blob: 765c1f53e244a93efebef51520dc6e38d66978d7 [file] [log] [blame]
/* Copyright (c) 2015-2017 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/delay.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/platform_device.h>
#include <linux/blkdev.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/pm_runtime.h>
#include <linux/workqueue.h>
#include "cmdq_hci.h"
#include "sdhci.h"
#include "sdhci-msm.h"
#define DCMD_SLOT 31
#define NUM_SLOTS 32
/* 10 sec */
#define HALT_TIMEOUT_MS 10000
static int cmdq_halt_poll(struct mmc_host *mmc, bool halt);
static int cmdq_halt(struct mmc_host *mmc, bool halt);
#ifdef CONFIG_PM_RUNTIME
static int cmdq_runtime_pm_get(struct cmdq_host *host)
{
return pm_runtime_get_sync(host->mmc->parent);
}
static int cmdq_runtime_pm_put(struct cmdq_host *host)
{
pm_runtime_mark_last_busy(host->mmc->parent);
return pm_runtime_put_autosuspend(host->mmc->parent);
}
#else
static inline int cmdq_runtime_pm_get(struct cmdq_host *host)
{
return 0;
}
static inline int cmdq_runtime_pm_put(struct cmdq_host *host)
{
return 0;
}
#endif
static inline struct mmc_request *get_req_by_tag(struct cmdq_host *cq_host,
unsigned int tag)
{
return cq_host->mrq_slot[tag];
}
static inline u8 *get_desc(struct cmdq_host *cq_host, u8 tag)
{
return cq_host->desc_base + (tag * cq_host->slot_sz);
}
static inline u8 *get_link_desc(struct cmdq_host *cq_host, u8 tag)
{
u8 *desc = get_desc(cq_host, tag);
return desc + cq_host->task_desc_len;
}
static inline dma_addr_t get_trans_desc_dma(struct cmdq_host *cq_host, u8 tag)
{
return cq_host->trans_desc_dma_base +
(cq_host->mmc->max_segs * tag *
cq_host->trans_desc_len);
}
static inline u8 *get_trans_desc(struct cmdq_host *cq_host, u8 tag)
{
return cq_host->trans_desc_base +
(cq_host->trans_desc_len * cq_host->mmc->max_segs * tag);
}
static void setup_trans_desc(struct cmdq_host *cq_host, u8 tag)
{
u8 *link_temp;
dma_addr_t trans_temp;
link_temp = get_link_desc(cq_host, tag);
trans_temp = get_trans_desc_dma(cq_host, tag);
memset(link_temp, 0, cq_host->link_desc_len);
if (cq_host->link_desc_len > 8)
*(link_temp + 8) = 0;
if (tag == DCMD_SLOT) {
*link_temp = VALID(0) | ACT(0) | END(1);
return;
}
*link_temp = VALID(1) | ACT(0x6) | END(0);
if (cq_host->dma64) {
__le64 *data_addr = (__le64 __force *)(link_temp + 4);
data_addr[0] = cpu_to_le64(trans_temp);
} else {
__le32 *data_addr = (__le32 __force *)(link_temp + 4);
data_addr[0] = cpu_to_le32(trans_temp);
}
}
static void cmdq_set_halt_irq(struct cmdq_host *cq_host, bool enable)
{
u32 ier;
ier = cmdq_readl(cq_host, CQISTE);
if (enable) {
cmdq_writel(cq_host, ier | HALT, CQISTE);
cmdq_writel(cq_host, ier | HALT, CQISGE);
} else {
cmdq_writel(cq_host, ier & ~HALT, CQISTE);
cmdq_writel(cq_host, ier & ~HALT, CQISGE);
}
}
static void cmdq_clear_set_irqs(struct cmdq_host *cq_host, u32 clear, u32 set)
{
u32 ier;
ier = cmdq_readl(cq_host, CQISTE);
ier &= ~clear;
ier |= set;
cmdq_writel(cq_host, ier, CQISTE);
cmdq_writel(cq_host, ier, CQISGE);
