blob: 64aa864c5dbfff021380b46d3f1549e7965bf1c8 [file] [log] [blame]
/*
* For the Realtek RTL chip RTL2831U
* Realtek Release Date: 2008-03-14, ver 080314
* Realtek version RTL2831 Linux driver version 080314
* ver 080314
*
* for linux kernel version 2.6.21.4 - 2.6.22-14
* support MXL5005s and MT2060 tuners (support tuner auto-detecting)
* support two IR types -- RC5 and NEC
*
* Known boards with Realtek RTL chip RTL2821U
* Freecom USB stick 14aa:0160 (version 4)
* Conceptronic CTVDIGRCU
*
* Copyright (c) 2008 Realtek
* Copyright (c) 2008 Jan Hoogenraad, Barnaby Shearer, Andy Hasper
* This code is placed under the terms of the GNU General Public License
*
* Released by Realtek under GPLv2.
* Thanks to Realtek for a lot of support we received !
*
* Revision: 080314 - original version
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "dvb_frontend.h"
#include "mxl5005s.h"
static int debug;
#define dprintk(level, arg...) do { \
if (debug >= level) \
printk(arg); \
} while (0)
#define TUNER_REGS_NUM 104
#define INITCTRL_NUM 40
#ifdef _MXL_PRODUCTION
#define CHCTRL_NUM 39
#else
#define CHCTRL_NUM 36
#endif
#define MXLCTRL_NUM 189
#define MASTER_CONTROL_ADDR 9
/* Enumeration of AGC Mode */
typedef enum
{
MXL_DUAL_AGC = 0,
MXL_SINGLE_AGC
} AGC_Mode;
/* Enumeration of Master Control Register State */
typedef enum
{
MC_LOAD_START = 1,
MC_POWER_DOWN,
MC_SYNTH_RESET,
MC_SEQ_OFF
} Master_Control_State;
/* Enumeration of MXL5005 Tuner Mode */
typedef enum
{
MXL_ANALOG_MODE = 0,
MXL_DIGITAL_MODE
} Tuner_Mode;
/* Enumeration of MXL5005 Tuner IF Mode */
typedef enum
{
MXL_ZERO_IF = 0,
MXL_LOW_IF
} Tuner_IF_Mode;
/* Enumeration of MXL5005 Tuner Clock Out Mode */
typedef enum
{
MXL_CLOCK_OUT_DISABLE = 0,
MXL_CLOCK_OUT_ENABLE
} Tuner_Clock_Out;
/* Enumeration of MXL5005 Tuner Div Out Mode */
typedef enum
{
MXL_DIV_OUT_1 = 0,
MXL_DIV_OUT_4
} Tuner_Div_Out;
/* Enumeration of MXL5005 Tuner Pull-up Cap Select Mode */
typedef enum
{
MXL_CAP_SEL_DISABLE = 0,
MXL_CAP_SEL_ENABLE
} Tuner_Cap_Select;
/* Enumeration of MXL5005 Tuner RSSI Mode */
typedef enum
{
MXL_RSSI_DISABLE = 0,
MXL_RSSI_ENABLE
} Tuner_RSSI;
/* Enumeration of MXL5005 Tuner Modulation Type */
typedef enum
{
MXL_DEFAULT_MODULATION = 0,
MXL_DVBT,
MXL_ATSC,
MXL_QAM,
MXL_ANALOG_CABLE,
MXL_ANALOG_OTA
} Tuner_Modu_Type;
/* Enumeration of MXL5005 Tuner Tracking Filter Type */
typedef enum
{
MXL_TF_DEFAULT = 0,
MXL_TF_OFF,
MXL_TF_C,
MXL_TF_C_H,
MXL_TF_D,
MXL_TF_D_L,
MXL_TF_E,
MXL_TF_F,
MXL_TF_E_2,
MXL_TF_E_NA,
MXL_TF_G
} Tuner_TF_Type;
/* MXL5005 Tuner Register Struct */
typedef struct _TunerReg_struct
{
u16 Reg_Num; /* Tuner Register Address */
u16 Reg_Val; /* Current sofware programmed value waiting to be writen */
} TunerReg_struct;
typedef enum
{
/* Initialization Control Names */
DN_IQTN_AMP_CUT = 1, /* 1 */
BB_MODE, /* 2 */
BB_BUF, /* 3 */
BB_BUF_OA, /* 4 */
BB_ALPF_BANDSELECT, /* 5 */
BB_IQSWAP, /* 6 */
BB_DLPF_BANDSEL, /* 7 */
RFSYN_CHP_GAIN, /* 8 */
RFSYN_EN_CHP_HIGAIN, /* 9 */
AGC_IF, /* 10 */
AGC_RF, /* 11 */
IF_DIVVAL, /* 12 */
IF_VCO_BIAS, /* 13 */
CHCAL_INT_MOD_IF, /* 14 */
CHCAL_FRAC_MOD_IF, /* 15 */
DRV_RES_SEL, /* 16 */
I_DRIVER, /* 17 */
EN_AAF, /* 18 */
EN_3P, /* 19 */
EN_AUX_3P, /* 20 */
SEL_AAF_BAND, /* 21 */
SEQ_ENCLK16_CLK_OUT, /* 22 */
SEQ_SEL4_16B, /* 23 */
XTAL_CAPSELECT, /* 24 */
IF_SEL_DBL, /* 25 */
RFSYN_R_DIV, /* 26 */
SEQ_EXTSYNTHCALIF, /* 27 */
SEQ_EXTDCCAL, /* 28 */
AGC_EN_RSSI, /* 29 */
RFA_ENCLKRFAGC, /* 30 */
RFA_RSSI_REFH, /* 31 */
RFA_RSSI_REF, /* 32 */
RFA_RSSI_REFL, /* 33 */
RFA_FLR, /* 34 */
RFA_CEIL, /* 35 */
SEQ_EXTIQFSMPULSE, /* 36 */
OVERRIDE_1, /* 37 */
BB_INITSTATE_DLPF_TUNE, /* 38 */
TG_R_DIV, /* 39 */
EN_CHP_LIN_B, /* 40 */
/* Channel Change Control Names */
DN_POLY = 51, /* 51 */
DN_RFGAIN, /* 52 */
DN_CAP_RFLPF, /* 53 */
DN_EN_VHFUHFBAR, /* 54 */
DN_GAIN_ADJUST, /* 55 */
DN_IQTNBUF_AMP, /* 56 */
DN_IQTNGNBFBIAS_BST, /* 57 */
RFSYN_EN_OUTMUX, /* 58 */
RFSYN_SEL_VCO_OUT, /* 59 */
RFSYN_SEL_VCO_HI, /* 60 */
RFSYN_SEL_DIVM, /* 61 */
RFSYN_RF_DIV_BIAS, /* 62 */
DN_SEL_FREQ, /* 63 */
RFSYN_VCO_BIAS, /* 64 */
CHCAL_INT_MOD_RF, /* 65 */
CHCAL_FRAC_MOD_RF, /* 66 */
RFSYN_LPF_R, /* 67 */
CHCAL_EN_INT_RF, /* 68 */
TG_LO_DIVVAL, /* 69 */
TG_LO_SELVAL, /* 70 */
TG_DIV_VAL, /* 71 */
TG_VCO_BIAS, /* 72 */
SEQ_EXTPOWERUP, /* 73 */
OVERRIDE_2, /* 74 */
OVERRIDE_3, /* 75 */
OVERRIDE_4, /* 76 */
SEQ_FSM_PULSE, /* 77 */
GPIO_4B, /* 78 */
GPIO_3B, /* 79 */
GPIO_4, /* 80 */
GPIO_3, /* 81 */
GPIO_1B, /* 82 */
DAC_A_ENABLE, /* 83 */
DAC_B_ENABLE, /* 84 */
DAC_DIN_A, /* 85 */
DAC_DIN_B, /* 86 */
#ifdef _MXL_PRODUCTION
RFSYN_EN_DIV, /* 87 */
RFSYN_DIVM, /* 88 */
DN_BYPASS_AGC_I2C /* 89 */
#endif
} MXL5005_ControlName;
/*
* The following context is source code provided by MaxLinear.
* MaxLinear source code - Common_MXL.h (?)
*/
/* Constants */
#define MXL5005S_REG_WRITING_TABLE_LEN_MAX 104
#define MXL5005S_LATCH_BYTE 0xfe
/* Register address, MSB, and LSB */
#define MXL5005S_BB_IQSWAP_ADDR 59
#define MXL5005S_BB_IQSWAP_MSB 0
#define MXL5005S_BB_IQSWAP_LSB 0
#define MXL5005S_BB_DLPF_BANDSEL_ADDR 53
#define MXL5005S_BB_DLPF_BANDSEL_MSB 4
#define MXL5005S_BB_DLPF_BANDSEL_LSB 3
/* Standard modes */
enum
{
MXL5005S_STANDARD_DVBT,
MXL5005S_STANDARD_ATSC,
};
#define MXL5005S_STANDARD_MODE_NUM 2
/* Bandwidth modes */
enum
{
MXL5005S_BANDWIDTH_6MHZ = 6000000,
MXL5005S_BANDWIDTH_7MHZ = 7000000,
MXL5005S_BANDWIDTH_8MHZ = 8000000,
};
#define MXL5005S_BANDWIDTH_MODE_NUM 3
/* Top modes */
enum
{
MXL5005S_TOP_5P5 = 55,
MXL5005S_TOP_7P2 = 72,
MXL5005S_TOP_9P2 = 92,
MXL5005S_TOP_11P0 = 110,
MXL5005S_TOP_12P9 = 129,
MXL5005S_TOP_14P7 = 147,
MXL5005S_TOP_16P8 = 168,
MXL5005S_TOP_19P4 = 194,
MXL5005S_TOP_21P2 = 212,
MXL5005S_TOP_23P2 = 232,
MXL5005S_TOP_25P2 = 252,
MXL5005S_TOP_27P1 = 271,
MXL5005S_TOP_29P2 = 292,
MXL5005S_TOP_31P7 = 317,
MXL5005S_TOP_34P9 = 349,
};
/* IF output load */
enum
{
MXL5005S_IF_OUTPUT_LOAD_200_OHM = 200,
MXL5005S_IF_OUTPUT_LOAD_300_OHM = 300,
};
/* MXL5005 Tuner Control Struct */
typedef struct _TunerControl_struct {
u16 Ctrl_Num; /* Control Number */
u16 size; /* Number of bits to represent Value */
u16 addr[25]; /* Array of Tuner Register Address for each bit position */
u16 bit[25]; /* Array of bit position in Register Address for each bit position */
u16 val[25]; /* Binary representation of Value */
} TunerControl_struct;
/* MXL5005 Tuner Struct */
struct mxl5005s_state
{
u8 Mode; /* 0: Analog Mode ; 1: Digital Mode */
u8 IF_Mode; /* for Analog Mode, 0: zero IF; 1: low IF */
u32 Chan_Bandwidth; /* filter channel bandwidth (6, 7, 8) */
u32 IF_OUT; /* Desired IF Out Frequency */
u16 IF_OUT_LOAD; /* IF Out Load Resistor (200/300 Ohms) */
u32 RF_IN; /* RF Input Frequency */
u32 Fxtal; /* XTAL Frequency */
u8 AGC_Mode; /* AGC Mode 0: Dual AGC; 1: Single AGC */
u16 TOP; /* Value: take over point */
u8 CLOCK_OUT; /* 0: turn off clock out; 1: turn on clock out */
u8 DIV_OUT; /* 4MHz or 16MHz */
u8 CAPSELECT; /* 0: disable On-Chip pulling cap; 1: enable */
u8 EN_RSSI; /* 0: disable RSSI; 1: enable RSSI */
u8 Mod_Type; /* Modulation Type; */
/* 0 - Default; 1 - DVB-T; 2 - ATSC; 3 - QAM; 4 - Analog Cable */
u8 TF_Type; /* Tracking Filter Type */
/* 0 - Default; 1 - Off; 2 - Type C; 3 - Type C-H */
/* Calculated Settings */
u32 RF_LO; /* Synth RF LO Frequency */
u32 IF_LO; /* Synth IF LO Frequency */
u32 TG_LO; /* Synth TG_LO Frequency */
/* Pointers to ControlName Arrays */
u16 Init_Ctrl_Num; /* Number of INIT Control Names */
TunerControl_struct
Init_Ctrl[INITCTRL_NUM]; /* INIT Control Names Array Pointer */
u16 CH_Ctrl_Num; /* Number of CH Control Names */
TunerControl_struct
CH_Ctrl[CHCTRL_NUM]; /* CH Control Name Array Pointer */
u16 MXL_Ctrl_Num; /* Number of MXL Control Names */
TunerControl_struct
MXL_Ctrl[MXLCTRL_NUM]; /* MXL Control Name Array Pointer */
/* Pointer to Tuner Register Array */
u16 TunerRegs_Num; /* Number of Tuner Registers */
TunerReg_struct
TunerRegs[TUNER_REGS_NUM]; /* Tuner Register Array Pointer */
/* Linux driver framework specific */
const struct mxl5005s_config *config;
struct dvb_frontend *frontend;
struct i2c_adapter *i2c;
};
// funcs
u16 MXL_ControlWrite(struct dvb_frontend *fe, u16 ControlNum, u32 value);
u16 MXL_ControlRead(struct dvb_frontend *fe, u16 controlNum, u32 *value);
u16 MXL_GetMasterControl(u8 *MasterReg, int state);
void MXL_RegWriteBit(struct dvb_frontend *fe, u8 address, u8 bit, u8 bitVal);
u16 MXL_GetCHRegister(struct dvb_frontend *fe, u8 *RegNum, u8 *RegVal, int *count);
u32 MXL_Ceiling(u32 value, u32 resolution);
u16 MXL_RegRead(struct dvb_frontend *fe, u8 RegNum, u8 *RegVal);
u16 MXL_RegWrite(struct dvb_frontend *fe, u8 RegNum, u8 RegVal);
u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum, u32 value, u16 controlGroup);
u16 MXL_SetGPIO(struct dvb_frontend *fe, u8 GPIO_Num, u8 GPIO_Val);
u16 MXL_GetInitRegister(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count);
u32 MXL_GetXtalInt(u32 Xtal_Freq);
u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq);
void MXL_SynthIFLO_Calc(struct dvb_frontend *fe);
void MXL_SynthRFTGLO_Calc(struct dvb_frontend *fe);
u16 MXL_GetCHRegister_ZeroIF(struct dvb_frontend *fe, u8 *RegNum, u8 *RegVal, int *count);
int mxl5005s_SetRegsWithTable(struct dvb_frontend *fe, u8 *pAddrTable, u8 *pByteTable, int TableLen);
u16 MXL_IFSynthInit(struct dvb_frontend *fe);
static int mxl5005s_init2(struct dvb_frontend *fe);
int mxl5005s_SetRfFreqHz(struct dvb_frontend *fe, unsigned long RfFreqHz)
{
struct mxl5005s_state *state = fe->tuner_priv;
u8 AgcMasterByte = state->config->AgcMasterByte;
unsigned char AddrTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX];
unsigned char ByteTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX];
int TableLen;
u32 IfDivval;
unsigned char MasterControlByte;
dprintk(1, "%s() freq=%ld\n", __func__, RfFreqHz);
// Set MxL5005S tuner RF frequency according to MxL5005S tuner example code.
// Tuner RF frequency setting stage 0
MXL_GetMasterControl(ByteTable, MC_SYNTH_RESET) ;
AddrTable[0] = MASTER_CONTROL_ADDR;
ByteTable[0] |= state->config->AgcMasterByte;
mxl5005s_SetRegsWithTable(fe, AddrTable, ByteTable, 1);
// Tuner RF frequency setting stage 1
MXL_TuneRF(fe, RfFreqHz);
MXL_ControlRead(fe, IF_DIVVAL, &IfDivval);
MXL_ControlWrite(fe, SEQ_FSM_PULSE, 0);
MXL_ControlWrite(fe, SEQ_EXTPOWERUP, 1);
MXL_ControlWrite(fe, IF_DIVVAL, 8);
MXL_GetCHRegister(fe, AddrTable, ByteTable, &TableLen) ;
MXL_GetMasterControl(&MasterControlByte, MC_LOAD_START) ;
AddrTable[TableLen] = MASTER_CONTROL_ADDR ;
ByteTable[TableLen] = MasterControlByte | AgcMasterByte;
TableLen += 1;
mxl5005s_SetRegsWithTable(fe, AddrTable, ByteTable, TableLen);
// Wait 30 ms.
msleep(30);
// Tuner RF frequency setting stage 2
MXL_ControlWrite(fe, SEQ_FSM_PULSE, 1) ;
MXL_ControlWrite(fe, IF_DIVVAL, IfDivval) ;
MXL_GetCHRegister_ZeroIF(fe, AddrTable, ByteTable, &TableLen) ;
MXL_GetMasterControl(&MasterControlByte, MC_LOAD_START) ;
AddrTable[TableLen] = MASTER_CONTROL_ADDR ;
ByteTable[TableLen] = MasterControlByte | AgcMasterByte ;
TableLen += 1;
mxl5005s_SetRegsWithTable(fe, AddrTable, ByteTable, TableLen);
return 0;
}
/* Write a single byte to a single reg */
static int mxl5005s_writereg(struct dvb_frontend *fe, u8 reg, u8 val)
{
struct mxl5005s_state *state = fe->tuner_priv;
u8 buf[2] = { reg, val };
struct i2c_msg msg = { .addr = state->config->i2c_address, .flags = 0,
.buf = buf, .len = 2 };
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "mxl5005s I2C write failed\n");
return -EREMOTEIO;
}
return 0;
}
/* Write a word to a single reg */
static int mxl5005s_writereg16(struct dvb_frontend *fe, u8 reg, u16 val)
{
struct mxl5005s_state *state = fe->tuner_priv;
u8 buf[3] = { reg, val >> 8 , val & 0xff };
struct i2c_msg msg = { .addr = state->config->i2c_address, .flags = 0,
.buf = buf, .len = 3 };
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "mxl5005s I2C write16 failed\n");
return -EREMOTEIO;
}
return 0;
}
int mxl5005s_SetRegsWithTable(struct dvb_frontend *fe, u8 *pAddrTable, u8 *pByteTable, int TableLen)
{
int i, ret;
u8 end_two_bytes_buf[]={ 0 , 0 };
for( i = 0 ; i < TableLen - 1 ; i++)
{
ret = mxl5005s_writereg(fe, pAddrTable[i], pByteTable[i]);
if (!ret)
return ret;
}
end_two_bytes_buf[0] = pByteTable[i];
end_two_bytes_buf[1] = MXL5005S_LATCH_BYTE;
ret = mxl5005s_writereg16(fe, pAddrTable[i], (end_two_bytes_buf[0] << 8) | end_two_bytes_buf[1]);
return ret;
}
int mxl5005s_SetRegMaskBits(struct dvb_frontend *fe,
unsigned char RegAddr,
unsigned char Msb,
unsigned char Lsb,
const unsigned char WritingValue
)
{
int i;
unsigned char Mask;
unsigned char Shift;
unsigned char RegByte;
/* Generate mask and shift according to MSB and LSB. */
Mask = 0;
for(i = Lsb; i < (unsigned char)(Msb + 1); i++)
Mask |= 0x1 << i;
Shift = Lsb;
/* Get tuner register byte according to register adddress. */
MXL_RegRead(fe, RegAddr, &RegByte);
/* Reserve register byte unmask bit with mask and inlay writing value into it. */
RegByte &= ~Mask;
RegByte |= (WritingValue << Shift) & Mask;
/* Update tuner register byte table. */
MXL_RegWrite(fe, RegAddr, RegByte);
/* Write tuner register byte with writing byte. */
return mxl5005s_SetRegsWithTable(fe, &RegAddr, &RegByte, 1);
}
// The following context is source code provided by MaxLinear.
