| /* |
| * Copyright (c) Red Hat Inc. |
| |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sub license, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Dave Airlie <airlied@redhat.com> |
| * Jerome Glisse <jglisse@redhat.com> |
| * Pauli Nieminen <suokkos@gmail.com> |
| */ |
| |
| /* simple list based uncached page pool |
| * - Pool collects resently freed pages for reuse |
| * - Use page->lru to keep a free list |
| * - doesn't track currently in use pages |
| */ |
| |
| #define pr_fmt(fmt) "[TTM] " fmt |
| |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| #include <linux/highmem.h> |
| #include <linux/mm_types.h> |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/seq_file.h> /* for seq_printf */ |
| #include <linux/slab.h> |
| #include <linux/dma-mapping.h> |
| |
| #include <linux/atomic.h> |
| |
| #include <drm/ttm/ttm_bo_driver.h> |
| #include <drm/ttm/ttm_page_alloc.h> |
| |
| #if IS_ENABLED(CONFIG_AGP) |
| #include <asm/agp.h> |
| #endif |
| |
| #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *)) |
| #define SMALL_ALLOCATION 16 |
| #define FREE_ALL_PAGES (~0U) |
| /* times are in msecs */ |
| #define PAGE_FREE_INTERVAL 1000 |
| |
| /** |
| * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages. |
| * |
| * @lock: Protects the shared pool from concurrnet access. Must be used with |
| * irqsave/irqrestore variants because pool allocator maybe called from |
| * delayed work. |
| * @fill_lock: Prevent concurrent calls to fill. |
| * @list: Pool of free uc/wc pages for fast reuse. |
| * @gfp_flags: Flags to pass for alloc_page. |
| * @npages: Number of pages in pool. |
| */ |
| struct ttm_page_pool { |
| spinlock_t lock; |
| bool fill_lock; |
| struct list_head list; |
| gfp_t gfp_flags; |
| unsigned npages; |
| char *name; |
| unsigned long nfrees; |
| unsigned long nrefills; |
| }; |
| |
| /** |
| * Limits for the pool. They are handled without locks because only place where |
| * they may change is in sysfs store. They won't have immediate effect anyway |
| * so forcing serialization to access them is pointless. |
| */ |
| |
| struct ttm_pool_opts { |
| unsigned alloc_size; |
| unsigned max_size; |
| unsigned small; |
| }; |
| |
| #define NUM_POOLS 4 |
| |
| /** |
| * struct ttm_pool_manager - Holds memory pools for fst allocation |
| * |
| * Manager is read only object for pool code so it doesn't need locking. |
| * |
| * @free_interval: minimum number of jiffies between freeing pages from pool. |
| * @page_alloc_inited: reference counting for pool allocation. |
| * @work: Work that is used to shrink the pool. Work is only run when there is |
| * some pages to free. |
| * @small_allocation: Limit in number of pages what is small allocation. |
| * |
| * @pools: All pool objects in use. |
| **/ |
| struct ttm_pool_manager { |
| struct kobject kobj; |
| struct shrinker mm_shrink; |
| struct ttm_pool_opts options; |
| |
| union { |
| struct ttm_page_pool pools[NUM_POOLS]; |
| struct { |
| struct ttm_page_pool wc_pool; |
| struct ttm_page_pool uc_pool; |
| struct ttm_page_pool wc_pool_dma32; |
| struct ttm_page_pool uc_pool_dma32; |
| } ; |
| }; |
| }; |
| |
| static struct attribute ttm_page_pool_max = { |
| .name = "pool_max_size", |
| .mode = S_IRUGO | S_IWUSR |
| }; |
| static struct attribute ttm_page_pool_small = { |
| .name = "pool_small_allocation", |
| .mode = S_IRUGO | S_IWUSR |
| }; |
| static struct attribute ttm_page_pool_alloc_size = { |
| .name = "pool_allocation_size", |
| .mode = S_IRUGO | S_IWUSR |
| }; |
| |