/* ensure the writes are done */
mb();
}
static int cmdq_clear_task_poll(struct cmdq_host *cq_host, unsigned int tag)
{
int retries = 100;
cmdq_clear_set_irqs(cq_host, CQIS_TCL, 0);
cmdq_writel(cq_host, 1<<tag, CQTCLR);
while (retries) {
/*
* Task Clear register and doorbell,
* both should indicate that task is cleared
*/
if ((cmdq_readl(cq_host, CQTCLR) & 1<<tag) ||
(cmdq_readl(cq_host, CQTDBR) & 1<<tag)) {
udelay(5);
retries--;
continue;
} else
break;
}
cmdq_clear_set_irqs(cq_host, 0, CQIS_TCL);
return retries ? 0 : -ETIMEDOUT;
}
#define DRV_NAME "cmdq-host"
static void cmdq_dump_task_history(struct cmdq_host *cq_host)
{
int i;
if (likely(!cq_host->mmc->cmdq_thist_enabled))
return;
if (!cq_host->thist) {
pr_err("%s: %s: CMDQ task history buffer not allocated\n",
mmc_hostname(cq_host->mmc), __func__);
return;
}
pr_err("---- Circular Task History ----\n");
pr_err(DRV_NAME ": Last entry index: %d", cq_host->thist_idx - 1);
for (i = 0; i < cq_host->num_slots; i++) {
pr_err(DRV_NAME ": [%02d]%s Task: 0x%08x | Args: 0x%08x\n", i,
(cq_host->thist[i].is_dcmd) ? "DCMD" : "DATA",
lower_32_bits(cq_host->thist[i].task),
upper_32_bits(cq_host->thist[i].task));
}
pr_err("-------------------------\n");
}
static void cmdq_dump_adma_mem(struct cmdq_host *cq_host)
{
struct mmc_host *mmc = cq_host->mmc;
dma_addr_t desc_dma;
int tag = 0;
unsigned long data_active_reqs =
mmc->cmdq_ctx.data_active_reqs;
unsigned long desc_size =
(cq_host->mmc->max_segs * cq_host->trans_desc_len);
for_each_set_bit(tag, &data_active_reqs, cq_host->num_slots) {
desc_dma = get_trans_desc_dma(cq_host, tag);
pr_err("%s: %s: tag = %d, trans_dma(phys) = %pad, trans_desc(virt) = 0x%p\n",
mmc_hostname(mmc), __func__, tag,
&desc_dma, get_trans_desc(cq_host, tag));
print_hex_dump(KERN_ERR, "cmdq-adma:", DUMP_PREFIX_ADDRESS,
32, 8, get_trans_desc(cq_host, tag),
(desc_size), false);
}
}
static void cmdq_dumpregs(struct cmdq_host *cq_host)
{
struct mmc_host *mmc = cq_host->mmc;
int offset = 0;
if (cq_host->offset_changed)
offset = CQ_V5_VENDOR_CFG;
MMC_TRACE(mmc,
"%s: 0x0C=0x%08x 0x10=0x%08x 0x14=0x%08x 0x18=0x%08x 0x28=0x%08x 0x2C=0x%08x 0x30=0x%08x 0x34=0x%08x 0x54=0x%08x 0x58=0x%08x 0x5C=0x%08x 0x48=0x%08x\n",
__func__, cmdq_readl(cq_host, CQCTL), cmdq_readl(cq_host, CQIS),
cmdq_readl(cq_host, CQISTE), cmdq_readl(cq_host, CQISGE),
cmdq_readl(cq_host, CQTDBR), cmdq_readl(cq_host, CQTCN),
cmdq_readl(cq_host, CQDQS), cmdq_readl(cq_host, CQDPT),
cmdq_readl(cq_host, CQTERRI), cmdq_readl(cq_host, CQCRI),
cmdq_readl(cq_host, CQCRA), cmdq_readl(cq_host, CQCRDCT));
pr_err(DRV_NAME ": ========== REGISTER DUMP (%s)==========\n",
mmc_hostname(mmc));
pr_err(DRV_NAME ": Caps: 0x%08x | Version: 0x%08x\n",
cmdq_readl(cq_host, CQCAP),
cmdq_readl(cq_host, CQVER));
pr_err(DRV_NAME ": Queing config: 0x%08x | Queue Ctrl: 0x%08x\n",
cmdq_readl(cq_host, CQCFG),
cmdq_readl(cq_host, CQCTL));
pr_err(DRV_NAME ": Int stat: 0x%08x | Int enab: 0x%08x\n",
cmdq_readl(cq_host, CQIS),