// MaxLinear source code - MXL5005_Initialize.cpp
// DONE
u16 MXL5005_RegisterInit(struct dvb_frontend *fe)
{
struct mxl5005s_state *state = fe->tuner_priv;
state->TunerRegs_Num = TUNER_REGS_NUM ;
// state->TunerRegs = (TunerReg_struct *) calloc( TUNER_REGS_NUM, sizeof(TunerReg_struct) ) ;
state->TunerRegs[0].Reg_Num = 9 ;
state->TunerRegs[0].Reg_Val = 0x40 ;
state->TunerRegs[1].Reg_Num = 11 ;
state->TunerRegs[1].Reg_Val = 0x19 ;
state->TunerRegs[2].Reg_Num = 12 ;
state->TunerRegs[2].Reg_Val = 0x60 ;
state->TunerRegs[3].Reg_Num = 13 ;
state->TunerRegs[3].Reg_Val = 0x00 ;
state->TunerRegs[4].Reg_Num = 14 ;
state->TunerRegs[4].Reg_Val = 0x00 ;
state->TunerRegs[5].Reg_Num = 15 ;
state->TunerRegs[5].Reg_Val = 0xC0 ;
state->TunerRegs[6].Reg_Num = 16 ;
state->TunerRegs[6].Reg_Val = 0x00 ;
state->TunerRegs[7].Reg_Num = 17 ;
state->TunerRegs[7].Reg_Val = 0x00 ;
state->TunerRegs[8].Reg_Num = 18 ;
state->TunerRegs[8].Reg_Val = 0x00 ;
state->TunerRegs[9].Reg_Num = 19 ;
state->TunerRegs[9].Reg_Val = 0x34 ;
state->TunerRegs[10].Reg_Num = 21 ;
state->TunerRegs[10].Reg_Val = 0x00 ;
state->TunerRegs[11].Reg_Num = 22 ;
state->TunerRegs[11].Reg_Val = 0x6B ;
state->TunerRegs[12].Reg_Num = 23 ;
state->TunerRegs[12].Reg_Val = 0x35 ;
state->TunerRegs[13].Reg_Num = 24 ;
state->TunerRegs[13].Reg_Val = 0x70 ;
state->TunerRegs[14].Reg_Num = 25 ;
state->TunerRegs[14].Reg_Val = 0x3E ;
state->TunerRegs[15].Reg_Num = 26 ;
state->TunerRegs[15].Reg_Val = 0x82 ;
state->TunerRegs[16].Reg_Num = 31 ;
state->TunerRegs[16].Reg_Val = 0x00 ;
state->TunerRegs[17].Reg_Num = 32 ;
state->TunerRegs[17].Reg_Val = 0x40 ;
state->TunerRegs[18].Reg_Num = 33 ;
state->TunerRegs[18].Reg_Val = 0x53 ;
state->TunerRegs[19].Reg_Num = 34 ;
state->TunerRegs[19].Reg_Val = 0x81 ;
state->TunerRegs[20].Reg_Num = 35 ;
state->TunerRegs[20].Reg_Val = 0xC9 ;
state->TunerRegs[21].Reg_Num = 36 ;
state->TunerRegs[21].Reg_Val = 0x01 ;
state->TunerRegs[22].Reg_Num = 37 ;
state->TunerRegs[22].Reg_Val = 0x00 ;
state->TunerRegs[23].Reg_Num = 41 ;
state->TunerRegs[23].Reg_Val = 0x00 ;
state->TunerRegs[24].Reg_Num = 42 ;
state->TunerRegs[24].Reg_Val = 0xF8 ;
state->TunerRegs[25].Reg_Num = 43 ;
state->TunerRegs[25].Reg_Val = 0x43 ;
state->TunerRegs[26].Reg_Num = 44 ;
state->TunerRegs[26].Reg_Val = 0x20 ;
state->TunerRegs[27].Reg_Num = 45 ;
state->TunerRegs[27].Reg_Val = 0x80 ;
state->TunerRegs[28].Reg_Num = 46 ;
state->TunerRegs[28].Reg_Val = 0x88 ;
state->TunerRegs[29].Reg_Num = 47 ;
state->TunerRegs[29].Reg_Val = 0x86 ;
state->TunerRegs[30].Reg_Num = 48 ;
state->TunerRegs[30].Reg_Val = 0x00 ;
state->TunerRegs[31].Reg_Num = 49 ;
state->TunerRegs[31].Reg_Val = 0x00 ;
state->TunerRegs[32].Reg_Num = 53 ;
state->TunerRegs[32].Reg_Val = 0x94 ;
state->TunerRegs[33].Reg_Num = 54 ;
state->TunerRegs[33].Reg_Val = 0xFA ;
state->TunerRegs[34].Reg_Num = 55 ;
state->TunerRegs[34].Reg_Val = 0x92 ;
state->TunerRegs[35].Reg_Num = 56 ;
state->TunerRegs[35].Reg_Val = 0x80 ;
state->TunerRegs[36].Reg_Num = 57 ;
state->TunerRegs[36].Reg_Val = 0x41 ;
state->TunerRegs[37].Reg_Num = 58 ;
state->TunerRegs[37].Reg_Val = 0xDB ;
state->TunerRegs[38].Reg_Num = 59 ;
state->TunerRegs[38].Reg_Val = 0x00 ;
state->TunerRegs[39].Reg_Num = 60 ;
state->TunerRegs[39].Reg_Val = 0x00 ;
state->TunerRegs[40].Reg_Num = 61 ;
state->TunerRegs[40].Reg_Val = 0x00 ;
state->TunerRegs[41].Reg_Num = 62 ;
state->TunerRegs[41].Reg_Val = 0x00 ;
state->TunerRegs[42].Reg_Num = 65 ;
state->TunerRegs[42].Reg_Val = 0xF8 ;
state->TunerRegs[43].Reg_Num = 66 ;
state->TunerRegs[43].Reg_Val = 0xE4 ;
state->TunerRegs[44].Reg_Num = 67 ;
state->TunerRegs[44].Reg_Val = 0x90 ;
state->TunerRegs[45].Reg_Num = 68 ;
state->TunerRegs[45].Reg_Val = 0xC0 ;
state->TunerRegs[46].Reg_Num = 69 ;
state->TunerRegs[46].Reg_Val = 0x01 ;
state->TunerRegs[47].Reg_Num = 70 ;
state->TunerRegs[47].Reg_Val = 0x50 ;
state->TunerRegs[48].Reg_Num = 71 ;
state->TunerRegs[48].Reg_Val = 0x06 ;
state->TunerRegs[49].Reg_Num = 72 ;
state->TunerRegs[49].Reg_Val = 0x00 ;
state->TunerRegs[50].Reg_Num = 73 ;
state->TunerRegs[50].Reg_Val = 0x20 ;
state->TunerRegs[51].Reg_Num = 76 ;
state->TunerRegs[51].Reg_Val = 0xBB ;
state->TunerRegs[52].Reg_Num = 77 ;
state->TunerRegs[52].Reg_Val = 0x13 ;
state->TunerRegs[53].Reg_Num = 81 ;
state->TunerRegs[53].Reg_Val = 0x04 ;
state->TunerRegs[54].Reg_Num = 82 ;
state->TunerRegs[54].Reg_Val = 0x75 ;
state->TunerRegs[55].Reg_Num = 83 ;
state->TunerRegs[55].Reg_Val = 0x00 ;
state->TunerRegs[56].Reg_Num = 84 ;
state->TunerRegs[56].Reg_Val = 0x00 ;
state->TunerRegs[57].Reg_Num = 85 ;
state->TunerRegs[57].Reg_Val = 0x00 ;
state->TunerRegs[58].Reg_Num = 91 ;
state->TunerRegs[58].Reg_Val = 0x70 ;
state->TunerRegs[59].Reg_Num = 92 ;
state->TunerRegs[59].Reg_Val = 0x00 ;
state->TunerRegs[60].Reg_Num = 93 ;
state->TunerRegs[60].Reg_Val = 0x00 ;
state->TunerRegs[61].Reg_Num = 94 ;
state->TunerRegs[61].Reg_Val = 0x00 ;
state->TunerRegs[62].Reg_Num = 95 ;
state->TunerRegs[62].Reg_Val = 0x0C ;
state->TunerRegs[63].Reg_Num = 96 ;
state->TunerRegs[63].Reg_Val = 0x00 ;
state->TunerRegs[64].Reg_Num = 97 ;
state->TunerRegs[64].Reg_Val = 0x00 ;
state->TunerRegs[65].Reg_Num = 98 ;
state->TunerRegs[65].Reg_Val = 0xE2 ;
state->TunerRegs[66].Reg_Num = 99 ;
state->TunerRegs[66].Reg_Val = 0x00 ;
state->TunerRegs[67].Reg_Num = 100 ;
state->TunerRegs[67].Reg_Val = 0x00 ;
state->TunerRegs[68].Reg_Num = 101 ;
state->TunerRegs[68].Reg_Val = 0x12 ;
state->TunerRegs[69].Reg_Num = 102 ;
state->TunerRegs[69].Reg_Val = 0x80 ;
state->TunerRegs[70].Reg_Num = 103 ;
state->TunerRegs[70].Reg_Val = 0x32 ;
state->TunerRegs[71].Reg_Num = 104 ;
state->TunerRegs[71].Reg_Val = 0xB4 ;
state->TunerRegs[72].Reg_Num = 105 ;
state->TunerRegs[72].Reg_Val = 0x60 ;
state->TunerRegs[73].Reg_Num = 106 ;
state->TunerRegs[73].Reg_Val = 0x83 ;
state->TunerRegs[74].Reg_Num = 107 ;
state->TunerRegs[74].Reg_Val = 0x84 ;
state->TunerRegs[75].Reg_Num = 108 ;
state->TunerRegs[75].Reg_Val = 0x9C ;
state->TunerRegs[76].Reg_Num = 109 ;
state->TunerRegs[76].Reg_Val = 0x02 ;
state->TunerRegs[77].Reg_Num = 110 ;
state->TunerRegs[77].Reg_Val = 0x81 ;
state->TunerRegs[78].Reg_Num = 111 ;
state->TunerRegs[78].Reg_Val = 0xC0 ;
state->TunerRegs[79].Reg_Num = 112 ;
state->TunerRegs[79].Reg_Val = 0x10 ;
state->TunerRegs[80].Reg_Num = 131 ;
state->TunerRegs[80].Reg_Val = 0x8A ;
state->TunerRegs[81].Reg_Num = 132 ;
state->TunerRegs[81].Reg_Val = 0x10 ;
state->TunerRegs[82].Reg_Num = 133 ;
state->TunerRegs[82].Reg_Val = 0x24 ;
state->TunerRegs[83].Reg_Num = 134 ;
state->TunerRegs[83].Reg_Val = 0x00 ;
state->TunerRegs[84].Reg_Num = 135 ;
state->TunerRegs[84].Reg_Val = 0x00 ;
state->TunerRegs[85].Reg_Num = 136 ;
state->TunerRegs[85].Reg_Val = 0x7E ;
state->TunerRegs[86].Reg_Num = 137 ;
state->TunerRegs[86].Reg_Val = 0x40 ;
state->TunerRegs[87].Reg_Num = 138 ;
state->TunerRegs[87].Reg_Val = 0x38 ;
state->TunerRegs[88].Reg_Num = 146 ;
state->TunerRegs[88].Reg_Val = 0xF6 ;
state->TunerRegs[89].Reg_Num = 147 ;
state->TunerRegs[89].Reg_Val = 0x1A ;
state->TunerRegs[90].Reg_Num = 148 ;
state->TunerRegs[90].Reg_Val = 0x62 ;
state->TunerRegs[91].Reg_Num = 149 ;
state->TunerRegs[91].Reg_Val = 0x33 ;
state->TunerRegs[92].Reg_Num = 150 ;
state->TunerRegs[92].Reg_Val = 0x80 ;
state->TunerRegs[93].Reg_Num = 156 ;
state->TunerRegs[93].Reg_Val = 0x56 ;
state->TunerRegs[94].Reg_Num = 157 ;
state->TunerRegs[94].Reg_Val = 0x17 ;
state->TunerRegs[95].Reg_Num = 158 ;
state->TunerRegs[95].Reg_Val = 0xA9 ;
state->TunerRegs[96].Reg_Num = 159 ;
state->TunerRegs[96].Reg_Val = 0x00 ;
state->TunerRegs[97].Reg_Num = 160 ;
state->TunerRegs[97].Reg_Val = 0x00 ;
state->TunerRegs[98].Reg_Num = 161 ;
state->TunerRegs[98].Reg_Val = 0x00 ;
state->TunerRegs[99].Reg_Num = 162 ;
state->TunerRegs[99].Reg_Val = 0x40 ;
state->TunerRegs[100].Reg_Num = 166 ;
state->TunerRegs[100].Reg_Val = 0xAE ;
state->TunerRegs[101].Reg_Num = 167 ;
state->TunerRegs[101].Reg_Val = 0x1B ;
state->TunerRegs[102].Reg_Num = 168 ;
state->TunerRegs[102].Reg_Val = 0xF2 ;
state->TunerRegs[103].Reg_Num = 195 ;
state->TunerRegs[103].Reg_Val = 0x00 ;
return 0 ;
}
// DONE
u16 MXL5005_ControlInit(struct dvb_frontend *fe)
{
struct mxl5005s_state *state = fe->tuner_priv;
state->Init_Ctrl_Num = INITCTRL_NUM;
state->Init_Ctrl[0].Ctrl_Num = DN_IQTN_AMP_CUT ;
state->Init_Ctrl[0].size = 1 ;
state->Init_Ctrl[0].addr[0] = 73;
state->Init_Ctrl[0].bit[0] = 7;
state->Init_Ctrl[0].val[0] = 0;
state->Init_Ctrl[1].Ctrl_Num = BB_MODE ;
state->Init_Ctrl[1].size = 1 ;
state->Init_Ctrl[1].addr[0] = 53;
state->Init_Ctrl[1].bit[0] = 2;
state->Init_Ctrl[1].val[0] = 1;
state->Init_Ctrl[2].Ctrl_Num = BB_BUF ;
state->Init_Ctrl[2].size = 2 ;
state->Init_Ctrl[2].addr[0] = 53;
state->Init_Ctrl[2].bit[0] = 1;
state->Init_Ctrl[2].val[0] = 0;
state->Init_Ctrl[2].addr[1] = 57;
state->Init_Ctrl[2].bit[1] = 0;
state->Init_Ctrl[2].val[1] = 1;
state->Init_Ctrl[3].Ctrl_Num = BB_BUF_OA ;
state->Init_Ctrl[3].size = 1 ;
state->Init_Ctrl[3].addr[0] = 53;
state->Init_Ctrl[3].bit[0] = 0;
state->Init_Ctrl[3].val[0] = 0;
state->Init_Ctrl[4].Ctrl_Num = BB_ALPF_BANDSELECT ;
state->Init_Ctrl[4].size = 3 ;
state->Init_Ctrl[4].addr[0] = 53;
state->Init_Ctrl[4].bit[0] = 5;
state->Init_Ctrl[4].val[0] = 0;
state->Init_Ctrl[4].addr[1] = 53;
state->Init_Ctrl[4].bit[1] = 6;
state->Init_Ctrl[4].val[1] = 0;
state->Init_Ctrl[4].addr[2] = 53;
state->Init_Ctrl[4].bit[2] = 7;
state->Init_Ctrl[4].val[2] = 1;
state->Init_Ctrl[5].Ctrl_Num = BB_IQSWAP ;
state->Init_Ctrl[5].size = 1 ;
state->Init_Ctrl[5].addr[0] = 59;
state->Init_Ctrl[5].bit[0] = 0;
state->Init_Ctrl[5].val[0] = 0;
state->Init_Ctrl[6].Ctrl_Num = BB_DLPF_BANDSEL ;
state->Init_Ctrl[6].size = 2 ;
state->Init_Ctrl[6].addr[0] = 53;
state->Init_Ctrl[6].bit[0] = 3;
state->Init_Ctrl[6].val[0] = 0;
state->Init_Ctrl[6].addr[1] = 53;
state->Init_Ctrl[6].bit[1] = 4;
state->Init_Ctrl[6].val[1] = 1;
state->Init_Ctrl[7].Ctrl_Num = RFSYN_CHP_GAIN ;
state->Init_Ctrl[7].size = 4 ;
state->Init_Ctrl[7].addr[0] = 22;
state->Init_Ctrl[7].bit[0] = 4;
state->Init_Ctrl[7].val[0] = 0;
state->Init_Ctrl[7].addr[1] = 22;
state->Init_Ctrl[7].bit[1] = 5;
state->Init_Ctrl[7].val[1] = 1;
state->Init_Ctrl[7].addr[2] = 22;
state->Init_Ctrl[7].bit[2] = 6;
state->Init_Ctrl[7].val[2] = 1;
state->Init_Ctrl[7].addr[3] = 22;
state->Init_Ctrl[7].bit[3] = 7;
state->Init_Ctrl[7].val[3] = 0;
state->Init_Ctrl[8].Ctrl_Num = RFSYN_EN_CHP_HIGAIN ;
state->Init_Ctrl[8].size = 1 ;
state->Init_Ctrl[8].addr[0] = 22;
state->Init_Ctrl[8].bit[0] = 2;
state->Init_Ctrl[8].val[0] = 0;
state->Init_Ctrl[9].Ctrl_Num = AGC_IF ;
state->Init_Ctrl[9].size = 4 ;
state->Init_Ctrl[9].addr[0] = 76;
state->Init_Ctrl[9].bit[0] = 0;
state->Init_Ctrl[9].val[0] = 1;
state->Init_Ctrl[9].addr[1] = 76;
state->Init_Ctrl[9].bit[1] = 1;
state->Init_Ctrl[9].val[1] = 1;
state->Init_Ctrl[9].addr[2] = 76;
state->Init_Ctrl[9].bit[2] = 2;
state->Init_Ctrl[9].val[2] = 0;
state->Init_Ctrl[9].addr[3] = 76;
state->Init_Ctrl[9].bit[3] = 3;
state->Init_Ctrl[9].val[3] = 1;
state->Init_Ctrl[10].Ctrl_Num = AGC_RF ;
state->Init_Ctrl[10].size = 4 ;
state->Init_Ctrl[10].addr[0] = 76;
state->Init_Ctrl[10].bit[0] = 4;
state->Init_Ctrl[10].val[0] = 1;
state->Init_Ctrl[10].addr[1] = 76;
state->Init_Ctrl[10].bit[1] = 5;
state->Init_Ctrl[10].val[1] = 1;
state->Init_Ctrl[10].addr[2] = 76;
state->Init_Ctrl[10].bit[2] = 6;
state->Init_Ctrl[10].val[2] = 0;
state->Init_Ctrl[10].addr[3] = 76;
state->Init_Ctrl[10].bit[3] = 7;
state->Init_Ctrl[10].val[3] = 1;
state->Init_Ctrl[11].Ctrl_Num = IF_DIVVAL ;
state->Init_Ctrl[11].size = 5 ;
state->Init_Ctrl[11].addr[0] = 43;
state->Init_Ctrl[11].bit[0] = 3;
state->Init_Ctrl[11].val[0] = 0;
state->Init_Ctrl[11].addr[1] = 43;
state->Init_Ctrl[11].bit[1] = 4;
state->Init_Ctrl[11].val[1] = 0;
state->Init_Ctrl[11].addr[2] = 43;
state->Init_Ctrl[11].bit[2] = 5;
state->Init_Ctrl[11].val[2] = 0;
state->Init_Ctrl[11].addr[3] = 43;
state->Init_Ctrl[11].bit[3] = 6;
state->Init_Ctrl[11].val[3] = 1;
state->Init_Ctrl[11].addr[4] = 43;
state->Init_Ctrl[11].bit[4] = 7;
state->Init_Ctrl[11].val[4] = 0;
state->Init_Ctrl[12].Ctrl_Num = IF_VCO_BIAS ;
state->Init_Ctrl[12].size = 6 ;
state->Init_Ctrl[12].addr[0] = 44;
state->Init_Ctrl[12].bit[0] = 2;
state->Init_Ctrl[12].val[0] = 0;
state->Init_Ctrl[12].addr[1] = 44;
state->Init_Ctrl[12].bit[1] = 3;
state->Init_Ctrl[12].val[1] = 0;
state->Init_Ctrl[12].addr[2] = 44;
state->Init_Ctrl[12].bit[2] = 4;
state->Init_Ctrl[12].val[2] = 0;
state->Init_Ctrl[12].addr[3] = 44;
state->Init_Ctrl[12].bit[3] = 5;
state->Init_Ctrl[12].val[3] = 1;
state->Init_Ctrl[12].addr[4] = 44;
state->Init_Ctrl[12].bit[4] = 6;
state->Init_Ctrl[12].val[4] = 0;
state->Init_Ctrl[12].addr[5] = 44;
state->Init_Ctrl[12].bit[5] = 7;
state->Init_Ctrl[12].val[5] = 0;
state->Init_Ctrl[13].Ctrl_Num = CHCAL_INT_MOD_IF ;
state->Init_Ctrl[13].size = 7 ;
state->Init_Ctrl[13].addr[0] = 11;
state->Init_Ctrl[13].bit[0] = 0;
state->Init_Ctrl[13].val[0] = 1;
state->Init_Ctrl[13].addr[1] = 11;
state->Init_Ctrl[13].bit[1] = 1;
state->Init_Ctrl[13].val[1] = 0;
state->Init_Ctrl[13].addr[2] = 11;
state->Init_Ctrl[13].bit[2] = 2;
state->Init_Ctrl[13].val[2] = 0;
state->Init_Ctrl[13].addr[3] = 11;
state->Init_Ctrl[13].bit[3] = 3;
state->Init_Ctrl[13].val[3] = 1;
state->Init_Ctrl[13].addr[4] = 11;
state->Init_Ctrl[13].bit[4] = 4;
state->Init_Ctrl[13].val[4] = 1;
state->Init_Ctrl[13].addr[5] = 11;
state->Init_Ctrl[13].bit[5] = 5;
state->Init_Ctrl[13].val[5] = 0;
state->Init_Ctrl[13].addr[6] = 11;
state->Init_Ctrl[13].bit[6] = 6;
state->Init_Ctrl[13].val[6] = 0;
state->Init_Ctrl[14].Ctrl_Num = CHCAL_FRAC_MOD_IF ;
state->Init_Ctrl[14].size = 16 ;
state->Init_Ctrl[14].addr[0] = 13;
state->Init_Ctrl[14].bit[0] = 0;
state->Init_Ctrl[14].val[0] = 0;
state->Init_Ctrl[14].addr[1] = 13;
state->Init_Ctrl[14].bit[1] = 1;
state->Init_Ctrl[14].val[1] = 0;
state->Init_Ctrl[14].addr[2] = 13;
state->Init_Ctrl[14].bit[2] = 2;
state->Init_Ctrl[14].val[2] = 0;
state->Init_Ctrl[14].addr[3] = 13;
