!fbo) |
| return -ENOMEM; |
| |
| *fbo = *bo; |
| |
| /** |
| * Fix up members that we shouldn't copy directly: |
| * TODO: Explicit member copy would probably be better here. |
| */ |
| |
| spin_lock_init(&fbo->lock); |
| init_waitqueue_head(&fbo->event_queue); |
| INIT_LIST_HEAD(&fbo->ddestroy); |
| INIT_LIST_HEAD(&fbo->lru); |
| INIT_LIST_HEAD(&fbo->swap); |
| fbo->vm_node = NULL; |
| |
| fbo->sync_obj = driver->sync_obj_ref(bo->sync_obj); |
| kref_init(&fbo->list_kref); |
| kref_init(&fbo->kref); |
| fbo->destroy = &ttm_transfered_destroy; |
| |
| *new_obj = fbo; |
| return 0; |
| } |
| |
| pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp) |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| if (caching_flags & TTM_PL_FLAG_WC) |
| tmp = pgprot_writecombine(tmp); |
| else if (boot_cpu_data.x86 > 3) |
| tmp = pgprot_noncached(tmp); |
| |
| #elif defined(__powerpc__) |
| if (!(caching_flags & TTM_PL_FLAG_CACHED)) { |
| pgprot_val(tmp) |= _PAGE_NO_CACHE; |
| if (caching_flags & TTM_PL_FLAG_UNCACHED) |
| pgprot_val(tmp) |= _PAGE_GUARDED; |
| } |
| #endif |
| #if defined(__ia64__) |
| if (caching_flags & TTM_PL_FLAG_WC) |
| tmp = pgprot_writecombine(tmp); |
| else |
| tmp = pgprot_noncached(tmp); |
| #endif |
| #if defined(__sparc__) |
| if (!(caching_flags & TTM_PL_FLAG_CACHED)) |
| tmp = pgprot_noncached(tmp); |
| #endif |
| return tmp; |
| } |
| EXPORT_SYMBOL(ttm_io_prot); |
| |
| static int ttm_bo_ioremap(struct ttm_buffer_object *bo, |
| unsigned long offset, |
| unsigned long size, |
| struct ttm_bo_kmap_obj *map) |
| { |
| struct ttm_mem_reg *mem = &bo->mem; |
| |
| if (bo->mem.bus.addr) { |
| map->bo_kmap_type = ttm_bo_map_premapped; |
| map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset); |
| } else { |
| map->bo_kmap_type = ttm_bo_map_iomap; |
| if (mem->placement & TTM_PL_FLAG_WC) |
| map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset, |
| size); |
| else |
| map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset, |
| size); |
| } |
| return (!map->virtual) ? -ENOMEM : 0; |
| } |
| |
| static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, |
| unsigned long start_page, |
| unsigned long num_pages, |
| struct ttm_bo_kmap_obj *map) |
| { |
| struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot; |
| struct ttm_tt *ttm = bo->ttm; |
| struct page *d; |
| int i; |
| |
| BUG_ON(!ttm); |
| if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) { |
| /* |
| * We're mapping a single page, and the desired |
| * page protection is consistent with the bo. |
| */ |
| |
| map->bo_kmap_type = ttm_bo_map_kmap; |
| map->page = ttm_tt_get_page(ttm, start_page); |
| map->virtual = kmap(map->page); |
| } else { |
| /* |
| * Populate the part we're mapping; |
| */ |
| for (i = start_page; i < start_page + num_pages; ++i) { |
| d = ttm_tt_get_page(ttm, i); |
| if (!d) |
| return -ENOMEM; |
| } |
| |
| /* |
| * We need to use vmap to get the desired page protection |
| * or to make the buffer object look contiguous. |
| */ |
| prot = (mem->placement & TTM_PL_FLAG_CACHED) ? |
| PAGE_KERNEL : |
| ttm_io_prot(mem->placement, PAGE_KERNEL); |
| map->bo_kmap_type = ttm_bo_map_vmap; |
| map->virtual = vmap(ttm->pages + start_page, num_pages, |
| 0, prot); |
| } |
| return (!map->virtual) ? -ENOMEM : 0; |
| } |
| |
| int ttm_bo_kmap(struct ttm_buffer_object *bo, |