cmdq_readl(cq_host, CQISTE));
pr_err(DRV_NAME ": Int sig: 0x%08x | Int Coal: 0x%08x\n",
cmdq_readl(cq_host, CQISGE),
cmdq_readl(cq_host, CQIC));
pr_err(DRV_NAME ": TDL base: 0x%08x | TDL up32: 0x%08x\n",
cmdq_readl(cq_host, CQTDLBA),
cmdq_readl(cq_host, CQTDLBAU));
pr_err(DRV_NAME ": Doorbell: 0x%08x | Comp Notif: 0x%08x\n",
cmdq_readl(cq_host, CQTDBR),
cmdq_readl(cq_host, CQTCN));
pr_err(DRV_NAME ": Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
cmdq_readl(cq_host, CQDQS),
cmdq_readl(cq_host, CQDPT));
pr_err(DRV_NAME ": Task clr: 0x%08x | Send stat 1: 0x%08x\n",
cmdq_readl(cq_host, CQTCLR),
cmdq_readl(cq_host, CQSSC1));
pr_err(DRV_NAME ": Send stat 2: 0x%08x | DCMD resp: 0x%08x\n",
cmdq_readl(cq_host, CQSSC2),
cmdq_readl(cq_host, CQCRDCT));
pr_err(DRV_NAME ": Resp err mask: 0x%08x | Task err: 0x%08x\n",
cmdq_readl(cq_host, CQRMEM),
cmdq_readl(cq_host, CQTERRI));
pr_err(DRV_NAME ": Resp idx 0x%08x | Resp arg: 0x%08x\n",
cmdq_readl(cq_host, CQCRI),
cmdq_readl(cq_host, CQCRA));
pr_err(DRV_NAME": Vendor cfg 0x%08x\n",
cmdq_readl(cq_host, CQ_VENDOR_CFG + offset));
pr_err(DRV_NAME ": ===========================================\n");
cmdq_dump_task_history(cq_host);
if (cq_host->ops->dump_vendor_regs)
cq_host->ops->dump_vendor_regs(mmc);
}
/**
* The allocated descriptor table for task, link & transfer descritors
* looks like:
* |----------|
* |task desc | |->|----------|
* |----------| | |trans desc|
* |link desc-|->| |----------|
* |----------| .
* . .
* no. of slots max-segs
* . |----------|
* |----------|
* The idea here is to create the [task+trans] table and mark & point the
* link desc to the transfer desc table on a per slot basis.
*/
static int cmdq_host_alloc_tdl(struct cmdq_host *cq_host)
{
size_t desc_size;
size_t data_size;
int i = 0;
/* task descriptor can be 64/128 bit irrespective of arch */
if (cq_host->caps & CMDQ_TASK_DESC_SZ_128) {
cmdq_writel(cq_host, cmdq_readl(cq_host, CQCFG) |
CQ_TASK_DESC_SZ, CQCFG);
cq_host->task_desc_len = 16;
} else {
cq_host->task_desc_len = 8;
}
/*
* 96 bits length of transfer desc instead of 128 bits which means
* ADMA would expect next valid descriptor at the 96th bit
* or 128th bit
*/
if (cq_host->dma64) {
if (cq_host->quirks & CMDQ_QUIRK_SHORT_TXFR_DESC_SZ)
cq_host->trans_desc_len = 12;
else
cq_host->trans_desc_len = 16;
cq_host->link_desc_len = 16;
} else {
cq_host->trans_desc_len = 8;
cq_host->link_desc_len = 8;
}
/* total size of a slot: 1 task & 1 transfer (link) */
cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
desc_size = cq_host->slot_sz * cq_host->num_slots;
data_size = cq_host->trans_desc_len * cq_host->mmc->max_segs *
(cq_host->num_slots - 1);
pr_info("%s: desc_size: %d data_sz: %d slot-sz: %d\n", __func__,
(int)desc_size, (int)data_size, cq_host->slot_sz);
/*
* allocate a dma-mapped chunk of memory for the descriptors
* allocate a dma-mapped chunk of memory for link descriptors
* setup each link-desc memory offset per slot-number to
* the descriptor table.