state->Init_Ctrl[14].bit[3] = 3;
state->Init_Ctrl[14].val[3] = 0;
state->Init_Ctrl[14].addr[4] = 13;
state->Init_Ctrl[14].bit[4] = 4;
state->Init_Ctrl[14].val[4] = 0;
state->Init_Ctrl[14].addr[5] = 13;
state->Init_Ctrl[14].bit[5] = 5;
state->Init_Ctrl[14].val[5] = 0;
state->Init_Ctrl[14].addr[6] = 13;
state->Init_Ctrl[14].bit[6] = 6;
state->Init_Ctrl[14].val[6] = 0;
state->Init_Ctrl[14].addr[7] = 13;
state->Init_Ctrl[14].bit[7] = 7;
state->Init_Ctrl[14].val[7] = 0;
state->Init_Ctrl[14].addr[8] = 12;
state->Init_Ctrl[14].bit[8] = 0;
state->Init_Ctrl[14].val[8] = 0;
state->Init_Ctrl[14].addr[9] = 12;
state->Init_Ctrl[14].bit[9] = 1;
state->Init_Ctrl[14].val[9] = 0;
state->Init_Ctrl[14].addr[10] = 12;
state->Init_Ctrl[14].bit[10] = 2;
state->Init_Ctrl[14].val[10] = 0;
state->Init_Ctrl[14].addr[11] = 12;
state->Init_Ctrl[14].bit[11] = 3;
state->Init_Ctrl[14].val[11] = 0;
state->Init_Ctrl[14].addr[12] = 12;
state->Init_Ctrl[14].bit[12] = 4;
state->Init_Ctrl[14].val[12] = 0;
state->Init_Ctrl[14].addr[13] = 12;
state->Init_Ctrl[14].bit[13] = 5;
state->Init_Ctrl[14].val[13] = 1;
state->Init_Ctrl[14].addr[14] = 12;
state->Init_Ctrl[14].bit[14] = 6;
state->Init_Ctrl[14].val[14] = 1;
state->Init_Ctrl[14].addr[15] = 12;
state->Init_Ctrl[14].bit[15] = 7;
state->Init_Ctrl[14].val[15] = 0;
state->Init_Ctrl[15].Ctrl_Num = DRV_RES_SEL ;
state->Init_Ctrl[15].size = 3 ;
state->Init_Ctrl[15].addr[0] = 147;
state->Init_Ctrl[15].bit[0] = 2;
state->Init_Ctrl[15].val[0] = 0;
state->Init_Ctrl[15].addr[1] = 147;
state->Init_Ctrl[15].bit[1] = 3;
state->Init_Ctrl[15].val[1] = 1;
state->Init_Ctrl[15].addr[2] = 147;
state->Init_Ctrl[15].bit[2] = 4;
state->Init_Ctrl[15].val[2] = 1;
state->Init_Ctrl[16].Ctrl_Num = I_DRIVER ;
state->Init_Ctrl[16].size = 2 ;
state->Init_Ctrl[16].addr[0] = 147;
state->Init_Ctrl[16].bit[0] = 0;
state->Init_Ctrl[16].val[0] = 0;
state->Init_Ctrl[16].addr[1] = 147;
state->Init_Ctrl[16].bit[1] = 1;
state->Init_Ctrl[16].val[1] = 1;
state->Init_Ctrl[17].Ctrl_Num = EN_AAF ;
state->Init_Ctrl[17].size = 1 ;
state->Init_Ctrl[17].addr[0] = 147;
state->Init_Ctrl[17].bit[0] = 7;
state->Init_Ctrl[17].val[0] = 0;
state->Init_Ctrl[18].Ctrl_Num = EN_3P ;
state->Init_Ctrl[18].size = 1 ;
state->Init_Ctrl[18].addr[0] = 147;
state->Init_Ctrl[18].bit[0] = 6;
state->Init_Ctrl[18].val[0] = 0;
state->Init_Ctrl[19].Ctrl_Num = EN_AUX_3P ;
state->Init_Ctrl[19].size = 1 ;
state->Init_Ctrl[19].addr[0] = 156;
state->Init_Ctrl[19].bit[0] = 0;
state->Init_Ctrl[19].val[0] = 0;
state->Init_Ctrl[20].Ctrl_Num = SEL_AAF_BAND ;
state->Init_Ctrl[20].size = 1 ;
state->Init_Ctrl[20].addr[0] = 147;
state->Init_Ctrl[20].bit[0] = 5;
state->Init_Ctrl[20].val[0] = 0;
state->Init_Ctrl[21].Ctrl_Num = SEQ_ENCLK16_CLK_OUT ;
state->Init_Ctrl[21].size = 1 ;
state->Init_Ctrl[21].addr[0] = 137;
state->Init_Ctrl[21].bit[0] = 4;
state->Init_Ctrl[21].val[0] = 0;
state->Init_Ctrl[22].Ctrl_Num = SEQ_SEL4_16B ;
state->Init_Ctrl[22].size = 1 ;
state->Init_Ctrl[22].addr[0] = 137;
state->Init_Ctrl[22].bit[0] = 7;
state->Init_Ctrl[22].val[0] = 0;
state->Init_Ctrl[23].Ctrl_Num = XTAL_CAPSELECT ;
state->Init_Ctrl[23].size = 1 ;
state->Init_Ctrl[23].addr[0] = 91;
state->Init_Ctrl[23].bit[0] = 5;
state->Init_Ctrl[23].val[0] = 1;
state->Init_Ctrl[24].Ctrl_Num = IF_SEL_DBL ;
state->Init_Ctrl[24].size = 1 ;
state->Init_Ctrl[24].addr[0] = 43;
state->Init_Ctrl[24].bit[0] = 0;
state->Init_Ctrl[24].val[0] = 1;
state->Init_Ctrl[25].Ctrl_Num = RFSYN_R_DIV ;
state->Init_Ctrl[25].size = 2 ;
state->Init_Ctrl[25].addr[0] = 22;
state->Init_Ctrl[25].bit[0] = 0;
state->Init_Ctrl[25].val[0] = 1;
state->Init_Ctrl[25].addr[1] = 22;
state->Init_Ctrl[25].bit[1] = 1;
state->Init_Ctrl[25].val[1] = 1;
state->Init_Ctrl[26].Ctrl_Num = SEQ_EXTSYNTHCALIF ;
state->Init_Ctrl[26].size = 1 ;
state->Init_Ctrl[26].addr[0] = 134;
state->Init_Ctrl[26].bit[0] = 2;
state->Init_Ctrl[26].val[0] = 0;
state->Init_Ctrl[27].Ctrl_Num = SEQ_EXTDCCAL ;
state->Init_Ctrl[27].size = 1 ;
state->Init_Ctrl[27].addr[0] = 137;
state->Init_Ctrl[27].bit[0] = 3;
state->Init_Ctrl[27].val[0] = 0;
state->Init_Ctrl[28].Ctrl_Num = AGC_EN_RSSI ;
state->Init_Ctrl[28].size = 1 ;
state->Init_Ctrl[28].addr[0] = 77;
state->Init_Ctrl[28].bit[0] = 7;
state->Init_Ctrl[28].val[0] = 0;
state->Init_Ctrl[29].Ctrl_Num = RFA_ENCLKRFAGC ;
state->Init_Ctrl[29].size = 1 ;
state->Init_Ctrl[29].addr[0] = 166;
state->Init_Ctrl[29].bit[0] = 7;
state->Init_Ctrl[29].val[0] = 1;
state->Init_Ctrl[30].Ctrl_Num = RFA_RSSI_REFH ;
state->Init_Ctrl[30].size = 3 ;
state->Init_Ctrl[30].addr[0] = 166;
state->Init_Ctrl[30].bit[0] = 0;
state->Init_Ctrl[30].val[0] = 0;
state->Init_Ctrl[30].addr[1] = 166;
state->Init_Ctrl[30].bit[1] = 1;
state->Init_Ctrl[30].val[1] = 1;
state->Init_Ctrl[30].addr[2] = 166;
state->Init_Ctrl[30].bit[2] = 2;
state->Init_Ctrl[30].val[2] = 1;
state->Init_Ctrl[31].Ctrl_Num = RFA_RSSI_REF ;
state->Init_Ctrl[31].size = 3 ;
state->Init_Ctrl[31].addr[0] = 166;
state->Init_Ctrl[31].bit[0] = 3;
state->Init_Ctrl[31].val[0] = 1;
state->Init_Ctrl[31].addr[1] = 166;
state->Init_Ctrl[31].bit[1] = 4;
state->Init_Ctrl[31].val[1] = 0;
state->Init_Ctrl[31].addr[2] = 166;
state->Init_Ctrl[31].bit[2] = 5;
state->Init_Ctrl[31].val[2] = 1;
state->Init_Ctrl[32].Ctrl_Num = RFA_RSSI_REFL ;
state->Init_Ctrl[32].size = 3 ;
state->Init_Ctrl[32].addr[0] = 167;
state->Init_Ctrl[32].bit[0] = 0;
state->Init_Ctrl[32].val[0] = 1;
state->Init_Ctrl[32].addr[1] = 167;
state->Init_Ctrl[32].bit[1] = 1;
state->Init_Ctrl[32].val[1] = 1;
state->Init_Ctrl[32].addr[2] = 167;
state->Init_Ctrl[32].bit[2] = 2;
state->Init_Ctrl[32].val[2] = 0;
state->Init_Ctrl[33].Ctrl_Num = RFA_FLR ;
state->Init_Ctrl[33].size = 4 ;
state->Init_Ctrl[33].addr[0] = 168;
state->Init_Ctrl[33].bit[0] = 0;
state->Init_Ctrl[33].val[0] = 0;
state->Init_Ctrl[33].addr[1] = 168;
state->Init_Ctrl[33].bit[1] = 1;
state->Init_Ctrl[33].val[1] = 1;
state->Init_Ctrl[33].addr[2] = 168;
state->Init_Ctrl[33].bit[2] = 2;
state->Init_Ctrl[33].val[2] = 0;
state->Init_Ctrl[33].addr[3] = 168;
state->Init_Ctrl[33].bit[3] = 3;
state->Init_Ctrl[33].val[3] = 0;
state->Init_Ctrl[34].Ctrl_Num = RFA_CEIL ;
state->Init_Ctrl[34].size = 4 ;
state->Init_Ctrl[34].addr[0] = 168;
state->Init_Ctrl[34].bit[0] = 4;
state->Init_Ctrl[34].val[0] = 1;
state->Init_Ctrl[34].addr[1] = 168;
state->Init_Ctrl[34].bit[1] = 5;
state->Init_Ctrl[34].val[1] = 1;
state->Init_Ctrl[34].addr[2] = 168;
state->Init_Ctrl[34].bit[2] = 6;
state->Init_Ctrl[34].val[2] = 1;
state->Init_Ctrl[34].addr[3] = 168;
state->Init_Ctrl[34].bit[3] = 7;
state->Init_Ctrl[34].val[3] = 1;
state->Init_Ctrl[35].Ctrl_Num = SEQ_EXTIQFSMPULSE ;
state->Init_Ctrl[35].size = 1 ;
state->Init_Ctrl[35].addr[0] = 135;
state->Init_Ctrl[35].bit[0] = 0;
state->Init_Ctrl[35].val[0] = 0;
state->Init_Ctrl[36].Ctrl_Num = OVERRIDE_1 ;
state->Init_Ctrl[36].size = 1 ;
state->Init_Ctrl[36].addr[0] = 56;
state->Init_Ctrl[36].bit[0] = 3;
state->Init_Ctrl[36].val[0] = 0;
state->Init_Ctrl[37].Ctrl_Num = BB_INITSTATE_DLPF_TUNE ;
state->Init_Ctrl[37].size = 7 ;
state->Init_Ctrl[37].addr[0] = 59;
state->Init_Ctrl[37].bit[0] = 1;
state->Init_Ctrl[37].val[0] = 0;
state->Init_Ctrl[37].addr[1] = 59;
state->Init_Ctrl[37].bit[1] = 2;
state->Init_Ctrl[37].val[1] = 0;
state->Init_Ctrl[37].addr[2] = 59;
state->Init_Ctrl[37].bit[2] = 3;
state->Init_Ctrl[37].val[2] = 0;
state->Init_Ctrl[37].addr[3] = 59;
state->Init_Ctrl[37].bit[3] = 4;
state->Init_Ctrl[37].val[3] = 0;
state->Init_Ctrl[37].addr[4] = 59;
state->Init_Ctrl[37].bit[4] = 5;
state->Init_Ctrl[37].val[4] = 0;
state->Init_Ctrl[37].addr[5] = 59;
state->Init_Ctrl[37].bit[5] = 6;
state->Init_Ctrl[37].val[5] = 0;
state->Init_Ctrl[37].addr[6] = 59;
state->Init_Ctrl[37].bit[6] = 7;
state->Init_Ctrl[37].val[6] = 0;
state->Init_Ctrl[38].Ctrl_Num = TG_R_DIV ;
state->Init_Ctrl[38].size = 6 ;
state->Init_Ctrl[38].addr[0] = 32;
state->Init_Ctrl[38].bit[0] = 2;
state->Init_Ctrl[38].val[0] = 0;
state->Init_Ctrl[38].addr[1] = 32;
state->Init_Ctrl[38].bit[1] = 3;
state->Init_Ctrl[38].val[1] = 0;
state->Init_Ctrl[38].addr[2] = 32;
state->Init_Ctrl[38].bit[2] = 4;
state->Init_Ctrl[38].val[2] = 0;
state->Init_Ctrl[38].addr[3] = 32;
state->Init_Ctrl[38].bit[3] = 5;
state->Init_Ctrl[38].val[3] = 0;
state->Init_Ctrl[38].addr[4] = 32;
state->Init_Ctrl[38].bit[4] = 6;
state->Init_Ctrl[38].val[4] = 1;
state->Init_Ctrl[38].addr[5] = 32;
state->Init_Ctrl[38].bit[5] = 7;
state->Init_Ctrl[38].val[5] = 0;
state->Init_Ctrl[39].Ctrl_Num = EN_CHP_LIN_B ;
state->Init_Ctrl[39].size = 1 ;
state->Init_Ctrl[39].addr[0] = 25;
state->Init_Ctrl[39].bit[0] = 3;
state->Init_Ctrl[39].val[0] = 1;
state->CH_Ctrl_Num = CHCTRL_NUM ;
state->CH_Ctrl[0].Ctrl_Num = DN_POLY ;
state->CH_Ctrl[0].size = 2 ;
state->CH_Ctrl[0].addr[0] = 68;
state->CH_Ctrl[0].bit[0] = 6;
state->CH_Ctrl[0].val[0] = 1;
state->CH_Ctrl[0].addr[1] = 68;
state->CH_Ctrl[0].bit[1] = 7;
state->CH_Ctrl[0].val[1] = 1;
state->CH_Ctrl[1].Ctrl_Num = DN_RFGAIN ;
state->CH_Ctrl[1].size = 2 ;
state->CH_Ctrl[1].addr[0] = 70;
state->CH_Ctrl[1].bit[0] = 6;
state->CH_Ctrl[1].val[0] = 1;
state->CH_Ctrl[1].addr[1] = 70;
state->CH_Ctrl[1].bit[1] = 7;
state->CH_Ctrl[1].val[1] = 0;
state->CH_Ctrl[2].Ctrl_Num = DN_CAP_RFLPF ;
state->CH_Ctrl[2].size = 9 ;
state->CH_Ctrl[2].addr[0] = 69;
state->CH_Ctrl[2].bit[0] = 5;
state->CH_Ctrl[2].val[0] = 0;
state->CH_Ctrl[2].addr[1] = 69;
state->CH_Ctrl[2].bit[1] = 6;
state->CH_Ctrl[2].val[1] = 0;
state->CH_Ctrl[2].addr[2] = 69;
state->CH_Ctrl[2].bit[2] = 7;
state->CH_Ctrl[2].val[2] = 0;
state->CH_Ctrl[2].addr[3] = 68;
state->CH_Ctrl[2].bit[3] = 0;
state->CH_Ctrl[2].val[3] = 0;
state->CH_Ctrl[2].addr[4] = 68;
state->CH_Ctrl[2].bit[4] = 1;
state->CH_Ctrl[2].val[4] = 0;
state->CH_Ctrl[2].addr[5] = 68;
state->CH_Ctrl[2].bit[5] = 2;
state->CH_Ctrl[2].val[5] = 0;
state->CH_Ctrl[2].addr[6] = 68;
state->CH_Ctrl[2].bit[6] = 3;
state->CH_Ctrl[2].val[6] = 0;
state->CH_Ctrl[2].addr[7] = 68;
state->CH_Ctrl[2].bit[7] = 4;
state->CH_Ctrl[2].val[7] = 0;
state->CH_Ctrl[2].addr[8] = 68;
state->CH_Ctrl[2].bit[8] = 5;
state->CH_Ctrl[2].val[8] = 0;
state->CH_Ctrl[3].Ctrl_Num = DN_EN_VHFUHFBAR ;
state->CH_Ctrl[3].size = 1 ;
state->CH_Ctrl[3].addr[0] = 70;
state->CH_Ctrl[3].bit[0] = 5;
state->CH_Ctrl[3].val[0] = 0;
state->CH_Ctrl[4].Ctrl_Num = DN_GAIN_ADJUST ;
state->CH_Ctrl[4].size = 3 ;
state->CH_Ctrl[4].addr[0] = 73;
state->CH_Ctrl[4].bit[0] = 4;
state->CH_Ctrl[4].val[0] = 0;
state->CH_Ctrl[4].addr[1] = 73;
state->CH_Ctrl[4].bit[1] = 5;
state->CH_Ctrl[4].val[1] = 1;
state->CH_Ctrl[4].addr[2] = 73;
state->CH_Ctrl[4].bit[2] = 6;
state->CH_Ctrl[4].val[2] = 0;
state->CH_Ctrl[5].Ctrl_Num = DN_IQTNBUF_AMP ;
state->CH_Ctrl[5].size = 4 ;
state->CH_Ctrl[5].addr[0] = 70;
state->CH_Ctrl[5].bit[0] = 0;
state->CH_Ctrl[5].val[0] = 0;
state->CH_Ctrl[5].addr[1] = 70;
state->CH_Ctrl[5].bit[1] = 1;
state->CH_Ctrl[5].val[1] = 0;
state->CH_Ctrl[5].addr[2] = 70;
state->CH_Ctrl[5].bit[2] = 2;
state->CH_Ctrl[5].val[2] = 0;
state->CH_Ctrl[5].addr[3] = 70;
state->CH_Ctrl[5].bit[3] = 3;
state->CH_Ctrl[5].val[3] = 0;
state->CH_Ctrl[6].Ctrl_Num = DN_IQTNGNBFBIAS_BST ;
state->CH_Ctrl[6].size = 1 ;
state->CH_Ctrl[6].addr[0] = 70;
state->CH_Ctrl[6].bit[0] = 4;
state->CH_Ctrl[6].val[0] = 1;
state->CH_Ctrl[7].Ctrl_Num = RFSYN_EN_OUTMUX ;
state->CH_Ctrl[7].size = 1 ;
state->CH_Ctrl[7].addr[0] = 111;
state->CH_Ctrl[7].bit[0] = 4;
state->CH_Ctrl[7].val[0] = 0;
state->CH_Ctrl[8].Ctrl_Num = RFSYN_SEL_VCO_OUT ;
state->CH_Ctrl[8].size = 1 ;
state->CH_Ctrl[8].addr[0] = 111;
state->CH_Ctrl[8].bit[0] = 7;
state->CH_Ctrl[8].val[0] = 1;
state->CH_Ctrl[9].Ctrl_Num = RFSYN_SEL_VCO_HI ;
state->CH_Ctrl[9].size = 1 ;
state->CH_Ctrl[9].addr[0] = 111;
state->CH_Ctrl[9].bit[0] = 6;
state->CH_Ctrl[9].val[0] = 1;
state->CH_Ctrl[10].Ctrl_Num = RFSYN_SEL_DIVM ;
state->CH_Ctrl[10].size = 1 ;
state->CH_Ctrl[10].addr[0] = 111;
state->CH_Ctrl[10].bit[0] = 5;
state->CH_Ctrl[10].val[0] = 0;
state->CH_Ctrl[11].Ctrl_Num = RFSYN_RF_DIV_BIAS ;
state->CH_Ctrl[11].size = 2 ;
state->CH_Ctrl[11].addr[0] = 110;
state->CH_Ctrl[11].bit[0] = 0;
state->CH_Ctrl[11].val[0] = 1;
state->CH_Ctrl[11].addr[1] = 110;
state->CH_Ctrl[11].bit[1] = 1;
state->CH_Ctrl[11].val[1] = 0;
state->CH_Ctrl[12].Ctrl_Num = DN_SEL_FREQ ;
state->CH_Ctrl[12].size = 3 ;
state->CH_Ctrl[12].addr[0] = 69;
state->CH_Ctrl[12].bit[0] = 2;
state->CH_Ctrl[12].val[0] = 0;
state->CH_Ctrl[12].addr[1] = 69;
state->CH_Ctrl[12].bit[1] = 3;
state->CH_Ctrl[12].val[1] = 0;
state->CH_Ctrl[12].addr[2] = 69;
state->CH_Ctrl[12].bit[2] = 4;
state->CH_Ctrl[12].val[2] = 0;
state->CH_Ctrl[13].Ctrl_Num = RFSYN_VCO_BIAS ;
state->CH_Ctrl[13].size = 6 ;
state->CH_Ctrl[13].addr[0] = 110;
state->CH_Ctrl[13].bit[0] = 2;
state->CH_Ctrl[13].val[0] = 0;
state->CH_Ctrl[13].addr[1] = 110;
state->CH_Ctrl[13].bit[1] = 3;
state->CH_Ctrl[13].val[1] = 0;
state->CH_Ctrl[13].addr[2] = 110;
state->CH_Ctrl[13].bit[2] = 4;
state->CH_Ctrl[13].val[2] = 0;
state->CH_Ctrl[13].addr[3] = 110;
state->CH_Ctrl[13].bit[3] = 5;
state->CH_Ctrl[13].val[3] = 0;
state->CH_Ctrl[13].addr[4] = 110;
state->CH_Ctrl[13].bit[4] = 6;
state->CH_Ctrl[13].val[4] = 0;
state->CH_Ctrl[13].addr[5] = 110;
state->CH_Ctrl[13].bit[5] = 7;
state->CH_Ctrl[13].val[5] = 1;
state->CH_Ctrl[14].Ctrl_Num = CHCAL_INT_MOD_RF ;
state->CH_Ctrl[14].size = 7 ;
state->CH_Ctrl[14].addr[0] = 14;
state->CH_Ctrl[14].bit[0] = 0;
state->CH_Ctrl[14].val[0] = 0;
state->CH_Ctrl[14].addr[1] = 14;
state->CH_Ctrl[14].bit[1] = 1;
state->CH_Ctrl[14].val[1] = 0;
state->CH_Ctrl[14].addr[2] = 14;
state->CH_Ctrl[14].bit[2] = 2;
state->CH_Ctrl[14].val[2] = 0;
state->CH_Ctrl[14].addr[3] = 14;
state->CH_Ctrl[14].bit[3] = 3;
state->CH_Ctrl[14].val[3] = 0;
state->CH_Ctrl[14].addr[4] = 14;
state->CH_Ctrl[14].bit[4] = 4;
state->CH_Ctrl[14].val[4] = 0;
state->CH_Ctrl[14].addr[5] = 14;
state->CH_Ctrl[14].bit[5] = 5;
state->CH_Ctrl[14].val[5] = 0;
state->CH_Ctrl[14].addr[6] = 14;
state->CH_Ctrl[14].bit[6] = 6;
state->CH_Ctrl[14].val[6] = 0;