| static struct attribute *ttm_pool_attrs[] = { |
| &ttm_page_pool_max, |
| &ttm_page_pool_small, |
| &ttm_page_pool_alloc_size, |
| NULL |
| }; |
| |
| static void ttm_pool_kobj_release(struct kobject *kobj) |
| { |
| struct ttm_pool_manager *m = |
| container_of(kobj, struct ttm_pool_manager, kobj); |
| kfree(m); |
| } |
| |
| static ssize_t ttm_pool_store(struct kobject *kobj, |
| struct attribute *attr, const char *buffer, size_t size) |
| { |
| struct ttm_pool_manager *m = |
| container_of(kobj, struct ttm_pool_manager, kobj); |
| int chars; |
| unsigned val; |
| chars = sscanf(buffer, "%u", &val); |
| if (chars == 0) |
| return size; |
| |
| /* Convert kb to number of pages */ |
| val = val / (PAGE_SIZE >> 10); |
| |
| if (attr == &ttm_page_pool_max) |
| m->options.max_size = val; |
| else if (attr == &ttm_page_pool_small) |
| m->options.small = val; |
| else if (attr == &ttm_page_pool_alloc_size) { |
| if (val > NUM_PAGES_TO_ALLOC*8) { |
| pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n", |
| NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7), |
| NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10)); |
| return size; |
| } else if (val > NUM_PAGES_TO_ALLOC) { |
| pr_warn("Setting allocation size to larger than %lu is not recommended\n", |
| NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10)); |
| } |
| m->options.alloc_size = val; |
| } |
| |
| return size; |
| } |
| |
| static ssize_t ttm_pool_show(struct kobject *kobj, |
| struct attribute *attr, char *buffer) |
| { |
| struct ttm_pool_manager *m = |
| container_of(kobj, struct ttm_pool_manager, kobj); |
| unsigned val = 0; |
| |
| if (attr == &ttm_page_pool_max) |
| val = m->options.max_size; |
| else if (attr == &ttm_page_pool_small) |
| val = m->options.small; |
| else if (attr == &ttm_page_pool_alloc_size) |
| val = m->options.alloc_size; |
| |
| val = val * (PAGE_SIZE >> 10); |
| |
| return snprintf(buffer, PAGE_SIZE, "%u\n", val); |
| } |
| |
| static const struct sysfs_ops ttm_pool_sysfs_ops = { |
| .show = &ttm_pool_show, |
| .store = &ttm_pool_store, |
| }; |
| |
| static struct kobj_type ttm_pool_kobj_type = { |
| .release = &ttm_pool_kobj_release, |
| .sysfs_ops = &ttm_pool_sysfs_ops, |
| .default_attrs = ttm_pool_attrs, |
| }; |
| |
| static struct ttm_pool_manager *_manager; |
| |
| #ifndef CONFIG_X86 |
| static int set_pages_array_wb(struct page **pages, int addrinarray) |
| { |
| #if IS_ENABLED(CONFIG_AGP) |
| int i; |
| |
| for (i = 0; i < addrinarray; i++) |
| unmap_page_from_agp(pages[i]); |
| #endif |
| return 0; |
| } |
| |
| static int set_pages_array_wc(struct page **pages, int addrinarray) |
| { |
| #if IS_ENABLED(CONFIG_AGP) |
| int i; |
| |
| for (i = 0; i < addrinarray; i++) |
| map_page_into_agp(pages[i]); |
| #endif |
| return 0; |
| } |
| |
| static int set_pages_array_uc(struct page **pages, int addrinarray) |
| { |
| #if IS_ENABLED(CONFIG_AGP) |
| int i; |
| |
| for (i = 0; i < addrinarray; i++) |
| map_page_into_agp(pages[i]); |
| #endif |
| return 0; |
| } |
| #endif |
| |
| /** |
| * Select the right pool or requested caching state and ttm flags. */ |
| static struct ttm_page_pool *ttm_get_pool(int flags, |
| enum ttm_caching_state cstate) |
| { |
| int pool_index; |
| |
| if (cstate == tt_cached) |
| return NULL; |
| |
| if (cstate == tt_wc) |
| pool_index = 0x0; |
| else |
| pool_index = 0x1; |
| |
| if (flags & TTM_PAGE_FLAG_DMA32) |
| pool_index |= 0x2; |
| |
| return &_manager->pools[pool_index]; |
| } |
| |