*/
cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
desc_size,
&cq_host->desc_dma_base,
GFP_KERNEL);
cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
data_size,
&cq_host->trans_desc_dma_base,
GFP_KERNEL);
cq_host->thist = devm_kzalloc(mmc_dev(cq_host->mmc),
(sizeof(*cq_host->thist) *
cq_host->num_slots),
GFP_KERNEL);
if (!cq_host->desc_base || !cq_host->trans_desc_base)
return -ENOMEM;
pr_debug("desc-base: 0x%pK trans-base: 0x%pK\n desc_dma 0x%llx trans_dma: 0x%llx\n",
cq_host->desc_base, cq_host->trans_desc_base,
(unsigned long long)cq_host->desc_dma_base,
(unsigned long long) cq_host->trans_desc_dma_base);
for (; i < (cq_host->num_slots); i++)
setup_trans_desc(cq_host, i);
return 0;
}
static int cmdq_enable(struct mmc_host *mmc)
{
int err = 0;
u32 cqcfg;
u32 cqcap = 0;
bool dcmd_enable;
struct cmdq_host *cq_host = mmc_cmdq_private(mmc);
if (!cq_host || !mmc->card || !mmc_card_cmdq(mmc->card)) {
err = -EINVAL;
goto out;
}
if (cq_host->enabled)
goto out;
cmdq_runtime_pm_get(cq_host);
cqcfg = cmdq_readl(cq_host, CQCFG);
if (cqcfg & 0x1) {
pr_info("%s: %s: cq_host is already enabled\n",
mmc_hostname(mmc), __func__);
WARN_ON(1);
goto pm_ref_count;
}
if (cq_host->quirks & CMDQ_QUIRK_NO_DCMD)
dcmd_enable = false;
else
dcmd_enable = true;
cqcfg = ((cq_host->caps & CMDQ_TASK_DESC_SZ_128 ? CQ_TASK_DESC_SZ : 0) |
(dcmd_enable ? CQ_DCMD : 0));
cqcap = cmdq_readl(cq_host, CQCAP);
if (cqcap & CQCAP_CS) {
/*
* In case host controller supports cryptographic operations
* then, it uses 128bit task descriptor. Upper 64 bits of task
* descriptor would be used to pass crypto specific informaton.
*/
cq_host->caps |= CMDQ_CAP_CRYPTO_SUPPORT |
CMDQ_TASK_DESC_SZ_128;
cqcfg |= CQ_ICE_ENABLE;
/*
* For SDHC v5.0 onwards, ICE 3.0 specific registers are added
* in CQ register space, due to which few CQ registers are
* shifted. Set offset_changed boolean to use updated address.