state->CH_Ctrl[15].Ctrl_Num = CHCAL_FRAC_MOD_RF ;
state->CH_Ctrl[15].size = 18 ;
state->CH_Ctrl[15].addr[0] = 17;
state->CH_Ctrl[15].bit[0] = 6;
state->CH_Ctrl[15].val[0] = 0;
state->CH_Ctrl[15].addr[1] = 17;
state->CH_Ctrl[15].bit[1] = 7;
state->CH_Ctrl[15].val[1] = 0;
state->CH_Ctrl[15].addr[2] = 16;
state->CH_Ctrl[15].bit[2] = 0;
state->CH_Ctrl[15].val[2] = 0;
state->CH_Ctrl[15].addr[3] = 16;
state->CH_Ctrl[15].bit[3] = 1;
state->CH_Ctrl[15].val[3] = 0;
state->CH_Ctrl[15].addr[4] = 16;
state->CH_Ctrl[15].bit[4] = 2;
state->CH_Ctrl[15].val[4] = 0;
state->CH_Ctrl[15].addr[5] = 16;
state->CH_Ctrl[15].bit[5] = 3;
state->CH_Ctrl[15].val[5] = 0;
state->CH_Ctrl[15].addr[6] = 16;
state->CH_Ctrl[15].bit[6] = 4;
state->CH_Ctrl[15].val[6] = 0;
state->CH_Ctrl[15].addr[7] = 16;
state->CH_Ctrl[15].bit[7] = 5;
state->CH_Ctrl[15].val[7] = 0;
state->CH_Ctrl[15].addr[8] = 16;
state->CH_Ctrl[15].bit[8] = 6;
state->CH_Ctrl[15].val[8] = 0;
state->CH_Ctrl[15].addr[9] = 16;
state->CH_Ctrl[15].bit[9] = 7;
state->CH_Ctrl[15].val[9] = 0;
state->CH_Ctrl[15].addr[10] = 15;
state->CH_Ctrl[15].bit[10] = 0;
state->CH_Ctrl[15].val[10] = 0;
state->CH_Ctrl[15].addr[11] = 15;
state->CH_Ctrl[15].bit[11] = 1;
state->CH_Ctrl[15].val[11] = 0;
state->CH_Ctrl[15].addr[12] = 15;
state->CH_Ctrl[15].bit[12] = 2;
state->CH_Ctrl[15].val[12] = 0;
state->CH_Ctrl[15].addr[13] = 15;
state->CH_Ctrl[15].bit[13] = 3;
state->CH_Ctrl[15].val[13] = 0;
state->CH_Ctrl[15].addr[14] = 15;
state->CH_Ctrl[15].bit[14] = 4;
state->CH_Ctrl[15].val[14] = 0;
state->CH_Ctrl[15].addr[15] = 15;
state->CH_Ctrl[15].bit[15] = 5;
state->CH_Ctrl[15].val[15] = 0;
state->CH_Ctrl[15].addr[16] = 15;
state->CH_Ctrl[15].bit[16] = 6;
state->CH_Ctrl[15].val[16] = 1;
state->CH_Ctrl[15].addr[17] = 15;
state->CH_Ctrl[15].bit[17] = 7;
state->CH_Ctrl[15].val[17] = 1;
state->CH_Ctrl[16].Ctrl_Num = RFSYN_LPF_R ;
state->CH_Ctrl[16].size = 5 ;
state->CH_Ctrl[16].addr[0] = 112;
state->CH_Ctrl[16].bit[0] = 0;
state->CH_Ctrl[16].val[0] = 0;
state->CH_Ctrl[16].addr[1] = 112;
state->CH_Ctrl[16].bit[1] = 1;
state->CH_Ctrl[16].val[1] = 0;
state->CH_Ctrl[16].addr[2] = 112;
state->CH_Ctrl[16].bit[2] = 2;
state->CH_Ctrl[16].val[2] = 0;
state->CH_Ctrl[16].addr[3] = 112;
state->CH_Ctrl[16].bit[3] = 3;
state->CH_Ctrl[16].val[3] = 0;
state->CH_Ctrl[16].addr[4] = 112;
state->CH_Ctrl[16].bit[4] = 4;
state->CH_Ctrl[16].val[4] = 1;
state->CH_Ctrl[17].Ctrl_Num = CHCAL_EN_INT_RF ;
state->CH_Ctrl[17].size = 1 ;
state->CH_Ctrl[17].addr[0] = 14;
state->CH_Ctrl[17].bit[0] = 7;
state->CH_Ctrl[17].val[0] = 0;
state->CH_Ctrl[18].Ctrl_Num = TG_LO_DIVVAL ;
state->CH_Ctrl[18].size = 4 ;
state->CH_Ctrl[18].addr[0] = 107;
state->CH_Ctrl[18].bit[0] = 3;
state->CH_Ctrl[18].val[0] = 0;
state->CH_Ctrl[18].addr[1] = 107;
state->CH_Ctrl[18].bit[1] = 4;
state->CH_Ctrl[18].val[1] = 0;
state->CH_Ctrl[18].addr[2] = 107;
state->CH_Ctrl[18].bit[2] = 5;
state->CH_Ctrl[18].val[2] = 0;
state->CH_Ctrl[18].addr[3] = 107;
state->CH_Ctrl[18].bit[3] = 6;
state->CH_Ctrl[18].val[3] = 0;
state->CH_Ctrl[19].Ctrl_Num = TG_LO_SELVAL ;
state->CH_Ctrl[19].size = 3 ;
state->CH_Ctrl[19].addr[0] = 107;
state->CH_Ctrl[19].bit[0] = 7;
state->CH_Ctrl[19].val[0] = 1;
state->CH_Ctrl[19].addr[1] = 106;
state->CH_Ctrl[19].bit[1] = 0;
state->CH_Ctrl[19].val[1] = 1;
state->CH_Ctrl[19].addr[2] = 106;
state->CH_Ctrl[19].bit[2] = 1;
state->CH_Ctrl[19].val[2] = 1;
state->CH_Ctrl[20].Ctrl_Num = TG_DIV_VAL ;
state->CH_Ctrl[20].size = 11 ;
state->CH_Ctrl[20].addr[0] = 109;
state->CH_Ctrl[20].bit[0] = 2;
state->CH_Ctrl[20].val[0] = 0;
state->CH_Ctrl[20].addr[1] = 109;
state->CH_Ctrl[20].bit[1] = 3;
state->CH_Ctrl[20].val[1] = 0;
state->CH_Ctrl[20].addr[2] = 109;
state->CH_Ctrl[20].bit[2] = 4;
state->CH_Ctrl[20].val[2] = 0;
state->CH_Ctrl[20].addr[3] = 109;
state->CH_Ctrl[20].bit[3] = 5;
state->CH_Ctrl[20].val[3] = 0;
state->CH_Ctrl[20].addr[4] = 109;
state->CH_Ctrl[20].bit[4] = 6;
state->CH_Ctrl[20].val[4] = 0;
state->CH_Ctrl[20].addr[5] = 109;
state->CH_Ctrl[20].bit[5] = 7;
state->CH_Ctrl[20].val[5] = 0;
state->CH_Ctrl[20].addr[6] = 108;
state->CH_Ctrl[20].bit[6] = 0;
state->CH_Ctrl[20].val[6] = 0;
state->CH_Ctrl[20].addr[7] = 108;
state->CH_Ctrl[20].bit[7] = 1;
state->CH_Ctrl[20].val[7] = 0;
state->CH_Ctrl[20].addr[8] = 108;
state->CH_Ctrl[20].bit[8] = 2;
state->CH_Ctrl[20].val[8] = 1;
state->CH_Ctrl[20].addr[9] = 108;
state->CH_Ctrl[20].bit[9] = 3;
state->CH_Ctrl[20].val[9] = 1;
state->CH_Ctrl[20].addr[10] = 108;
state->CH_Ctrl[20].bit[10] = 4;
state->CH_Ctrl[20].val[10] = 1;
state->CH_Ctrl[21].Ctrl_Num = TG_VCO_BIAS ;
state->CH_Ctrl[21].size = 6 ;
state->CH_Ctrl[21].addr[0] = 106;
state->CH_Ctrl[21].bit[0] = 2;
state->CH_Ctrl[21].val[0] = 0;
state->CH_Ctrl[21].addr[1] = 106;
state->CH_Ctrl[21].bit[1] = 3;
state->CH_Ctrl[21].val[1] = 0;
state->CH_Ctrl[21].addr[2] = 106;
state->CH_Ctrl[21].bit[2] = 4;
state->CH_Ctrl[21].val[2] = 0;
state->CH_Ctrl[21].addr[3] = 106;
state->CH_Ctrl[21].bit[3] = 5;
state->CH_Ctrl[21].val[3] = 0;
state->CH_Ctrl[21].addr[4] = 106;
state->CH_Ctrl[21].bit[4] = 6;
state->CH_Ctrl[21].val[4] = 0;
state->CH_Ctrl[21].addr[5] = 106;
state->CH_Ctrl[21].bit[5] = 7;
state->CH_Ctrl[21].val[5] = 1;
state->CH_Ctrl[22].Ctrl_Num = SEQ_EXTPOWERUP ;
state->CH_Ctrl[22].size = 1 ;
state->CH_Ctrl[22].addr[0] = 138;
state->CH_Ctrl[22].bit[0] = 4;
state->CH_Ctrl[22].val[0] = 1;
state->CH_Ctrl[23].Ctrl_Num = OVERRIDE_2 ;
state->CH_Ctrl[23].size = 1 ;
state->CH_Ctrl[23].addr[0] = 17;
state->CH_Ctrl[23].bit[0] = 5;
state->CH_Ctrl[23].val[0] = 0;
state->CH_Ctrl[24].Ctrl_Num = OVERRIDE_3 ;
state->CH_Ctrl[24].size = 1 ;
state->CH_Ctrl[24].addr[0] = 111;
state->CH_Ctrl[24].bit[0] = 3;
state->CH_Ctrl[24].val[0] = 0;
state->CH_Ctrl[25].Ctrl_Num = OVERRIDE_4 ;
state->CH_Ctrl[25].size = 1 ;
state->CH_Ctrl[25].addr[0] = 112;
state->CH_Ctrl[25].bit[0] = 7;
state->CH_Ctrl[25].val[0] = 0;
state->CH_Ctrl[26].Ctrl_Num = SEQ_FSM_PULSE ;
state->CH_Ctrl[26].size = 1 ;
state->CH_Ctrl[26].addr[0] = 136;
state->CH_Ctrl[26].bit[0] = 7;
state->CH_Ctrl[26].val[0] = 0;
state->CH_Ctrl[27].Ctrl_Num = GPIO_4B ;
state->CH_Ctrl[27].size = 1 ;
state->CH_Ctrl[27].addr[0] = 149;
state->CH_Ctrl[27].bit[0] = 7;
state->CH_Ctrl[27].val[0] = 0;
state->CH_Ctrl[28].Ctrl_Num = GPIO_3B ;
state->CH_Ctrl[28].size = 1 ;
state->CH_Ctrl[28].addr[0] = 149;
state->CH_Ctrl[28].bit[0] = 6;
state->CH_Ctrl[28].val[0] = 0;
state->CH_Ctrl[29].Ctrl_Num = GPIO_4 ;
state->CH_Ctrl[29].size = 1 ;
state->CH_Ctrl[29].addr[0] = 149;
state->CH_Ctrl[29].bit[0] = 5;
state->CH_Ctrl[29].val[0] = 1;
state->CH_Ctrl[30].Ctrl_Num = GPIO_3 ;
state->CH_Ctrl[30].size = 1 ;
state->CH_Ctrl[30].addr[0] = 149;
state->CH_Ctrl[30].bit[0] = 4;
state->CH_Ctrl[30].val[0] = 1;
state->CH_Ctrl[31].Ctrl_Num = GPIO_1B ;
state->CH_Ctrl[31].size = 1 ;
state->CH_Ctrl[31].addr[0] = 149;
state->CH_Ctrl[31].bit[0] = 3;
state->CH_Ctrl[31].val[0] = 0;
state->CH_Ctrl[32].Ctrl_Num = DAC_A_ENABLE ;
state->CH_Ctrl[32].size = 1 ;
state->CH_Ctrl[32].addr[0] = 93;
state->CH_Ctrl[32].bit[0] = 1;
state->CH_Ctrl[32].val[0] = 0;
state->CH_Ctrl[33].Ctrl_Num = DAC_B_ENABLE ;
state->CH_Ctrl[33].size = 1 ;
state->CH_Ctrl[33].addr[0] = 93;
state->CH_Ctrl[33].bit[0] = 0;
state->CH_Ctrl[33].val[0] = 0;
state->CH_Ctrl[34].Ctrl_Num = DAC_DIN_A ;
state->CH_Ctrl[34].size = 6 ;
state->CH_Ctrl[34].addr[0] = 92;
state->CH_Ctrl[34].bit[0] = 2;
state->CH_Ctrl[34].val[0] = 0;
state->CH_Ctrl[34].addr[1] = 92;
state->CH_Ctrl[34].bit[1] = 3;
state->CH_Ctrl[34].val[1] = 0;
state->CH_Ctrl[34].addr[2] = 92;
state->CH_Ctrl[34].bit[2] = 4;
state->CH_Ctrl[34].val[2] = 0;
state->CH_Ctrl[34].addr[3] = 92;
state->CH_Ctrl[34].bit[3] = 5;
state->CH_Ctrl[34].val[3] = 0;
state->CH_Ctrl[34].addr[4] = 92;
state->CH_Ctrl[34].bit[4] = 6;
state->CH_Ctrl[34].val[4] = 0;
state->CH_Ctrl[34].addr[5] = 92;
state->CH_Ctrl[34].bit[5] = 7;
state->CH_Ctrl[34].val[5] = 0;
state->CH_Ctrl[35].Ctrl_Num = DAC_DIN_B ;
state->CH_Ctrl[35].size = 6 ;
state->CH_Ctrl[35].addr[0] = 93;
state->CH_Ctrl[35].bit[0] = 2;
state->CH_Ctrl[35].val[0] = 0;
state->CH_Ctrl[35].addr[1] = 93;
state->CH_Ctrl[35].bit[1] = 3;
state->CH_Ctrl[35].val[1] = 0;
state->CH_Ctrl[35].addr[2] = 93;
state->CH_Ctrl[35].bit[2] = 4;
state->CH_Ctrl[35].val[2] = 0;
state->CH_Ctrl[35].addr[3] = 93;
state->CH_Ctrl[35].bit[3] = 5;
state->CH_Ctrl[35].val[3] = 0;
state->CH_Ctrl[35].addr[4] = 93;
state->CH_Ctrl[35].bit[4] = 6;
state->CH_Ctrl[35].val[4] = 0;
state->CH_Ctrl[35].addr[5] = 93;
state->CH_Ctrl[35].bit[5] = 7;
state->CH_Ctrl[35].val[5] = 0;
#ifdef _MXL_PRODUCTION
state->CH_Ctrl[36].Ctrl_Num = RFSYN_EN_DIV ;
state->CH_Ctrl[36].size = 1 ;
state->CH_Ctrl[36].addr[0] = 109;
state->CH_Ctrl[36].bit[0] = 1;
state->CH_Ctrl[36].val[0] = 1;
state->CH_Ctrl[37].Ctrl_Num = RFSYN_DIVM ;
state->CH_Ctrl[37].size = 2 ;
state->CH_Ctrl[37].addr[0] = 112;
state->CH_Ctrl[37].bit[0] = 5;
state->CH_Ctrl[37].val[0] = 0;
state->CH_Ctrl[37].addr[1] = 112;
state->CH_Ctrl[37].bit[1] = 6;
state->CH_Ctrl[37].val[1] = 0;
state->CH_Ctrl[38].Ctrl_Num = DN_BYPASS_AGC_I2C ;
state->CH_Ctrl[38].size = 1 ;
state->CH_Ctrl[38].addr[0] = 65;
state->CH_Ctrl[38].bit[0] = 1;
state->CH_Ctrl[38].val[0] = 0;
#endif
return 0 ;
}
// MaxLinear source code - MXL5005_c.cpp
// MXL5005.cpp : Defines the initialization routines for the DLL.
// 2.6.12
// DONE
void InitTunerControls(struct dvb_frontend *fe)
{
MXL5005_RegisterInit(fe);
MXL5005_ControlInit(fe);
#ifdef _MXL_INTERNAL
MXL5005_MXLControlInit(fe);
#endif
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_ConfigTuner //
// //
// Description: Configure MXL5005Tuner structure for desired //
// Channel Bandwidth/Channel Frequency //
// //
// //
// Functions used: //
// MXL_SynthIFLO_Calc //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// Mode: Tuner Mode (Analog/Digital) //
// IF_Mode: IF Mode ( Zero/Low ) //
// Bandwidth: Filter Channel Bandwidth (in Hz) //
// IF_out: Desired IF out Frequency (in Hz) //
// Fxtal: Crystal Frerquency (in Hz) //
// TOP: 0: Dual AGC; Value: take over point //
// IF_OUT_LOAD: IF out load resistor (200/300 Ohms) //
// CLOCK_OUT: 0: Turn off clock out; 1: turn on clock out //
// DIV_OUT: 0: Div-1; 1: Div-4 //
// CAPSELECT: 0: Disable On-chip pulling cap; 1: Enable //
// EN_RSSI: 0: Disable RSSI; 1: Enable RSSI //
// //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
u16 MXL5005_TunerConfig(struct dvb_frontend *fe,
u8 Mode, /* 0: Analog Mode ; 1: Digital Mode */
u8 IF_mode, /* for Analog Mode, 0: zero IF; 1: low IF */
u32 Bandwidth, /* filter channel bandwidth (6, 7, 8) */
u32 IF_out, /* Desired IF Out Frequency */
u32 Fxtal, /* XTAL Frequency */
u8 AGC_Mode, /* AGC Mode - Dual AGC: 0, Single AGC: 1 */
u16 TOP, /* 0: Dual AGC; Value: take over point */
u16 IF_OUT_LOAD, /* IF Out Load Resistor (200 / 300 Ohms) */
u8 CLOCK_OUT, /* 0: turn off clock out; 1: turn on clock out */
u8 DIV_OUT, /* 0: Div-1; 1: Div-4 */
u8 CAPSELECT, /* 0: disable On-Chip pulling cap; 1: enable */
u8 EN_RSSI, /* 0: disable RSSI; 1: enable RSSI */
u8 Mod_Type, /* Modulation Type; */
/* 0 - Default; 1 - DVB-T; 2 - ATSC; 3 - QAM; 4 - Analog Cable */
u8 TF_Type /* Tracking Filter */
/* 0 - Default; 1 - Off; 2 - Type C; 3 - Type C-H */
)
{
struct mxl5005s_state *state = fe->tuner_priv;
u16 status = 0;
state->Mode = Mode;
state->IF_Mode = IF_mode;
state->Chan_Bandwidth = Bandwidth;
state->IF_OUT = IF_out;
state->Fxtal = Fxtal;
state->AGC_Mode = AGC_Mode;
state->TOP = TOP;
state->IF_OUT_LOAD = IF_OUT_LOAD;
state->CLOCK_OUT = CLOCK_OUT;
state->DIV_OUT = DIV_OUT;
state->CAPSELECT = CAPSELECT;
state->EN_RSSI = EN_RSSI;
state->Mod_Type = Mod_Type;
state->TF_Type = TF_Type;
/* Initialize all the controls and registers */
InitTunerControls(fe);
/* Synthesizer LO frequency calculation */
MXL_SynthIFLO_Calc(fe);
return status;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_SynthIFLO_Calc //
// //
// Description: Calculate Internal IF-LO Frequency //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// NONE //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
void MXL_SynthIFLO_Calc(struct dvb_frontend *fe)
{
struct mxl5005s_state *state = fe->tuner_priv;
if (state->Mode == 1) /* Digital Mode */
state->IF_LO = state->IF_OUT;
else /* Analog Mode */
{
if(state->IF_Mode == 0) /* Analog Zero IF mode */
state->IF_LO = state->IF_OUT + 400000;
else /* Analog Low IF mode */
state->IF_LO = state->IF_OUT + state->Chan_Bandwidth/2;
}
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_SynthRFTGLO_Calc //
// //
// Description: Calculate Internal RF-LO frequency and //
// internal Tone-Gen(TG)-LO frequency //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// NONE //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
void MXL_SynthRFTGLO_Calc(struct dvb_frontend *fe)
{
struct mxl5005s_state *state = fe->tuner_priv;
if (state->Mode == 1) /* Digital Mode */ {
//remove 20.48MHz setting for 2.6.10
state->RF_LO = state->RF_IN;
state->TG_LO = state->RF_IN - 750000; //change for 2.6.6
} else /* Analog Mode */ {
if(state->IF_Mode == 0) /* Analog Zero IF mode */ {
state->RF_LO = state->RF_IN - 400000;
state->TG_LO = state->RF_IN - 1750000;
} else /* Analog Low IF mode */ {
state->RF_LO = state->RF_IN - state->Chan_Bandwidth/2;
state->TG_LO = state->RF_IN - state->Chan_Bandwidth + 500000;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_OverwriteICDefault //
// //
// Description: Overwrite the Default Register Setting //
// //
// //
// Functions used: //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
u16 MXL_OverwriteICDefault(struct dvb_frontend *fe)
{
u16 status = 0;
status += MXL_ControlWrite(fe, OVERRIDE_1, 1);
status += MXL_ControlWrite(fe, OVERRIDE_2, 1);
status += MXL_ControlWrite(fe, OVERRIDE_3, 1);
status += MXL_ControlWrite(fe, OVERRIDE_4, 1);
return status;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_BlockInit //
// //
// Description: Tuner Initialization as a function of 'User Settings' //
// * User settings in Tuner strcuture must be assigned //