| /* set memory back to wb and free the pages. */ |
| static void ttm_pages_put(struct page *pages[], unsigned npages) |
| { |
| unsigned i; |
| if (set_pages_array_wb(pages, npages)) |
| pr_err("Failed to set %d pages to wb!\n", npages); |
| for (i = 0; i < npages; ++i) |
| __free_page(pages[i]); |
| } |
| |
| static void ttm_pool_update_free_locked(struct ttm_page_pool *pool, |
| unsigned freed_pages) |
| { |
| pool->npages -= freed_pages; |
| pool->nfrees += freed_pages; |
| } |
| |
| /** |
| * Free pages from pool. |
| * |
| * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC |
| * number of pages in one go. |
| * |
| * @pool: to free the pages from |
| * @free_all: If set to true will free all pages in pool |
| * @use_static: Safe to use static buffer |
| **/ |
| static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free, |
| bool use_static) |
| { |
| static struct page *static_buf[NUM_PAGES_TO_ALLOC]; |
| unsigned long irq_flags; |
| struct page *p; |
| struct page **pages_to_free; |
| unsigned freed_pages = 0, |
| npages_to_free = nr_free; |
| |
| if (NUM_PAGES_TO_ALLOC < nr_free) |
| npages_to_free = NUM_PAGES_TO_ALLOC; |
| |
| if (use_static) |
| pages_to_free = static_buf; |
| else |
| pages_to_free = kmalloc(npages_to_free * sizeof(struct page *), |
| GFP_KERNEL); |
| if (!pages_to_free) { |
| pr_err("Failed to allocate memory for pool free operation\n"); |
| return 0; |
| } |
| |
| restart: |
| spin_lock_irqsave(&pool->lock, irq_flags); |
| |
| list_for_each_entry_reverse(p, &pool->list, lru) { |
| if (freed_pages >= npages_to_free) |
| break; |
| |
| pages_to_free[freed_pages++] = p; |
| /* We can only remove NUM_PAGES_TO_ALLOC at a time. */ |
| if (freed_pages >= NUM_PAGES_TO_ALLOC) { |
| /* remove range of pages from the pool */ |
| __list_del(p->lru.prev, &pool->list); |
| |
| ttm_pool_update_free_locked(pool, freed_pages); |
| /** |
| * Because changing page caching is costly |
| * we unlock the pool to prevent stalling. |
| */ |
| spin_unlock_irqrestore(&pool->lock, irq_flags); |
| |
| ttm_pages_put(pages_to_free, freed_pages); |
| if (likely(nr_free != FREE_ALL_PAGES)) |
| nr_free -= freed_pages; |
| |
| if (NUM_PAGES_TO_ALLOC >= nr_free) |
| npages_to_free = nr_free; |
| else |
| npages_to_free = NUM_PAGES_TO_ALLOC; |
| |
| freed_pages = 0; |
| |
| /* free all so restart the processing */ |
| if (nr_free) |
| goto restart; |
| |
| /* Not allowed to fall through or break because |
| * following context is inside spinlock while we are |
| * outside here. |
| */ |
| goto out; |
| |
| } |
| } |
| |
| /* remove range of pages from the pool */ |
| if (freed_pages) { |
| __list_del(&p->lru, &pool->list); |
| |
| ttm_pool_update_free_locked(pool, freed_pages); |
| nr_free -= freed_pages; |
| } |
| |
| spin_unlock_irqrestore(&pool->lock, irq_flags); |
| |
| if (freed_pages) |
| ttm_pages_put(pages_to_free, freed_pages); |
| out: |
| if (pages_to_free != static_buf) |
| kfree(pages_to_free); |
| return nr_free; |
| } |
| |
| /** |
| * Callback for mm to request pool to reduce number of page held. |
| * |
| * XXX: (dchinner) Deadlock warning! |
| * |
| * This code is crying out for a shrinker per pool.... |
| */ |
| static unsigned long |
| ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| static DEFINE_MUTEX(lock); |
| static unsigned start_pool; |
| unsigned i; |
| unsigned pool_offset; |
| struct ttm_page_pool *pool; |
| int shrink_pages = sc->nr_to_scan; |
| unsigned long freed = 0; |
| |
| if (!mutex_trylock(&lock)) |
| return SHRINK_STOP; |