*/
cq_host->offset_changed = true;
}
cmdq_writel(cq_host, cqcfg, CQCFG);
/* enable CQ_HOST */
cmdq_writel(cq_host, cmdq_readl(cq_host, CQCFG) | CQ_ENABLE,
CQCFG);
if (!cq_host->desc_base ||
!cq_host->trans_desc_base) {
err = cmdq_host_alloc_tdl(cq_host);
if (err)
goto pm_ref_count;
}
cmdq_writel(cq_host, lower_32_bits(cq_host->desc_dma_base), CQTDLBA);
cmdq_writel(cq_host, upper_32_bits(cq_host->desc_dma_base), CQTDLBAU);
/*
* disable all vendor interrupts
* enable CMDQ interrupts
* enable the vendor error interrupts
*/
if (cq_host->ops->clear_set_irqs)
cq_host->ops->clear_set_irqs(mmc, true);
cmdq_clear_set_irqs(cq_host, 0x0, CQ_INT_ALL);
/* cq_host would use this rca to address the card */
cmdq_writel(cq_host, mmc->card->rca, CQSSC2);
/* send QSR at lesser intervals than the default */
cmdq_writel(cq_host, SEND_QSR_INTERVAL, CQSSC1);
/* enable bkops exception indication */
if (mmc_card_configured_manual_bkops(mmc->card) &&
!mmc_card_configured_auto_bkops(mmc->card))
cmdq_writel(cq_host, cmdq_readl(cq_host, CQRMEM) | CQ_EXCEPTION,
CQRMEM);
/* ensure the writes are done before enabling CQE */
mb();
cq_host->enabled = true;
mmc_host_clr_cq_disable(mmc);
if (cq_host->ops->set_transfer_params)
cq_host->ops->set_transfer_params(mmc);
if (cq_host->ops->set_block_size)
cq_host->ops->set_block_size(cq_host->mmc);
if (cq_host->ops->set_data_timeout)
cq_host->ops->set_data_timeout(mmc, 0xf);
if (cq_host->ops->clear_set_dumpregs)
cq_host->ops->clear_set_dumpregs(mmc, 1);
if (cq_host->ops->enhanced_strobe_mask)
cq_host->ops->enhanced_strobe_mask(mmc, true);
pm_ref_count:
cmdq_runtime_pm_put(cq_host);
out:
MMC_TRACE(mmc, "%s: CQ enabled err: %d\n", __func__, err);
return err;
}
static void cmdq_disable_nosync(struct mmc_host *mmc, bool soft)
{
struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc);
if (soft) {
cmdq_writel(cq_host, cmdq_readl(
cq_host, CQCFG) & ~(CQ_ENABLE),
CQCFG);
}
if (cq_host->ops->enhanced_strobe_mask)
cq_host->ops->enhanced_strobe_mask(mmc, false);
cq_host->enabled = false;
mmc_host_set_cq_disable(mmc);
MMC_TRACE(mmc, "%s: CQ disabled\n", __func__);
}
static void cmdq_disable(struct mmc_host *mmc, bool soft)
{
struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc);
cmdq_runtime_pm_get(cq_host);
cmdq_disable_nosync(mmc, soft);
cmdq_runtime_pm_put(cq_host);
}
static void cmdq_reset(struct mmc_host *mmc, bool soft)
{
struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc);
unsigned int cqcfg;
unsigned int tdlba;
unsigned int tdlbau;
unsigned int rca;
int ret;
cmdq_runtime_pm_get(cq_host);
cqcfg = cmdq_readl(cq_host, CQCFG);
tdlba = cmdq_readl(cq_host, CQTDLBA);
tdlbau = cmdq_readl(cq_host, CQTDLBAU);
rca = cmdq_readl(cq_host, CQSSC2);
cmdq_disable(mmc, true);
if (cq_host->ops->reset) {
ret = cq_host->ops->reset(mmc);
if (ret) {
pr_crit("%s: reset CMDQ controller: failed\n",
mmc_hostname(mmc));
BUG();
}
}
cmdq_writel(cq_host, tdlba, CQTDLBA);
cmdq_writel(cq_host, tdlbau, CQTDLBAU);
if (cq_host->ops->clear_set_irqs)
cq_host->ops->clear_set_irqs(mmc, true);
cmdq_clear_set_irqs(cq_host, 0x0, CQ_INT_ALL);
/* cq_host would use this rca to address the card */
cmdq_writel(cq_host, rca, CQSSC2);
/* ensure the writes are done before enabling CQE */
mb();