| unsigned long start_page, unsigned long num_pages, |
| struct ttm_bo_kmap_obj *map) |
| { |
| unsigned long offset, size; |
| int ret; |
| |
| BUG_ON(!list_empty(&bo->swap)); |
| map->virtual = NULL; |
| map->bo = bo; |
| if (num_pages > bo->num_pages) |
| return -EINVAL; |
| if (start_page > bo->num_pages) |
| return -EINVAL; |
| #if 0 |
| if (num_pages > 1 && !DRM_SUSER(DRM_CURPROC)) |
| return -EPERM; |
| #endif |
| ret = ttm_mem_io_reserve(bo->bdev, &bo->mem); |
| if (ret) |
| return ret; |
| if (!bo->mem.bus.is_iomem) { |
| return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); |
| } else { |
| offset = start_page << PAGE_SHIFT; |
| size = num_pages << PAGE_SHIFT; |
| return ttm_bo_ioremap(bo, offset, size, map); |
| } |
| } |
| EXPORT_SYMBOL(ttm_bo_kmap); |
| |
| void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) |
| { |
| if (!map->virtual) |
| return; |
| switch (map->bo_kmap_type) { |
| case ttm_bo_map_iomap: |
| iounmap(map->virtual); |
| ttm_mem_io_free(map->bo->bdev, &map->bo->mem); |
| break; |
| case ttm_bo_map_vmap: |
| vunmap(map->virtual); |
| break; |
| case ttm_bo_map_kmap: |
| kunmap(map->page); |
| break; |
| case ttm_bo_map_premapped: |
| break; |
| default: |
| BUG(); |
| } |
| map->virtual = NULL; |
| map->page = NULL; |
| } |
| EXPORT_SYMBOL(ttm_bo_kunmap); |
| |
| int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, |
| void *sync_obj, |
| void *sync_obj_arg, |
| bool evict, bool no_wait_reserve, |
| bool no_wait_gpu, |
| struct ttm_mem_reg *new_mem) |
| { |
| struct ttm_bo_device *bdev = bo->bdev; |
| struct ttm_bo_driver *driver = bdev->driver; |
| struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type]; |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| int ret; |
| struct ttm_buffer_object *ghost_obj; |
| void *tmp_obj = NULL; |
| |
| spin_lock(&bo->lock); |
| if (bo->sync_obj) { |
| tmp_obj = bo->sync_obj; |
| bo->sync_obj = NULL; |
| } |
| bo->sync_obj = driver->sync_obj_ref(sync_obj); |
| bo->sync_obj_arg = sync_obj_arg; |
| if (evict) { |
| ret = ttm_bo_wait(bo, false, false, false); |
| spin_unlock(&bo->lock); |
| if (tmp_obj) |
| driver->sync_obj_unref(&tmp_obj); |
| if (ret) |
| return ret; |
| |
| ttm_bo_free_old_node(bo); |
| if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && |
| (bo->ttm != NULL)) { |
| ttm_tt_unbind(bo->ttm); |
| ttm_tt_destroy(bo->ttm); |
| bo->ttm = NULL; |
| } |
| } else { |
| /** |
| * This should help pipeline ordinary buffer moves. |
| * |
| * Hang old buffer memory on a new buffer object, |
| * and leave it to be released when the GPU |
| * operation has completed. |
| */ |
| |
| set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); |
| spin_unlock(&bo->lock); |
| if (tmp_obj) |
| driver->sync_obj_unref(&tmp_obj); |
| |
| ret = ttm_buffer_object_transfer(bo, &ghost_obj); |
| if (ret) |
| return ret; |
| |
| /** |
| * If we're not moving to fixed memory, the TTM object |
| * needs to stay alive. Otherwhise hang it on the ghost |
| * bo to be unbound and destroyed. |
| */ |
| |
| if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) |
| ghost_obj->ttm = NULL; |
| else |
| bo->ttm = NULL; |
| |
| ttm_bo_unreserve(ghost_obj); |
| ttm_bo_unref(&ghost_obj); |
| } |
| |
| *old_mem = *new_mem; |
| new_mem->mm_node = NULL; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); |