| pool_offset = ++start_pool % NUM_POOLS; |
| /* select start pool in round robin fashion */ |
| for (i = 0; i < NUM_POOLS; ++i) { |
| unsigned nr_free = shrink_pages; |
| if (shrink_pages == 0) |
| break; |
| pool = &_manager->pools[(i + pool_offset)%NUM_POOLS]; |
| /* OK to use static buffer since global mutex is held. */ |
| shrink_pages = ttm_page_pool_free(pool, nr_free, true); |
| freed += nr_free - shrink_pages; |
| } |
| mutex_unlock(&lock); |
| return freed; |
| } |
| |
| |
| static unsigned long |
| ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| unsigned i; |
| unsigned long count = 0; |
| |
| for (i = 0; i < NUM_POOLS; ++i) |
| count += _manager->pools[i].npages; |
| |
| return count; |
| } |
| |
| static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager) |
| { |
| manager->mm_shrink.count_objects = ttm_pool_shrink_count; |
| manager->mm_shrink.scan_objects = ttm_pool_shrink_scan; |
| manager->mm_shrink.seeks = 1; |
| register_shrinker(&manager->mm_shrink); |
| } |
| |
| static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager) |
| { |
| unregister_shrinker(&manager->mm_shrink); |
| } |
| |
| static int ttm_set_pages_caching(struct page **pages, |
| enum ttm_caching_state cstate, unsigned cpages) |
| { |
| int r = 0; |
| /* Set page caching */ |
| switch (cstate) { |
| case tt_uncached: |
| r = set_pages_array_uc(pages, cpages); |
| if (r) |
| pr_err("Failed to set %d pages to uc!\n", cpages); |
| break; |
| case tt_wc: |
| r = set_pages_array_wc(pages, cpages); |
| if (r) |
| pr_err("Failed to set %d pages to wc!\n", cpages); |
| break; |
| default: |
| break; |
| } |
| return r; |
| } |
| |
| /** |
| * Free pages the pages that failed to change the caching state. If there is |
| * any pages that have changed their caching state already put them to the |
| * pool. |
| */ |
| static void ttm_handle_caching_state_failure(struct list_head *pages, |
| int ttm_flags, enum ttm_caching_state cstate, |
| struct page **failed_pages, unsigned cpages) |
| { |
| unsigned i; |
| /* Failed pages have to be freed */ |
| for (i = 0; i < cpages; ++i) { |
| list_del(&failed_pages[i]->lru); |
| __free_page(failed_pages[i]); |
| } |
| } |
| |
| /** |
| * Allocate new pages with correct caching. |
| * |
| * This function is reentrant if caller updates count depending on number of |
| * pages returned in pages array. |
| */ |
| static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags, |
| int ttm_flags, enum ttm_caching_state cstate, unsigned count) |
| { |
| struct page **caching_array; |
| struct page *p; |
| int r = 0; |
| unsigned i, cpages; |
| unsigned max_cpages = min(count, |
| (unsigned)(PAGE_SIZE/sizeof(struct page *))); |
| |
| /* allocate array for page caching change */ |
| caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL); |
| |
| if (!caching_array) { |
| pr_err("Unable to allocate table for new pages\n"); |
| return -ENOMEM; |
| } |
| |
| for (i = 0, cpages = 0; i < count; ++i) { |
| p = alloc_page(gfp_flags); |
| |
| if (!p) { |
| pr_err("Unable to get page %u\n", i); |
| |
| /* store already allocated pages in the pool after |
| * setting the caching state */ |
| if (cpages) { |
| r = ttm_set_pages_caching(caching_array, |
| cstate, cpages); |
| if (r) |
| ttm_handle_caching_state_failure(pages, |
| ttm_flags, cstate, |
| caching_array, cpages); |
| } |
| r = -ENOMEM; |
| goto out; |
| } |
| |
| #ifdef CONFIG_HIGHMEM |
| /* gfp flags of highmem page should never be dma32 so we |
| * we should be fine in such case |