cmdq_writel(cq_host, cqcfg, CQCFG);
cmdq_runtime_pm_put(cq_host);
cq_host->enabled = true;
mmc_host_clr_cq_disable(mmc);
}
static void cmdq_prep_task_desc(struct mmc_request *mrq,
u64 *data, bool intr, bool qbr)
{
struct mmc_cmdq_req *cmdq_req = mrq->cmdq_req;
u32 req_flags = cmdq_req->cmdq_req_flags;
pr_debug("%s: %s: data-tag: 0x%08x - dir: %d - prio: %d - cnt: 0x%08x - addr: 0x%llx\n",
mmc_hostname(mrq->host), __func__,
!!(req_flags & DAT_TAG), !!(req_flags & DIR),
!!(req_flags & PRIO), cmdq_req->data.blocks,
(u64)mrq->cmdq_req->blk_addr);
*data = VALID(1) |
END(1) |
INT(intr) |
ACT(0x5) |
FORCED_PROG(!!(req_flags & FORCED_PRG)) |
CONTEXT(mrq->cmdq_req->ctx_id) |
DATA_TAG(!!(req_flags & DAT_TAG)) |
DATA_DIR(!!(req_flags & DIR)) |
PRIORITY(!!(req_flags & PRIO)) |
QBAR(qbr) |
REL_WRITE(!!(req_flags & REL_WR)) |
BLK_COUNT(mrq->cmdq_req->data.blocks) |
BLK_ADDR((u64)mrq->cmdq_req->blk_addr);
MMC_TRACE(mrq->host,
"%s: Task: 0x%08x | Args: 0x%08x | cnt: 0x%08x\n", __func__,
lower_32_bits(*data),
upper_32_bits(*data),
mrq->cmdq_req->data.blocks);
}
static int cmdq_dma_map(struct mmc_host *host, struct mmc_request *mrq)
{
int sg_count;
struct mmc_data *data = mrq->data;
if (!data)
return -EINVAL;
sg_count = dma_map_sg(mmc_dev(host), data->sg,
data->sg_len,
(data->flags & MMC_DATA_WRITE) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (!sg_count) {
pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
return -ENOMEM;
}
return sg_count;
}
static void cmdq_set_tran_desc(u8 *desc, dma_addr_t addr, int len,
bool end, bool is_dma64)
{
__le32 *attr = (__le32 __force *)desc;
*attr = (VALID(1) |
END(end ? 1 : 0) |
INT(0) |
ACT(0x4) |
DAT_LENGTH(len));
if (is_dma64) {
__le64 *dataddr = (__le64 __force *)(desc + 4);
dataddr[0] = cpu_to_le64(addr);
} else {
__le32 *dataddr = (__le32 __force *)(desc + 4);
dataddr[0] = cpu_to_le32(addr);
}
}
static int cmdq_prep_tran_desc(struct mmc_request *mrq,
struct cmdq_host *cq_host, int tag)
{
struct mmc_data *data = mrq->data;
int i, sg_count, len;
bool end = false;
dma_addr_t addr;
u8 *desc;
struct scatterlist *sg;
sg_count = cmdq_dma_map(mrq->host, mrq);
if (sg_count < 0) {
pr_err("%s: %s: unable to map sg lists, %d\n",
mmc_hostname(mrq->host), __func__, sg_count);
return sg_count;
}
desc = get_trans_desc(cq_host, tag);
memset(desc, 0, cq_host->trans_desc_len * cq_host->mmc->max_segs);
for_each_sg(data->sg, sg, sg_count, i) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
if ((i+1) == sg_count)
end = true;
cmdq_set_tran_desc(desc, addr, len, end, cq_host->dma64);
desc += cq_host->trans_desc_len;
}
pr_debug("%s: req: 0x%p tag: %d calc_trans_des: 0x%p sg-cnt: %d\n",
__func__, mrq->req, tag, desc, sg_count);
return 0;
}
static void cmdq_log_task_desc_history(struct cmdq_host *cq_host, u64 task,
bool is_dcmd)
{
if (likely(!cq_host->mmc->cmdq_thist_enabled))
return;
if (!cq_host->thist) {
pr_err("%s: %s: CMDQ task history buffer not allocated\n",
mmc_hostname(cq_host->mmc), __func__);
return;
}
if (cq_host->thist_idx >= cq_host->num_slots)
cq_host->thist_idx = 0;
cq_host->thist[cq_host->thist_idx].is_dcmd = is_dcmd;
memcpy(&cq_host->thist[cq_host->thist_idx++].task,
&task, sizeof(task));
}
static void cmdq_prep_dcmd_desc(struct mmc_host *mmc,