// first //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// Tuner_struct: structure defined at higher level //
// //
// Inputs: //
// Tuner : Tuner structure defined at higher level //
// //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
u16 MXL_BlockInit(struct dvb_frontend *fe)
{
struct mxl5005s_state *state = fe->tuner_priv;
u16 status = 0;
status += MXL_OverwriteICDefault(fe);
/* Downconverter Control Dig Ana */
status += MXL_ControlWrite(fe, DN_IQTN_AMP_CUT, state->Mode ? 1 : 0);
/* Filter Control Dig Ana */
status += MXL_ControlWrite(fe, BB_MODE, state->Mode ? 0 : 1);
status += MXL_ControlWrite(fe, BB_BUF, state->Mode ? 3 : 2);
status += MXL_ControlWrite(fe, BB_BUF_OA, state->Mode ? 1 : 0);
status += MXL_ControlWrite(fe, BB_IQSWAP, state->Mode ? 0 : 1);
status += MXL_ControlWrite(fe, BB_INITSTATE_DLPF_TUNE, 0);
/* Initialize Low-Pass Filter */
if (state->Mode) { /* Digital Mode */
switch (state->Chan_Bandwidth) {
case 8000000:
status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 0);
break;
case 7000000:
status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 2);
break;
case 6000000:
status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 3);
break;
}
} else { /* Analog Mode */
switch (state->Chan_Bandwidth) {
case 8000000: /* Low Zero */
status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT, (state->IF_Mode ? 0 : 3));
break;
case 7000000:
status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT, (state->IF_Mode ? 1 : 4));
break;
case 6000000:
status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT, (state->IF_Mode ? 2 : 5));
break;
}
}
/* Charge Pump Control Dig Ana */
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, state->Mode ? 5 : 8);
status += MXL_ControlWrite(fe, RFSYN_EN_CHP_HIGAIN, state->Mode ? 1 : 1);
status += MXL_ControlWrite(fe, EN_CHP_LIN_B, state->Mode ? 0 : 0);
/* AGC TOP Control */
if (state->AGC_Mode == 0) /* Dual AGC */ {
status += MXL_ControlWrite(fe, AGC_IF, 15);
status += MXL_ControlWrite(fe, AGC_RF, 15);
}
else /* Single AGC Mode Dig Ana */
status += MXL_ControlWrite(fe, AGC_RF, state->Mode ? 15 : 12);
if (state->TOP == 55) /* TOP == 5.5 */
status += MXL_ControlWrite(fe, AGC_IF, 0x0);
if (state->TOP == 72) /* TOP == 7.2 */
status += MXL_ControlWrite(fe, AGC_IF, 0x1);
if (state->TOP == 92) /* TOP == 9.2 */
status += MXL_ControlWrite(fe, AGC_IF, 0x2);
if (state->TOP == 110) /* TOP == 11.0 */
status += MXL_ControlWrite(fe, AGC_IF, 0x3);
if (state->TOP == 129) /* TOP == 12.9 */
status += MXL_ControlWrite(fe, AGC_IF, 0x4);
if (state->TOP == 147) /* TOP == 14.7 */
status += MXL_ControlWrite(fe, AGC_IF, 0x5);
if (state->TOP == 168) /* TOP == 16.8 */
status += MXL_ControlWrite(fe, AGC_IF, 0x6);
if (state->TOP == 194) /* TOP == 19.4 */
status += MXL_ControlWrite(fe, AGC_IF, 0x7);
if (state->TOP == 212) /* TOP == 21.2 */
status += MXL_ControlWrite(fe, AGC_IF, 0x9);
if (state->TOP == 232) /* TOP == 23.2 */
status += MXL_ControlWrite(fe, AGC_IF, 0xA);
if (state->TOP == 252) /* TOP == 25.2 */
status += MXL_ControlWrite(fe, AGC_IF, 0xB);
if (state->TOP == 271) /* TOP == 27.1 */
status += MXL_ControlWrite(fe, AGC_IF, 0xC);
if (state->TOP == 292) /* TOP == 29.2 */
status += MXL_ControlWrite(fe, AGC_IF, 0xD);
if (state->TOP == 317) /* TOP == 31.7 */
status += MXL_ControlWrite(fe, AGC_IF, 0xE);
if (state->TOP == 349) /* TOP == 34.9 */
status += MXL_ControlWrite(fe, AGC_IF, 0xF);
/* IF Synthesizer Control */
status += MXL_IFSynthInit(fe);
/* IF UpConverter Control */
if (state->IF_OUT_LOAD == 200) {
status += MXL_ControlWrite(fe, DRV_RES_SEL, 6);
status += MXL_ControlWrite(fe, I_DRIVER, 2);
}
if (state->IF_OUT_LOAD == 300) {
status += MXL_ControlWrite(fe, DRV_RES_SEL, 4);
status += MXL_ControlWrite(fe, I_DRIVER, 1);
}
/* Anti-Alias Filtering Control
* initialise Anti-Aliasing Filter
*/
if (state->Mode) { /* Digital Mode */
if (state->IF_OUT >= 4000000UL && state->IF_OUT <= 6280000UL) {
status += MXL_ControlWrite(fe, EN_AAF, 1);
status += MXL_ControlWrite(fe, EN_3P, 1);
status += MXL_ControlWrite(fe, EN_AUX_3P, 1);
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 0);
}
if ((state->IF_OUT == 36125000UL) || (state->IF_OUT == 36150000UL)) {
status += MXL_ControlWrite(fe, EN_AAF, 1);
status += MXL_ControlWrite(fe, EN_3P, 1);
status += MXL_ControlWrite(fe, EN_AUX_3P, 1);
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 1);
}
if (state->IF_OUT > 36150000UL) {
status += MXL_ControlWrite(fe, EN_AAF, 0);
status += MXL_ControlWrite(fe, EN_3P, 1);
status += MXL_ControlWrite(fe, EN_AUX_3P, 1);
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 1);
}
} else { /* Analog Mode */
if (state->IF_OUT >= 4000000UL && state->IF_OUT <= 5000000UL)
{
status += MXL_ControlWrite(fe, EN_AAF, 1);
status += MXL_ControlWrite(fe, EN_3P, 1);
status += MXL_ControlWrite(fe, EN_AUX_3P, 1);
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 0);
}
if (state->IF_OUT > 5000000UL)
{
status += MXL_ControlWrite(fe, EN_AAF, 0);
status += MXL_ControlWrite(fe, EN_3P, 0);
status += MXL_ControlWrite(fe, EN_AUX_3P, 0);
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 0);
}
}
/* Demod Clock Out */
if (state->CLOCK_OUT)
status += MXL_ControlWrite(fe, SEQ_ENCLK16_CLK_OUT, 1);
else
status += MXL_ControlWrite(fe, SEQ_ENCLK16_CLK_OUT, 0);
if (state->DIV_OUT == 1)
status += MXL_ControlWrite(fe, SEQ_SEL4_16B, 1);
if (state->DIV_OUT == 0)
status += MXL_ControlWrite(fe, SEQ_SEL4_16B, 0);
/* Crystal Control */
if (state->CAPSELECT)
status += MXL_ControlWrite(fe, XTAL_CAPSELECT, 1);
else
status += MXL_ControlWrite(fe, XTAL_CAPSELECT, 0);
if (state->Fxtal >= 12000000UL && state->Fxtal <= 16000000UL)
status += MXL_ControlWrite(fe, IF_SEL_DBL, 1);
if (state->Fxtal > 16000000UL && state->Fxtal <= 32000000UL)
status += MXL_ControlWrite(fe, IF_SEL_DBL, 0);
if (state->Fxtal >= 12000000UL && state->Fxtal <= 22000000UL)
status += MXL_ControlWrite(fe, RFSYN_R_DIV, 3);
if (state->Fxtal > 22000000UL && state->Fxtal <= 32000000UL)
status += MXL_ControlWrite(fe, RFSYN_R_DIV, 0);
/* Misc Controls */
if (state->Mode == 0 && state->IF_Mode == 1) /* Analog LowIF mode */
status += MXL_ControlWrite(fe, SEQ_EXTIQFSMPULSE, 0);
else
status += MXL_ControlWrite(fe, SEQ_EXTIQFSMPULSE, 1);
/* status += MXL_ControlRead(fe, IF_DIVVAL, &IF_DIVVAL_Val); */
/* Set TG_R_DIV */
status += MXL_ControlWrite(fe, TG_R_DIV, MXL_Ceiling(state->Fxtal, 1000000));
/* Apply Default value to BB_INITSTATE_DLPF_TUNE */
/* RSSI Control */
if (state->EN_RSSI)
{
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1);
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
/* RSSI reference point */
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 2);
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 3);
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 1);
/* TOP point */
status += MXL_ControlWrite(fe, RFA_FLR, 0);
status += MXL_ControlWrite(fe, RFA_CEIL, 12);
}
/* Modulation type bit settings
* Override the control values preset
*/
if (state->Mod_Type == MXL_DVBT) /* DVB-T Mode */
{
state->AGC_Mode = 1; /* Single AGC Mode */
/* Enable RSSI */
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1);
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
/* RSSI reference point */
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3);
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5);
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 1);
/* TOP point */
status += MXL_ControlWrite(fe, RFA_FLR, 2);
status += MXL_ControlWrite(fe, RFA_CEIL, 13);
if (state->IF_OUT <= 6280000UL) /* Low IF */
status += MXL_ControlWrite(fe, BB_IQSWAP, 0);
else /* High IF */
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
}
if (state->Mod_Type == MXL_ATSC) /* ATSC Mode */
{
state->AGC_Mode = 1; /* Single AGC Mode */
/* Enable RSSI */
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1);
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
/* RSSI reference point */
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 2);
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 4);
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 1);
/* TOP point */
status += MXL_ControlWrite(fe, RFA_FLR, 2);
status += MXL_ControlWrite(fe, RFA_CEIL, 13);
status += MXL_ControlWrite(fe, BB_INITSTATE_DLPF_TUNE, 1);
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 5); /* Low Zero */
if (state->IF_OUT <= 6280000UL) /* Low IF */
status += MXL_ControlWrite(fe, BB_IQSWAP, 0);
else /* High IF */
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
}
if (state->Mod_Type == MXL_QAM) /* QAM Mode */
{
state->Mode = MXL_DIGITAL_MODE;
/* state->AGC_Mode = 1; */ /* Single AGC Mode */
/* Disable RSSI */ /* change here for v2.6.5 */
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0);
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
/* RSSI reference point */
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5);
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3);
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 2);
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3); /* change here for v2.6.5 */
if (state->IF_OUT <= 6280000UL) /* Low IF */
status += MXL_ControlWrite(fe, BB_IQSWAP, 0);
else /* High IF */
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
}
if (state->Mod_Type == MXL_ANALOG_CABLE) {
/* Analog Cable Mode */
/* state->Mode = MXL_DIGITAL_MODE; */
state->AGC_Mode = 1; /* Single AGC Mode */
/* Disable RSSI */
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0);
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
status += MXL_ControlWrite(fe, AGC_IF, 1); /* change for 2.6.3 */
status += MXL_ControlWrite(fe, AGC_RF, 15);
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
}
if (state->Mod_Type == MXL_ANALOG_OTA) {
/* Analog OTA Terrestrial mode add for 2.6.7 */
/* state->Mode = MXL_ANALOG_MODE; */
/* Enable RSSI */
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1);
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
/* RSSI reference point */
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5);
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3);
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 2);
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3);
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
}
/* RSSI disable */
if(state->EN_RSSI==0) {
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0);
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
}
return status;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_IFSynthInit //
// //
// Description: Tuner IF Synthesizer related register initialization //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// Tuner_struct: structure defined at higher level //
// //
// Inputs: //
// Tuner : Tuner structure defined at higher level //
// //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
u16 MXL_IFSynthInit(struct dvb_frontend *fe)
{
struct mxl5005s_state *state = fe->tuner_priv;
u16 status = 0 ;
// Declare Local Variables
u32 Fref = 0 ;
u32 Kdbl, intModVal ;
u32 fracModVal ;
Kdbl = 2 ;
if (state->Fxtal >= 12000000UL && state->Fxtal <= 16000000UL)
Kdbl = 2 ;
if (state->Fxtal > 16000000UL && state->Fxtal <= 32000000UL)
Kdbl = 1 ;
//
// IF Synthesizer Control
//
if (state->Mode == 0 && state->IF_Mode == 1) // Analog Low IF mode
{
if (state->IF_LO == 41000000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
Fref = 328000000UL ;
}
if (state->IF_LO == 47000000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 376000000UL ;
}
if (state->IF_LO == 54000000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
Fref = 324000000UL ;
}
if (state->IF_LO == 60000000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 360000000UL ;
}
if (state->IF_LO == 39250000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
Fref = 314000000UL ;
}
if (state->IF_LO == 39650000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
Fref = 317200000UL ;
}
if (state->IF_LO == 40150000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
Fref = 321200000UL ;
}
if (state->IF_LO == 40650000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
Fref = 325200000UL ;
}
}
if (state->Mode || (state->Mode == 0 && state->IF_Mode == 0))
{
if (state->IF_LO == 57000000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 342000000UL ;
}
if (state->IF_LO == 44000000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 352000000UL ;
}
if (state->IF_LO == 43750000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 350000000UL ;
}
if (state->IF_LO == 36650000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 366500000UL ;
}
if (state->IF_LO == 36150000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 361500000UL ;
}
if (state->IF_LO == 36000000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 360000000UL ;
}
if (state->IF_LO == 35250000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 352500000UL ;
}
if (state->IF_LO == 34750000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 347500000UL ;
}
if (state->IF_LO == 6280000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 376800000UL ;
}
if (state->IF_LO == 5000000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 360000000UL ;
}
if (state->IF_LO == 4500000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 360000000UL ;
}
if (state->IF_LO == 4570000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 365600000UL ;
}
if (state->IF_LO == 4000000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x05) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 360000000UL ;
}
if (state->IF_LO == 57400000UL)
{
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 344400000UL ;
}
if (state->IF_LO == 44400000UL)
{
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 355200000UL ;
}
if (state->IF_LO == 44150000UL)
{
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 353200000UL ;
}
if (state->IF_LO == 37050000UL)
{