| */ |
| if (!PageHighMem(p)) |
| #endif |
| { |
| caching_array[cpages++] = p; |
| if (cpages == max_cpages) { |
| |
| r = ttm_set_pages_caching(caching_array, |
| cstate, cpages); |
| if (r) { |
| ttm_handle_caching_state_failure(pages, |
| ttm_flags, cstate, |
| caching_array, cpages); |
| goto out; |
| } |
| cpages = 0; |
| } |
| } |
| |
| list_add(&p->lru, pages); |
| } |
| |
| if (cpages) { |
| r = ttm_set_pages_caching(caching_array, cstate, cpages); |
| if (r) |
| ttm_handle_caching_state_failure(pages, |
| ttm_flags, cstate, |
| caching_array, cpages); |
| } |
| out: |
| kfree(caching_array); |
| |
| return r; |
| } |
| |
| /** |
| * Fill the given pool if there aren't enough pages and the requested number of |
| * pages is small. |
| */ |
| static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, |
| int ttm_flags, enum ttm_caching_state cstate, unsigned count, |
| unsigned long *irq_flags) |
| { |
| struct page *p; |
| int r; |
| unsigned cpages = 0; |
| /** |
| * Only allow one pool fill operation at a time. |
| * If pool doesn't have enough pages for the allocation new pages are |
| * allocated from outside of pool. |
| */ |
| if (pool->fill_lock) |
| return; |
| |
| pool->fill_lock = true; |
| |
| /* If allocation request is small and there are not enough |
| * pages in a pool we fill the pool up first. */ |
| if (count < _manager->options.small |
| && count > pool->npages) { |
| struct list_head new_pages; |
| unsigned alloc_size = _manager->options.alloc_size; |
| |
| /** |
| * Can't change page caching if in irqsave context. We have to |
| * drop the pool->lock. |
| */ |
| spin_unlock_irqrestore(&pool->lock, *irq_flags); |
| |
| INIT_LIST_HEAD(&new_pages); |
| r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags, |
| cstate, alloc_size); |
| spin_lock_irqsave(&pool->lock, *irq_flags); |
| |
| if (!r) { |
| list_splice(&new_pages, &pool->list); |
| ++pool->nrefills; |
| pool->npages += alloc_size; |
| } else { |
| pr_err("Failed to fill pool (%p)\n", pool); |
| /* If we have any pages left put them to the pool. */ |
| list_for_each_entry(p, &new_pages, lru) { |
| ++cpages; |
| } |
| list_splice(&new_pages, &pool->list); |
| pool->npages += cpages; |
| } |
| |
| } |
| pool->fill_lock = false; |
| } |
| |
| /** |
| * Cut 'count' number of pages from the pool and put them on the return list. |
| * |
| * @return count of pages still required to fulfill the request. |
| */ |
| static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool, |
| struct list_head *pages, |
| int ttm_flags, |
| enum ttm_caching_state cstate, |
| unsigned count) |
| { |
| unsigned long irq_flags; |
| struct list_head *p; |
| unsigned i; |
| |
| spin_lock_irqsave(&pool->lock, irq_flags); |
| ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count, &irq_flags); |
| |
| if (count >= pool->npages) { |
| /* take all pages from the pool */ |
| list_splice_init(&pool->list, pages); |
| count -= pool->npages; |
| pool->npages = 0; |
| goto out; |
| } |
| /* find the last pages to include for requested number of pages. Split |
| * pool to begin and halve it to reduce search space. */ |
| if (count <= pool->npages/2) { |
| i = 0; |
| list_for_each(p, &pool->list) { |
| if (++i == count) |
| break; |
| } |
| } else { |
| i = pool->npages + 1; |
| list_for_each_prev(p, &pool->list) { |
| if (--i == count) |
| break; |
| } |
| } |
| /* Cut 'count' number of pages from the pool */ |
| list_cut_position(pages, &pool->list, p); |
| pool->npages -= count; |
| count = 0; |