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 370500000UL ;
}
if (state->IF_LO == 36550000UL)
{
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 365500000UL ;
}
if (state->IF_LO == 36125000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 361250000UL ;
}
if (state->IF_LO == 6000000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 360000000UL ;
}
if (state->IF_LO == 5400000UL)
{
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
Fref = 324000000UL ;
}
if (state->IF_LO == 5380000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
Fref = 322800000UL ;
}
if (state->IF_LO == 5200000UL) {
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 374400000UL ;
}
if (state->IF_LO == 4900000UL)
{
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 352800000UL ;
}
if (state->IF_LO == 4400000UL)
{
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 352000000UL ;
}
if (state->IF_LO == 4063000UL) //add for 2.6.8
{
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x05) ;
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
Fref = 365670000UL ;
}
}
// CHCAL_INT_MOD_IF
// CHCAL_FRAC_MOD_IF
intModVal = Fref / (state->Fxtal * Kdbl/2) ;
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_IF, intModVal ) ;
fracModVal = (2<<15)*(Fref/1000 - (state->Fxtal/1000 * Kdbl/2) * intModVal);
fracModVal = fracModVal / ((state->Fxtal * Kdbl/2)/1000) ;
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_IF, fracModVal) ;
return status ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_GetXtalInt //
// //
// Description: return the Crystal Integration Value for //
// TG_VCO_BIAS calculation //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// NONE //
// //
// Inputs: //
// Crystal Frequency Value in Hz //
// //
// Outputs: //
// Calculated Crystal Frequency Integration Value //
// //
// Return: //
// 0 : Successful //
// > 0 : Failed //
// //
///////////////////////////////////////////////////////////////////////////////
u32 MXL_GetXtalInt(u32 Xtal_Freq)
{
if ((Xtal_Freq % 1000000) == 0)
return (Xtal_Freq / 10000) ;
else
return (((Xtal_Freq / 1000000) + 1)*100) ;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL5005_TuneRF //
// //
// Description: Set control names to tune to requested RF_IN frequency //
// //
// Globals: //
// None //
// //
// Functions used: //
// MXL_SynthRFTGLO_Calc //
// MXL5005_ControlWrite //
// MXL_GetXtalInt //
// //
// Inputs: //
// Tuner : Tuner structure defined at higher level //
// //
// Outputs: //
// Tuner //
// //
// Return: //
// 0 : Successful //
// 1 : Unsuccessful //
///////////////////////////////////////////////////////////////////////////////
u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
{
struct mxl5005s_state *state = fe->tuner_priv;
// Declare Local Variables
u16 status = 0;
u32 divider_val, E3, E4, E5, E5A;
u32 Fmax, Fmin, FmaxBin, FminBin;
u32 Kdbl_RF = 2;
u32 tg_divval;
u32 tg_lo;
u32 Xtal_Int;
u32 Fref_TG;
u32 Fvco;
// u32 temp;
Xtal_Int = MXL_GetXtalInt(state->Fxtal);
state->RF_IN = RF_Freq;
MXL_SynthRFTGLO_Calc(fe);
if (state->Fxtal >= 12000000UL && state->Fxtal <= 22000000UL)
Kdbl_RF = 2;
if (state->Fxtal > 22000000 && state->Fxtal <= 32000000)
Kdbl_RF = 1;
//
// Downconverter Controls
//
// Look-Up Table Implementation for:
// DN_POLY
// DN_RFGAIN
// DN_CAP_RFLPF
// DN_EN_VHFUHFBAR
// DN_GAIN_ADJUST
// Change the boundary reference from RF_IN to RF_LO
if (state->RF_LO < 40000000UL) {
return -1;
}
if (state->RF_LO >= 40000000UL && state->RF_LO <= 75000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(fe, DN_POLY, 2);
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 423);
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1);
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 1);
}
if (state->RF_LO > 75000000UL && state->RF_LO <= 100000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(fe, DN_POLY, 3);
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 222);
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1);
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 1);
}
if (state->RF_LO > 100000000UL && state->RF_LO <= 150000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(fe, DN_POLY, 3);
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 147);
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1);
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 2);
}
if (state->RF_LO > 150000000UL && state->RF_LO <= 200000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(fe, DN_POLY, 3);
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 9);
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1);
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 2);
}
if (state->RF_LO > 200000000UL && state->RF_LO <= 300000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(fe, DN_POLY, 3) ;
status += MXL_ControlWrite(fe, DN_RFGAIN, 3) ;
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0) ;
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1) ;
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3) ;
}
if (state->RF_LO > 300000000UL && state->RF_LO <= 650000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(fe, DN_POLY, 3) ;
status += MXL_ControlWrite(fe, DN_RFGAIN, 1) ;
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0) ;
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 0) ;
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3) ;
}
if (state->RF_LO > 650000000UL && state->RF_LO <= 900000000UL) {
// Look-Up Table implementation
status += MXL_ControlWrite(fe, DN_POLY, 3) ;
status += MXL_ControlWrite(fe, DN_RFGAIN, 2) ;
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0) ;
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 0) ;
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3) ;
}
if (state->RF_LO > 900000000UL) {
return -1;
}
// DN_IQTNBUF_AMP
// DN_IQTNGNBFBIAS_BST
if (state->RF_LO >= 40000000UL && state->RF_LO <= 75000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 75000000UL && state->RF_LO <= 100000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 100000000UL && state->RF_LO <= 150000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 150000000UL && state->RF_LO <= 200000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 200000000UL && state->RF_LO <= 300000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 300000000UL && state->RF_LO <= 400000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 400000000UL && state->RF_LO <= 450000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 450000000UL && state->RF_LO <= 500000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 500000000UL && state->RF_LO <= 550000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 550000000UL && state->RF_LO <= 600000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 600000000UL && state->RF_LO <= 650000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 650000000UL && state->RF_LO <= 700000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 700000000UL && state->RF_LO <= 750000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 750000000UL && state->RF_LO <= 800000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
}
if (state->RF_LO > 800000000UL && state->RF_LO <= 850000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 10);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 1);
}
if (state->RF_LO > 850000000UL && state->RF_LO <= 900000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 10);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 1);
}
//
// Set RF Synth and LO Path Control
//
// Look-Up table implementation for:
// RFSYN_EN_OUTMUX
// RFSYN_SEL_VCO_OUT
// RFSYN_SEL_VCO_HI
// RFSYN_SEL_DIVM
// RFSYN_RF_DIV_BIAS
// DN_SEL_FREQ
//
// Set divider_val, Fmax, Fmix to use in Equations
FminBin = 28000000UL ;
FmaxBin = 42500000UL ;
if (state->RF_LO >= 40000000UL && state->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1);
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0);
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1);
divider_val = 64 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 42500000UL ;
FmaxBin = 56000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1);
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0);
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1);
divider_val = 64 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 56000000UL ;
FmaxBin = 85000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1) ;
divider_val = 32 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 85000000UL ;
FmaxBin = 112000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1) ;
divider_val = 32 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 112000000UL ;
FmaxBin = 170000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 2) ;
divider_val = 16 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 170000000UL ;
FmaxBin = 225000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 2) ;
divider_val = 16 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 225000000UL ;
FmaxBin = 300000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 4) ;
divider_val = 8 ;
Fmax = 340000000UL ;
Fmin = FminBin ;
}
FminBin = 300000000UL ;
FmaxBin = 340000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0) ;
divider_val = 8 ;
Fmax = FmaxBin ;
Fmin = 225000000UL ;
}
FminBin = 340000000UL ;
FmaxBin = 450000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 2) ;
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0) ;
divider_val = 8 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 450000000UL ;
FmaxBin = 680000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 1) ;
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0) ;
divider_val = 4 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 680000000UL ;
FmaxBin = 900000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1) ;
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 1) ;
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0) ;
divider_val = 4 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
// CHCAL_INT_MOD_RF
// CHCAL_FRAC_MOD_RF
// RFSYN_LPF_R
// CHCAL_EN_INT_RF
// Equation E3
// RFSYN_VCO_BIAS
E3 = (((Fmax-state->RF_LO)/1000)*32)/((Fmax-Fmin)/1000) + 8 ;
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, E3) ;
// Equation E4
// CHCAL_INT_MOD_RF
E4 = (state->RF_LO*divider_val/1000)/(2*state->Fxtal*Kdbl_RF/1000) ;
MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, E4) ;
// Equation E5
// CHCAL_FRAC_MOD_RF
// CHCAL_EN_INT_RF
E5 = ((2<<17)*(state->RF_LO/10000*divider_val - (E4*(2*state->Fxtal*Kdbl_RF)/10000)))/(2*state->Fxtal*Kdbl_RF/10000) ;
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, E5) ;
// Equation E5A
// RFSYN_LPF_R
E5A = (((Fmax - state->RF_LO)/1000)*4/((Fmax-Fmin)/1000)) + 1 ;
status += MXL_ControlWrite(fe, RFSYN_LPF_R, E5A) ;
// Euqation E5B
// CHCAL_EN_INIT_RF
status += MXL_ControlWrite(fe, CHCAL_EN_INT_RF, ((E5 == 0) ? 1 : 0));
//if (E5 == 0)
// status += MXL_ControlWrite(fe, CHCAL_EN_INT_RF, 1);
//else
// status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, E5) ;
//
// Set TG Synth
//
// Look-Up table implementation for:
// TG_LO_DIVVAL
// TG_LO_SELVAL
//
// Set divider_val, Fmax, Fmix to use in Equations
if (state->TG_LO < 33000000UL) {
return -1;
}
FminBin = 33000000UL ;
FmaxBin = 50000000UL ;
if (state->TG_LO >= FminBin && state->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x6) ;
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x0) ;
divider_val = 36 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 50000000UL ;
FmaxBin = 67000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x1) ;
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x0) ;
divider_val = 24 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 67000000UL ;
FmaxBin = 100000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0xC) ;
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2) ;
divider_val = 18 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 100000000UL ;
FmaxBin = 150000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8) ;
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2) ;
divider_val = 12 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 150000000UL ;
FmaxBin = 200000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0) ;
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2) ;
divider_val = 8 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 200000000UL ;
FmaxBin = 300000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8) ;
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x3) ;
divider_val = 6 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 300000000UL ;
FmaxBin = 400000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0) ;
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x3) ;
divider_val = 4 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 400000000UL ;
FmaxBin = 600000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8) ;
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x7) ;
divider_val = 3 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
FminBin = 600000000UL ;
FmaxBin = 900000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0) ;
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x7) ;
divider_val = 2 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
// TG_DIV_VAL
tg_divval = (state->TG_LO*divider_val/100000)
*(MXL_Ceiling(state->Fxtal,1000000) * 100) / (state->Fxtal/1000) ;
status += MXL_ControlWrite(fe, TG_DIV_VAL, tg_divval) ;
if (state->TG_LO > 600000000UL)
status += MXL_ControlWrite(fe, TG_DIV_VAL, tg_divval + 1 ) ;
Fmax = 1800000000UL ;
Fmin = 1200000000UL ;
// to prevent overflow of 32 bit unsigned integer, use following equation. Edit for v2.6.4
Fref_TG = (state->Fxtal/1000)/ MXL_Ceiling(state->Fxtal, 1000000) ; // Fref_TF = Fref_TG*1000
Fvco = (state->TG_LO/10000) * divider_val * Fref_TG; //Fvco = Fvco/10
tg_lo = (((Fmax/10 - Fvco)/100)*32) / ((Fmax-Fmin)/1000)+8;
//below equation is same as above but much harder to debug.