| out: |
| spin_unlock_irqrestore(&pool->lock, irq_flags); |
| return count; |
| } |
| |
| /* Put all pages in pages list to correct pool to wait for reuse */ |
| static void ttm_put_pages(struct page **pages, unsigned npages, int flags, |
| enum ttm_caching_state cstate) |
| { |
| unsigned long irq_flags; |
| struct ttm_page_pool *pool = ttm_get_pool(flags, cstate); |
| unsigned i; |
| |
| if (pool == NULL) { |
| /* No pool for this memory type so free the pages */ |
| for (i = 0; i < npages; i++) { |
| if (pages[i]) { |
| if (page_count(pages[i]) != 1) |
| pr_err("Erroneous page count. Leaking pages.\n"); |
| __free_page(pages[i]); |
| pages[i] = NULL; |
| } |
| } |
| return; |
| } |
| |
| spin_lock_irqsave(&pool->lock, irq_flags); |
| for (i = 0; i < npages; i++) { |
| if (pages[i]) { |
| if (page_count(pages[i]) != 1) |
| pr_err("Erroneous page count. Leaking pages.\n"); |
| list_add_tail(&pages[i]->lru, &pool->list); |
| pages[i] = NULL; |
| pool->npages++; |
| } |
| } |
| /* Check that we don't go over the pool limit */ |
| npages = 0; |
| if (pool->npages > _manager->options.max_size) { |
| npages = pool->npages - _manager->options.max_size; |
| /* free at least NUM_PAGES_TO_ALLOC number of pages |
| * to reduce calls to set_memory_wb */ |
| if (npages < NUM_PAGES_TO_ALLOC) |
| npages = NUM_PAGES_TO_ALLOC; |
| } |
| spin_unlock_irqrestore(&pool->lock, irq_flags); |
| if (npages) |
| ttm_page_pool_free(pool, npages, false); |
| } |
| |
| /* |
| * On success pages list will hold count number of correctly |
| * cached pages. |
| */ |
| static int ttm_get_pages(struct page **pages, unsigned npages, int flags, |
| enum ttm_caching_state cstate) |
| { |
| struct ttm_page_pool *pool = ttm_get_pool(flags, cstate); |
| struct list_head plist; |
| struct page *p = NULL; |
| gfp_t gfp_flags = GFP_USER; |
| unsigned count; |
| int r; |
| |
| /* set zero flag for page allocation if required */ |
| if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) |
| gfp_flags |= __GFP_ZERO; |
| |
| /* No pool for cached pages */ |
| if (pool == NULL) { |
| if (flags & TTM_PAGE_FLAG_DMA32) |
| gfp_flags |= GFP_DMA32; |
| else |
| gfp_flags |= GFP_HIGHUSER; |
| |
| for (r = 0; r < npages; ++r) { |
| p = alloc_page(gfp_flags); |
| if (!p) { |
| |
| pr_err("Unable to allocate page\n"); |
| return -ENOMEM; |
| } |
| |
| pages[r] = p; |
| } |
| return 0; |
| } |
| |
| /* combine zero flag to pool flags */ |
| gfp_flags |= pool->gfp_flags; |
| |
| /* First we take pages from the pool */ |
| INIT_LIST_HEAD(&plist); |
| npages = ttm_page_pool_get_pages(pool, &plist, flags, cstate, npages); |
| count = 0; |
| list_for_each_entry(p, &plist, lru) { |
| pages[count++] = p; |
| } |
| |
| /* clear the pages coming from the pool if requested */ |
| if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) { |
| list_for_each_entry(p, &plist, lru) { |
| if (PageHighMem(p)) |
| clear_highpage(p); |
| else |
| clear_page(page_address(p)); |
| } |
| } |
| |
| /* If pool didn't have enough pages allocate new one. */ |
| if (npages > 0) { |
| /* ttm_alloc_new_pages doesn't reference pool so we can run |
| * multiple requests in parallel. |
| **/ |
| INIT_LIST_HEAD(&plist); |
| r = ttm_alloc_new_pages(&plist, gfp_flags, flags, cstate, npages); |
| list_for_each_entry(p, &plist, lru) { |
| pages[count++] = p; |
| } |
| if (r) { |
| /* If there is any pages in the list put them back to |
| * the pool. */ |
| pr_err("Failed to allocate extra pages for large request\n"); |