//tg_lo = ( ((Fmax/10000 * Xtal_Int)/100) - ((state->TG_LO/10000)*divider_val*(state->Fxtal/10000)/100) )*32/((Fmax-Fmin)/10000 * Xtal_Int/100) + 8 ;
status += MXL_ControlWrite(fe, TG_VCO_BIAS , tg_lo) ;
//add for 2.6.5
//Special setting for QAM
if(state->Mod_Type == MXL_QAM)
{
if(state->RF_IN < 680000000)
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3) ;
else
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 2) ;
}
//remove 20.48MHz setting for 2.6.10
//
// Off Chip Tracking Filter Control
//
if (state->TF_Type == MXL_TF_OFF) // Tracking Filter Off State; turn off all the banks
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ;
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ;
status += MXL_SetGPIO(fe, 3, 1) ; // turn off Bank 1
status += MXL_SetGPIO(fe, 1, 1) ; // turn off Bank 2
status += MXL_SetGPIO(fe, 4, 1) ; // turn off Bank 3
}
if (state->TF_Type == MXL_TF_C) // Tracking Filter type C
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ;
status += MXL_ControlWrite(fe, DAC_DIN_A, 0) ;
if (state->RF_IN >= 43000000 && state->RF_IN < 150000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
status += MXL_SetGPIO(fe, 3, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off
}
if (state->RF_IN >= 150000000 && state->RF_IN < 280000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off
}
if (state->RF_IN >= 280000000 && state->RF_IN < 360000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 4, 0) ; // Bank3 On
}
if (state->RF_IN >= 360000000 && state->RF_IN < 560000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank3 On
}
if (state->RF_IN >= 560000000 && state->RF_IN < 580000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_ControlWrite(fe, DAC_DIN_B, 29) ;
status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank3 On
}
if (state->RF_IN >= 580000000 && state->RF_IN < 630000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank3 On
}
if (state->RF_IN >= 630000000 && state->RF_IN < 700000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_ControlWrite(fe, DAC_DIN_B, 16) ;
status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off
}
if (state->RF_IN >= 700000000 && state->RF_IN < 760000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_ControlWrite(fe, DAC_DIN_B, 7) ;
status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off
}
if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off
}
}
if (state->TF_Type == MXL_TF_C_H) // Tracking Filter type C-H for Hauppauge only
{
status += MXL_ControlWrite(fe, DAC_DIN_A, 0) ;
if (state->RF_IN >= 43000000 && state->RF_IN < 150000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off
}
if (state->RF_IN >= 150000000 && state->RF_IN < 280000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off
}
if (state->RF_IN >= 280000000 && state->RF_IN < 360000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 1, 0) ; // Bank3 On
}
if (state->RF_IN >= 360000000 && state->RF_IN < 560000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank3 On
}
if (state->RF_IN >= 560000000 && state->RF_IN < 580000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank3 On
}
if (state->RF_IN >= 580000000 && state->RF_IN < 630000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank3 On
}
if (state->RF_IN >= 630000000 && state->RF_IN < 700000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off
}
if (state->RF_IN >= 700000000 && state->RF_IN < 760000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off
}
if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off
}
}
if (state->TF_Type == MXL_TF_D) // Tracking Filter type D
{
status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
if (state->RF_IN >= 43000000 && state->RF_IN < 174000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 174000000 && state->RF_IN < 250000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 250000000 && state->RF_IN < 310000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 310000000 && state->RF_IN < 360000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 360000000 && state->RF_IN < 470000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 470000000 && state->RF_IN < 640000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 640000000 && state->RF_IN <= 900000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
}
if (state->TF_Type == MXL_TF_D_L) // Tracking Filter type D-L for Lumanate ONLY change for 2.6.3
{
status += MXL_ControlWrite(fe, DAC_DIN_A, 0) ;
// if UHF and terrestrial => Turn off Tracking Filter
if (state->RF_IN >= 471000000 && (state->RF_IN - 471000000)%6000000 != 0)
{
// Turn off all the banks
status += MXL_SetGPIO(fe, 3, 1) ;
status += MXL_SetGPIO(fe, 1, 1) ;
status += MXL_SetGPIO(fe, 4, 1) ;
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ;
status += MXL_ControlWrite(fe, AGC_IF, 10) ;
}
else // if VHF or cable => Turn on Tracking Filter
{
if (state->RF_IN >= 43000000 && state->RF_IN < 140000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 Off
}
if (state->RF_IN >= 140000000 && state->RF_IN < 240000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 Off
}
if (state->RF_IN >= 240000000 && state->RF_IN < 340000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 Off
}
if (state->RF_IN >= 340000000 && state->RF_IN < 430000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 On
}
if (state->RF_IN >= 430000000 && state->RF_IN < 470000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 On
}
if (state->RF_IN >= 470000000 && state->RF_IN < 570000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 On
}
if (state->RF_IN >= 570000000 && state->RF_IN < 620000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Offq
}
if (state->RF_IN >= 620000000 && state->RF_IN < 760000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000)
{
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
}
}
if (state->TF_Type == MXL_TF_E) // Tracking Filter type E
{
status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
if (state->RF_IN >= 43000000 && state->RF_IN < 174000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 174000000 && state->RF_IN < 250000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 250000000 && state->RF_IN < 310000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 310000000 && state->RF_IN < 360000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 360000000 && state->RF_IN < 470000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 470000000 && state->RF_IN < 640000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 640000000 && state->RF_IN <= 900000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
}
if (state->TF_Type == MXL_TF_F) // Tracking Filter type F
{
status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
if (state->RF_IN >= 43000000 && state->RF_IN < 160000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 160000000 && state->RF_IN < 210000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 210000000 && state->RF_IN < 300000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 300000000 && state->RF_IN < 390000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 390000000 && state->RF_IN < 515000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 515000000 && state->RF_IN < 650000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 650000000 && state->RF_IN <= 900000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
}
if (state->TF_Type == MXL_TF_E_2) // Tracking Filter type E_2
{
status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
if (state->RF_IN >= 43000000 && state->RF_IN < 174000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 174000000 && state->RF_IN < 250000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 250000000 && state->RF_IN < 350000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 350000000 && state->RF_IN < 400000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 400000000 && state->RF_IN < 570000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 570000000 && state->RF_IN < 770000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 770000000 && state->RF_IN <= 900000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
}
if (state->TF_Type == MXL_TF_G) // Tracking Filter type G add for v2.6.8
{
status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
if (state->RF_IN >= 50000000 && state->RF_IN < 190000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 190000000 && state->RF_IN < 280000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 280000000 && state->RF_IN < 350000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 350000000 && state->RF_IN < 400000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 400000000 && state->RF_IN < 470000000) //modified for 2.6.11
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 470000000 && state->RF_IN < 640000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 640000000 && state->RF_IN < 820000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 820000000 && state->RF_IN <= 900000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
}
if (state->TF_Type == MXL_TF_E_NA) // Tracking Filter type E-NA for Empia ONLY change for 2.6.8
{
status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
// if UHF and terrestrial=> Turn off Tracking Filter
if (state->RF_IN >= 471000000 && (state->RF_IN - 471000000)%6000000 != 0)
{
// Turn off all the banks
status += MXL_SetGPIO(fe, 3, 1) ;
status += MXL_SetGPIO(fe, 1, 1) ;
status += MXL_SetGPIO(fe, 4, 1) ;
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ;
//2.6.12
//Turn on RSSI
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1) ;
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1) ;
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1) ;
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1) ;
// RSSI reference point
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5) ;
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3) ;
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 2) ;
//status += MXL_ControlWrite(fe, AGC_IF, 10) ; //doesn't matter since RSSI is turn on
//following parameter is from analog OTA mode, can be change to seek better performance
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3) ;
}
else //if VHF or Cable => Turn on Tracking Filter
{
//2.6.12
//Turn off RSSI
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0) ;
//change back from above condition
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 5) ;
if (state->RF_IN >= 43000000 && state->RF_IN < 174000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 174000000 && state->RF_IN < 250000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 250000000 && state->RF_IN < 350000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
if (state->RF_IN >= 350000000 && state->RF_IN < 400000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 400000000 && state->RF_IN < 570000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 570000000 && state->RF_IN < 770000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
}
if (state->RF_IN >= 770000000 && state->RF_IN <= 900000000)
{
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
}
}
}
return status ;
}
// DONE
u16 MXL_SetGPIO(struct dvb_frontend *fe, u8 GPIO_Num, u8 GPIO_Val)
{
u16 status = 0;
if (GPIO_Num == 1)
status += MXL_ControlWrite(fe, GPIO_1B, GPIO_Val ? 0 : 1);
/* GPIO2 is not available */
if (GPIO_Num == 3) {
if (GPIO_Val == 1) {
status += MXL_ControlWrite(fe, GPIO_3, 0);
status += MXL_ControlWrite(fe, GPIO_3B, 0);
}
if (GPIO_Val == 0) {
status += MXL_ControlWrite(fe, GPIO_3, 1);
status += MXL_ControlWrite(fe, GPIO_3B, 1);
}
if (GPIO_Val == 3) { /* tri-state */
status += MXL_ControlWrite(fe, GPIO_3, 0);
status += MXL_ControlWrite(fe, GPIO_3B, 1);
}
}
if (GPIO_Num == 4) {
if (GPIO_Val == 1) {
status += MXL_ControlWrite(fe, GPIO_4, 0);
status += MXL_ControlWrite(fe, GPIO_4B, 0);
}
if (GPIO_Val == 0) {
status += MXL_ControlWrite(fe, GPIO_4, 1);
status += MXL_ControlWrite(fe, GPIO_4B, 1);
}
if (GPIO_Val == 3) { /* tri-state */
status += MXL_ControlWrite(fe, GPIO_4, 0);
status += MXL_ControlWrite(fe, GPIO_4B, 1);
}
}
return status;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_ControlWrite //
// //
// Description: Update control name value //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// MXL_ControlWrite( Tuner, controlName, value, Group ) //
// //
// Inputs: //
// Tuner : Tuner structure //
// ControlName : Control name to be updated //
// value : Value to be written //
// //
// Outputs: //
// Tuner : Tuner structure defined at higher level //
// //
// Return: //
// 0 : Successful write //
// >0 : Value exceed maximum allowed for control number //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
u16 MXL_ControlWrite(struct dvb_frontend *fe, u16 ControlNum, u32 value)
{
u16 status = 0;
/* Will write ALL Matching Control Name */
status += MXL_ControlWrite_Group(fe, ControlNum, value, 1); /* Write Matching INIT Control */
status += MXL_ControlWrite_Group(fe, ControlNum, value, 2); /* Write Matching CH Control */
#ifdef _MXL_INTERNAL
status += MXL_ControlWrite_Group(fe, ControlNum, value, 3); /* Write Matching MXL Control */
#endif
return status;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_ControlWrite //
// //
// Description: Update control name value //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// strcmp //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// ControlName : Control Name //
// value : Value Assigned to Control Name //
// controlGroup : Control Register Group //
// //
// Outputs: //
// NONE //
// //
// Return: //
// 0 : Successful write //
// 1 : Value exceed maximum allowed for control name //
// 2 : Control name not found //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum, u32 value, u16 controlGroup)
{
struct mxl5005s_state *state = fe->tuner_priv;
u16 i, j, k;
u32 highLimit;
u32 ctrlVal;
if (controlGroup == 1) /* Initial Control */ {
for (i = 0; i < state->Init_Ctrl_Num; i++) {
if (controlNum == state->Init_Ctrl[i].Ctrl_Num) {
highLimit = 1 << state->Init_Ctrl[i].size;
if (value < highLimit) {
for (j = 0; j < state->Init_Ctrl[i].size; j++) {
state->Init_Ctrl[i].val[j] = (u8)((value >> j) & 0x01);
MXL_RegWriteBit(fe, (u8)(state->Init_Ctrl[i].addr[j]),
(u8)(state->Init_Ctrl[i].bit[j]),
(u8)((value>>j) & 0x01) );
}
ctrlVal = 0;
for (k = 0; k < state->Init_Ctrl[i].size; k++)
ctrlVal += state->Init_Ctrl[i].val[k] * (1 << k);
}
else
return -1;
}
}
}
if (controlGroup == 2) /* Chan change Control */ {
for (i = 0; i < state->CH_Ctrl_Num; i++) {
if (controlNum == state->CH_Ctrl[i].Ctrl_Num ) {
highLimit = 1 << state->CH_Ctrl[i].size;
if (value < highLimit) {
for (j = 0; j < state->CH_Ctrl[i].size; j++) {
state->CH_Ctrl[i].val[j] = (u8)((value >> j) & 0x01);
MXL_RegWriteBit(fe, (u8)(state->CH_Ctrl[i].addr[j]),
(u8)(state->CH_Ctrl[i].bit[j]),
(u8)((value>>j) & 0x01) );
}
ctrlVal = 0;
for (k = 0; k < state->CH_Ctrl[i].size; k++)
ctrlVal += state->CH_Ctrl[i].val[k] * (1 << k);
}
else
return -1;
}
}
}
#ifdef _MXL_INTERNAL
if (controlGroup == 3) /* Maxlinear Control */ {
for (i = 0; i < state->MXL_Ctrl_Num; i++) {
if (controlNum == state->MXL_Ctrl[i].Ctrl_Num ) {
highLimit = (1 << state->MXL_Ctrl[i].size) ;
if (value < highLimit) {
for (j = 0; j < state->MXL_Ctrl[i].size; j++) {
state->MXL_Ctrl[i].val[j] = (u8)((value >> j) & 0x01);
MXL_RegWriteBit(fe, (u8)(state->MXL_Ctrl[i].addr[j]),
(u8)(state->MXL_Ctrl[i].bit[j]),
(u8)((value>>j) & 0x01) );
}
ctrlVal = 0;
for(k = 0; k < state->MXL_Ctrl[i].size; k++)
ctrlVal += state->MXL_Ctrl[i].val[k] * (1 << k);
}
else
return -1;
}
}
}
#endif
return 0 ; /* successful return */
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_RegWrite //
// //
// Description: Update tuner register value //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// NONE //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// RegNum : Register address to be assigned a value //