| ttm_put_pages(pages, count, flags, cstate); |
| return r; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags, |
| char *name) |
| { |
| spin_lock_init(&pool->lock); |
| pool->fill_lock = false; |
| INIT_LIST_HEAD(&pool->list); |
| pool->npages = pool->nfrees = 0; |
| pool->gfp_flags = flags; |
| pool->name = name; |
| } |
| |
| int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages) |
| { |
| int ret; |
| |
| WARN_ON(_manager); |
| |
| pr_info("Initializing pool allocator\n"); |
| |
| _manager = kzalloc(sizeof(*_manager), GFP_KERNEL); |
| |
| ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc"); |
| |
| ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc"); |
| |
| ttm_page_pool_init_locked(&_manager->wc_pool_dma32, |
| GFP_USER | GFP_DMA32, "wc dma"); |
| |
| ttm_page_pool_init_locked(&_manager->uc_pool_dma32, |
| GFP_USER | GFP_DMA32, "uc dma"); |
| |
| _manager->options.max_size = max_pages; |
| _manager->options.small = SMALL_ALLOCATION; |
| _manager->options.alloc_size = NUM_PAGES_TO_ALLOC; |
| |
| ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type, |
| &glob->kobj, "pool"); |
| if (unlikely(ret != 0)) { |
| kobject_put(&_manager->kobj); |
| _manager = NULL; |
| return ret; |
| } |
| |
| ttm_pool_mm_shrink_init(_manager); |
| |
| return 0; |
| } |
| |
| void ttm_page_alloc_fini(void) |
| { |
| int i; |
| |
| pr_info("Finalizing pool allocator\n"); |
| ttm_pool_mm_shrink_fini(_manager); |
| |
| /* OK to use static buffer since global mutex is no longer used. */ |
| for (i = 0; i < NUM_POOLS; ++i) |
| ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES, true); |
| |
| kobject_put(&_manager->kobj); |
| _manager = NULL; |
| } |
| |
| int ttm_pool_populate(struct ttm_tt *ttm) |
| { |
| struct ttm_mem_global *mem_glob = ttm->glob->mem_glob; |
| unsigned i; |
| int ret; |
| |
| if (ttm->state != tt_unpopulated) |
| return 0; |
| |
| for (i = 0; i < ttm->num_pages; ++i) { |
| ret = ttm_get_pages(&ttm->pages[i], 1, |
| ttm->page_flags, |
| ttm->caching_state); |
| if (ret != 0) { |
| ttm_pool_unpopulate(ttm); |
| return -ENOMEM; |
| } |
| |
| ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i], |
| false, false); |
| if (unlikely(ret != 0)) { |
| ttm_pool_unpopulate(ttm); |
| return -ENOMEM; |
| } |
| } |
| |
| if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) { |
| ret = ttm_tt_swapin(ttm); |
| if (unlikely(ret != 0)) { |
| ttm_pool_unpopulate(ttm); |
| return ret; |
| } |
| } |
| |
| ttm->state = tt_unbound; |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_pool_populate); |
| |
| void ttm_pool_unpopulate(struct ttm_tt *ttm) |
| { |
| unsigned i; |
| |
| for (i = 0; i < ttm->num_pages; ++i) { |
| if (ttm->pages[i]) { |
| ttm_mem_global_free_page(ttm->glob->mem_glob, |
| ttm->pages[i]); |
| ttm_put_pages(&ttm->pages[i], 1, |
| ttm->page_flags, |
| ttm->caching_state); |
| } |
| } |
| ttm->state = tt_unpopulated; |
| } |
| EXPORT_SYMBOL(ttm_pool_unpopulate); |
| |
| int ttm_page_alloc_debugfs(struct seq_file *m, void *data) |
| { |
| struct ttm_page_pool *p; |
| unsigned i; |
| char *h[] = {"pool", "refills", "pages freed", "size"}; |
| if (!_manager) { |
| seq_printf(m, "No pool allocator running.\n"); |
| return 0; |
| } |
| seq_printf(m, "%6s %12s %13s %8s\n", |
| h[0], h[1], h[2], h[3]); |
| for (i = 0; i < NUM_POOLS; ++i) { |
| p = &_manager->pools[i]; |
| |
| seq_printf(m, "%6s %12ld %13ld %8d\n", |
| p->name, p->nrefills, |
| p->nfrees, p->npages); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(ttm_page_alloc_debugfs); |