// RegVal : Register value to write //
// //
// Outputs: //
// NONE //
// //
// Return: //
// 0 : Successful write //
// -1 : Invalid Register Address //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
u16 MXL_RegWrite(struct dvb_frontend *fe, u8 RegNum, u8 RegVal)
{
struct mxl5005s_state *state = fe->tuner_priv;
int i ;
for (i = 0; i < 104; i++) {
if (RegNum == state->TunerRegs[i].Reg_Num) {
state->TunerRegs[i].Reg_Val = RegVal;
return 0;
}
}
return 1;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_RegRead //
// //
// Description: Retrieve tuner register value //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// NONE //
// //
// Inputs: //
// Tuner_struct: structure defined at higher level //
// RegNum : Register address to be assigned a value //
// //
// Outputs: //
// RegVal : Retrieved register value //
// //
// Return: //
// 0 : Successful read //
// -1 : Invalid Register Address //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
u16 MXL_RegRead(struct dvb_frontend *fe, u8 RegNum, u8 *RegVal)
{
struct mxl5005s_state *state = fe->tuner_priv;
int i ;
for (i = 0; i < 104; i++) {
if (RegNum == state->TunerRegs[i].Reg_Num ) {
*RegVal = (u8)(state->TunerRegs[i].Reg_Val);
return 0;
}
}
return 1;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_ControlRead //
// //
// Description: Retrieve the control value based on the control name //
// //
// Globals: //
// NONE //
// //
// Inputs: //
// Tuner_struct : structure defined at higher level //
// ControlName : Control Name //
// //
// Outputs: //
// value : returned control value //
// //
// Return: //
// 0 : Successful read //
// -1 : Invalid control name //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
u16 MXL_ControlRead(struct dvb_frontend *fe, u16 controlNum, u32 *value)
{
struct mxl5005s_state *state = fe->tuner_priv;
u32 ctrlVal ;
u16 i, k ;
for (i = 0; i < state->Init_Ctrl_Num ; i++) {
if (controlNum == state->Init_Ctrl[i].Ctrl_Num) {
ctrlVal = 0;
for (k = 0; k < state->Init_Ctrl[i].size; k++)
ctrlVal += state->Init_Ctrl[i].val[k] * (1 << k);
*value = ctrlVal;
return 0;
}
}
for (i = 0; i < state->CH_Ctrl_Num ; i++) {
if (controlNum == state->CH_Ctrl[i].Ctrl_Num) {
ctrlVal = 0;
for (k = 0; k < state->CH_Ctrl[i].size; k++)
ctrlVal += state->CH_Ctrl[i].val[k] * (1 << k);
*value = ctrlVal;
return 0;
}
}
#ifdef _MXL_INTERNAL
for (i = 0; i < state->MXL_Ctrl_Num ; i++) {
if (controlNum == state->MXL_Ctrl[i].Ctrl_Num) {
ctrlVal = 0;
for (k = 0; k < state->MXL_Ctrl[i].size; k++)
ctrlVal += state->MXL_Ctrl[i].val[k] * (1<<k);
*value = ctrlVal;
return 0;
}
}
#endif
return 1;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_ControlRegRead //
// //
// Description: Retrieve the register addresses and count related to a //
// a specific control name //
// //
// Globals: //
// NONE //
// //
// Inputs: //
// Tuner_struct : structure defined at higher level //
// ControlName : Control Name //
// //
// Outputs: //
// RegNum : returned register address array //
// count : returned register count related to a control //
// //
// Return: //
// 0 : Successful read //
// -1 : Invalid control name //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
u16 MXL_ControlRegRead(struct dvb_frontend *fe, u16 controlNum, u8 *RegNum, int * count)
{
struct mxl5005s_state *state = fe->tuner_priv;
u16 i, j, k ;
u16 Count ;
for (i = 0; i < state->Init_Ctrl_Num ; i++) {
if ( controlNum == state->Init_Ctrl[i].Ctrl_Num ) {
Count = 1;
RegNum[0] = (u8)(state->Init_Ctrl[i].addr[0]);
for (k = 1; k < state->Init_Ctrl[i].size; k++) {
for (j = 0; j < Count; j++) {
if (state->Init_Ctrl[i].addr[k] != RegNum[j]) {
Count ++;
RegNum[Count-1] = (u8)(state->Init_Ctrl[i].addr[k]);
}
}
}
*count = Count;
return 0;
}
}
for (i = 0; i < state->CH_Ctrl_Num ; i++) {
if ( controlNum == state->CH_Ctrl[i].Ctrl_Num ) {
Count = 1;
RegNum[0] = (u8)(state->CH_Ctrl[i].addr[0]);
for (k = 1; k < state->CH_Ctrl[i].size; k++) {
for (j= 0; j<Count; j++) {
if (state->CH_Ctrl[i].addr[k] != RegNum[j]) {
Count ++;
RegNum[Count-1] = (u8)(state->CH_Ctrl[i].addr[k]);
}
}
}
*count = Count;
return 0;
}
}
#ifdef _MXL_INTERNAL
for (i = 0; i < state->MXL_Ctrl_Num ; i++) {
if ( controlNum == state->MXL_Ctrl[i].Ctrl_Num ) {
Count = 1;
RegNum[0] = (u8)(state->MXL_Ctrl[i].addr[0]);
for (k = 1; k < state->MXL_Ctrl[i].size; k++) {
for (j = 0; j<Count; j++) {
if (state->MXL_Ctrl[i].addr[k] != RegNum[j]) {
Count ++;
RegNum[Count-1] = (u8)state->MXL_Ctrl[i].addr[k];
}
}
}
*count = Count;
return 0;
}
}
#endif
*count = 0;
return 1;
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_RegWriteBit //
// //
// Description: Write a register for specified register address, //
// register bit and register bit value //
// //
// Globals: //
// NONE //
// //
// Inputs: //
// Tuner_struct : structure defined at higher level //
// address : register address //
// bit : register bit number //
// bitVal : register bit value //
// //
// Outputs: //
// NONE //
// //
// Return: //
// NONE //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
void MXL_RegWriteBit(struct dvb_frontend *fe, u8 address, u8 bit, u8 bitVal)
{
struct mxl5005s_state *state = fe->tuner_priv;
int i ;
const u8 AND_MAP[8] = {
0xFE, 0xFD, 0xFB, 0xF7,
0xEF, 0xDF, 0xBF, 0x7F } ;
const u8 OR_MAP[8] = {
0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80 } ;
for (i = 0; i < state->TunerRegs_Num; i++) {
if (state->TunerRegs[i].Reg_Num == address) {
if (bitVal)
state->TunerRegs[i].Reg_Val |= OR_MAP[bit];
else
state->TunerRegs[i].Reg_Val &= AND_MAP[bit];
break ;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// //
// Function: MXL_Ceiling //
// //
// Description: Complete to closest increment of resolution //
// //
// Globals: //
// NONE //
// //
// Functions used: //
// NONE //
// //
// Inputs: //
// value : Input number to compute //
// resolution : Increment step //
// //
// Outputs: //
// NONE //
// //
// Return: //
// Computed value //
// //
///////////////////////////////////////////////////////////////////////////////
// DONE
u32 MXL_Ceiling(u32 value, u32 resolution)
{
return (value/resolution + (value % resolution > 0 ? 1 : 0));
}
//
// Retrieve the Initialzation Registers
//
// DONE
u16 MXL_GetInitRegister(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count)
{
u16 status = 0;
int i ;
u8 RegAddr[] = {
11, 12, 13, 22, 32, 43, 44, 53, 56, 59, 73,
76, 77, 91, 134, 135, 137, 147,
156, 166, 167, 168, 25 };
*count = sizeof(RegAddr) / sizeof(u8);
status += MXL_BlockInit(fe);
for (i = 0 ; i < *count; i++) {
RegNum[i] = RegAddr[i];
status += MXL_RegRead(fe, RegNum[i], &RegVal[i]);
}
return status;
}
// DONE
u16 MXL_GetCHRegister(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count)
{
u16 status = 0;
int i ;
//add 77, 166, 167, 168 register for 2.6.12
#ifdef _MXL_PRODUCTION
u8 RegAddr[] = {14, 15, 16, 17, 22, 43, 65, 68, 69, 70, 73, 92, 93, 106,
107, 108, 109, 110, 111, 112, 136, 138, 149, 77, 166, 167, 168 } ;
#else
u8 RegAddr[] = {14, 15, 16, 17, 22, 43, 68, 69, 70, 73, 92, 93, 106,
107, 108, 109, 110, 111, 112, 136, 138, 149, 77, 166, 167, 168 } ;
//u8 RegAddr[171];
//for (i=0; i<=170; i++)
// RegAddr[i] = i;
#endif
*count = sizeof(RegAddr) / sizeof(u8);
for (i = 0 ; i < *count; i++) {
RegNum[i] = RegAddr[i];
status += MXL_RegRead(fe, RegNum[i], &RegVal[i]);
}
return status;
}
// DONE
u16 MXL_GetCHRegister_ZeroIF(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count)
{
u16 status = 0;
int i;
u8 RegAddr[] = {43, 136};
*count = sizeof(RegAddr) / sizeof(u8);
for (i = 0; i < *count; i++) {
RegNum[i] = RegAddr[i];
status += MXL_RegRead(fe, RegNum[i], &RegVal[i]);
}
return status;
}
// DONE
u16 MXL_GetCHRegister_LowIF(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count)
{
u16 status = 0;
int i;
u8 RegAddr[] = { 138 };
*count = sizeof(RegAddr) / sizeof(u8);
for (i = 0; i < *count; i++) {
RegNum[i] = RegAddr[i];
status += MXL_RegRead(fe, RegNum[i], &RegVal[i]);
}
return status;
}
// DONE
u16 MXL_GetMasterControl(u8 *MasterReg, int state)
{
if (state == 1) /* Load_Start */
*MasterReg = 0xF3;
if (state == 2) /* Power_Down */
*MasterReg = 0x41;
if (state == 3) /* Synth_Reset */
*MasterReg = 0xB1;
if (state == 4) /* Seq_Off */
*MasterReg = 0xF1;
return 0;
}
#ifdef _MXL_PRODUCTION
u16 MXL_VCORange_Test(struct dvb_frontend *fe, int VCO_Range)
{
struct mxl5005s_state *state = fe->tuner_priv;
u16 status = 0 ;
if (VCO_Range == 1) {
status += MXL_ControlWrite(fe, RFSYN_EN_DIV, 1);
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
status += MXL_ControlWrite(fe, RFSYN_DIVM, 1);
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 56);
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 180224);
}
if (state->Mode == 0 && state->IF_Mode == 0) /* Analog Zero IF Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 56);
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 222822);
}
if (state->Mode == 1) /* Digital Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 56);
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 229376);
}
}
if (VCO_Range == 2) {
status += MXL_ControlWrite(fe, RFSYN_EN_DIV, 1);
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
status += MXL_ControlWrite(fe, RFSYN_DIVM, 1);
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 41);
if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42);
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 206438);
}
if (state->Mode == 0 && state->IF_Mode == 0) /* Analog Zero IF Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42);
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 206438);
}
if (state->Mode == 1) /* Digital Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 41);
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 16384);
}
}
if (VCO_Range == 3) {
status += MXL_ControlWrite(fe, RFSYN_EN_DIV, 1);
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
status += MXL_ControlWrite(fe, RFSYN_DIVM, 1);
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42);
if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 44);
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 173670);
}
if (state->Mode == 0 && state->IF_Mode == 0) /* Analog Zero IF Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 44);
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 173670);
}
if (state->Mode == 1) /* Digital Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42);
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 245760);
}
}
if (VCO_Range == 4) {
status += MXL_ControlWrite(fe, RFSYN_EN_DIV, 1);
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
status += MXL_ControlWrite(fe, RFSYN_DIVM, 1);
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27);
if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27);
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 206438);
}
if (state->Mode == 0 && state->IF_Mode == 0) /* Analog Zero IF Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27);
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 206438);
}
if (state->Mode == 1) /* Digital Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27);
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 212992);
}
}
return status;
}
// DONE
u16 MXL_Hystersis_Test(struct dvb_frontend *fe, int Hystersis)
{
struct mxl5005s_state *state = fe->tuner_priv;
u16 status = 0;
if (Hystersis == 1)
status += MXL_ControlWrite(fe, DN_BYPASS_AGC_I2C, 1);
return status;
}
#endif
/* Linux driver related functions */
int mxl5005s_init(struct dvb_frontend *fe)
{
int MxlModMode;
int MxlIfMode;
unsigned long MxlBandwitdh;
unsigned long MxlIfFreqHz;
unsigned long MxlCrystalFreqHz;
int MxlAgcMode;
unsigned short MxlTop;
unsigned short MxlIfOutputLoad;
int MxlClockOut;
int MxlDivOut;
int MxlCapSel;
int MxlRssiOnOff;
unsigned char MxlStandard;
unsigned char MxlTfType;
/* Set MxL5005S parameters. */
MxlModMode = MXL_DIGITAL_MODE;
MxlIfMode = MXL_ZERO_IF;
// steve
//MxlBandwitdh = MXL5005S_BANDWIDTH_8MHZ;
//MxlIfFreqHz = IF_FREQ_4570000HZ;
MxlBandwitdh = MXL5005S_BANDWIDTH_6MHZ; // config
MxlIfFreqHz = IF_FREQ_5380000HZ; // config
MxlCrystalFreqHz = CRYSTAL_FREQ_16000000HZ; // config
MxlAgcMode = MXL_SINGLE_AGC;
MxlTop = MXL5005S_TOP_25P2;
MxlIfOutputLoad = MXL5005S_IF_OUTPUT_LOAD_200_OHM;
MxlClockOut = MXL_CLOCK_OUT_DISABLE;
MxlDivOut = MXL_DIV_OUT_4;
MxlCapSel = MXL_CAP_SEL_ENABLE;
MxlRssiOnOff = MXL_RSSI_ENABLE; // config
MxlTfType = MXL_TF_C_H; // config
MxlStandard = MXL_ATSC; // config
// TODO: this is bad, it trashes other configs
// Set MxL5005S extra module.
//pExtra->AgcMasterByte = (MxlAgcMode == MXL_DUAL_AGC) ? 0x4 : 0x0;
MXL5005_TunerConfig(
fe,
(unsigned char)MxlModMode,
(unsigned char)MxlIfMode,
MxlBandwitdh,
MxlIfFreqHz,
MxlCrystalFreqHz,
(unsigned char)MxlAgcMode,
MxlTop,
MxlIfOutputLoad,
(unsigned char)MxlClockOut,
(unsigned char)MxlDivOut,
(unsigned char)MxlCapSel,
(unsigned char)MxlRssiOnOff,
MxlStandard, MxlTfType);
return mxl5005s_init2(fe);
}
static int mxl5005s_set_params(struct dvb_frontend *fe,
struct dvb_frontend_parameters *params)
{
u32 freq;
u32 bw;
if (fe->ops.info.type == FE_OFDM)
bw = params->u.ofdm.bandwidth;
else
bw = MXL5005S_BANDWIDTH_6MHZ;
freq = params->frequency; /* Hz */
dprintk(1, "%s() freq=%d bw=%d\n", __func__, freq, bw);
return mxl5005s_SetRfFreqHz(fe, freq);
}
static int mxl5005s_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct mxl5005s_state *state = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
*frequency = state->RF_IN;
return 0;
}
static int mxl5005s_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
struct mxl5005s_state *state = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
*bandwidth = state->Chan_Bandwidth;
return 0;
}
static int mxl5005s_get_status(struct dvb_frontend *fe, u32 *status)
{
dprintk(1, "%s()\n", __func__);
*status = 0;
// *status = TUNER_STATUS_LOCKED;
return 0;
}
static int mxl5005s_init2(struct dvb_frontend *fe)
{
struct mxl5005s_state *state = fe->tuner_priv;
u8 AddrTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX];
u8 ByteTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX];
int TableLen;
dprintk(1, "%s()\n", __func__);
/* Initialize MxL5005S tuner according to MxL5005S tuner example code. */
/* Tuner initialization stage 0 */
MXL_GetMasterControl(ByteTable, MC_SYNTH_RESET);
AddrTable[0] = MASTER_CONTROL_ADDR;
ByteTable[0] |= state->config->AgcMasterByte;
mxl5005s_SetRegsWithTable(fe, AddrTable, ByteTable, 1);
/* Tuner initialization stage 1 */
MXL_GetInitRegister(fe, AddrTable, ByteTable, &TableLen);
mxl5005s_SetRegsWithTable(fe, AddrTable, ByteTable, TableLen);
return 0;
}
static int mxl5005s_release(struct dvb_frontend *fe)
{
dprintk(1, "%s()\n", __func__);
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static const struct dvb_tuner_ops mxl5005s_tuner_ops = {
.info = {
.name = "MaxLinear MXL5005S",
.frequency_min = 48000000,
.frequency_max = 860000000,
.frequency_step = 50000,
},
.release = mxl5005s_release,
.init = mxl5005s_init,
.set_params = mxl5005s_set_params,
.get_frequency = mxl5005s_get_frequency,
.get_bandwidth = mxl5005s_get_bandwidth,
.get_status = mxl5005s_get_status
};
struct dvb_frontend *mxl5005s_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c,
struct mxl5005s_config *config)
{
struct mxl5005s_state *state = NULL;
dprintk(1, "%s()\n", __func__);
state = kzalloc(sizeof(struct mxl5005s_state), GFP_KERNEL);
if (state == NULL)
return NULL;
state->frontend = fe;
state->config = config;
state->i2c = i2c;
printk(KERN_INFO "MXL5005S: Attached at address 0x%02x\n", config->i2c_address);
memcpy(&fe->ops.tuner_ops, &mxl5005s_tuner_ops, sizeof(struct dvb_tuner_ops));
fe->tuner_priv = state;
return fe;
}
EXPORT_SYMBOL(mxl5005s_attach);
MODULE_DESCRIPTION("MaxLinear MXL5005S silicon tuner driver");
MODULE_AUTHOR("Jan Hoogenraad");
MODULE_AUTHOR("Barnaby Shearer");
MODULE_AUTHOR("Andy Hasper");
MODULE_AUTHOR("Steven Toth");
MODULE_LICENSE("GPL");