struct mmc_request *mrq)
{
u64 *task_desc = NULL;
u64 data = 0;
u8 resp_type;
u8 *desc;
__le64 *dataddr;
struct cmdq_host *cq_host = mmc_cmdq_private(mmc);
u8 timing;
if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
resp_type = 0x0;
timing = 0x1;
} else {
if (mrq->cmd->flags & MMC_RSP_BUSY) {
resp_type = 0x3;
timing = 0x0;
} else {
resp_type = 0x2;
timing = 0x1;
}
}
task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
memset(task_desc, 0, cq_host->task_desc_len);
data |= (VALID(1) |
END(1) |
INT(1) |
QBAR(1) |
ACT(0x5) |
CMD_INDEX(mrq->cmd->opcode) |
CMD_TIMING(timing) | RESP_TYPE(resp_type));
*task_desc |= data;
desc = (u8 *)task_desc;
pr_debug("cmdq: dcmd: cmd: %d timing: %d resp: %d\n",
mrq->cmd->opcode, timing, resp_type);
dataddr = (__le64 __force *)(desc + 4);
dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
cmdq_log_task_desc_history(cq_host, *task_desc, true);
MMC_TRACE(mrq->host,
"%s: DCMD: Task: 0x%08x | Args: 0x%08x\n",
__func__,
lower_32_bits(*task_desc),
upper_32_bits(*task_desc));
}
static inline
void cmdq_prep_crypto_desc(struct cmdq_host *cq_host, u64 *task_desc,
u64 ice_ctx)
{
u64 *ice_desc = NULL;
if (cq_host->caps & CMDQ_CAP_CRYPTO_SUPPORT) {
/*
* Get the address of ice context for the given task descriptor.
* ice context is present in the upper 64bits of task descriptor
* ice_conext_base_address = task_desc + 8-bytes
*/
ice_desc = (__le64 *)((u8 *)task_desc +
CQ_TASK_DESC_TASK_PARAMS_SIZE);
memset(ice_desc, 0, CQ_TASK_DESC_ICE_PARAMS_SIZE);
/*
* Assign upper 64bits data of task descritor with ice context
*/
if (ice_ctx)
*ice_desc = cpu_to_le64(ice_ctx);
}
}
static void cmdq_pm_qos_vote(struct sdhci_host *host, struct mmc_request *mrq)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = pltfm_host->priv;
sdhci_msm_pm_qos_cpu_vote(host,
msm_host->pdata->pm_qos_data.cmdq_latency, mrq->req->cpu);
}
static void cmdq_pm_qos_unvote(struct sdhci_host *host, struct mmc_request *mrq)
{
/* use async as we're inside an atomic context (soft-irq) */
sdhci_msm_pm_qos_cpu_unvote(host, mrq->req->cpu, true);
}
static int cmdq_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
int err = 0;
u64 data = 0;
u64 *task_desc = NULL;
u32 tag = mrq->cmdq_req->tag;
struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc);
struct sdhci_host *host = mmc_priv(mmc);
u64 ice_ctx = 0;
if (!cq_host->enabled) {
pr_err("%s: CMDQ host not enabled yet !!!\n",
mmc_hostname(mmc));
err = -EINVAL;
goto out;
}
cmdq_runtime_pm_get(cq_host);
if (mrq->cmdq_req->cmdq_req_flags & DCMD) {
cmdq_prep_dcmd_desc(mmc, mrq);
cq_host->mrq_slot[DCMD_SLOT] = mrq;
/* DCMD's are always issued on a fixed slot */
tag = DCMD_SLOT;
goto ring_doorbell;
}
if (cq_host->ops->crypto_cfg) {
err = cq_host->ops->crypto_cfg(mmc, mrq, tag, &ice_ctx);
if (err) {
mmc->err_stats[MMC_ERR_ICE_CFG]++;
pr_err("%s: failed to configure crypto: err %d tag %d\n",
mmc_hostname(mmc), err, tag);
goto ice_err;
}
}
task_desc = (__le64 __force *)get_desc(cq_host, tag);
cmdq_prep_task_desc(mrq, &data, 1,
(mrq->cmdq_req->cmdq_req_flags & QBR));
*task_desc = cpu_to_le64(data);
cmdq_prep_crypto_desc(cq_host, task_desc, ice_ctx);
cmdq_log_task_desc_history(cq_host, *task_desc, false);
err = cmdq_prep_tran_desc(mrq, cq_host, tag);
if (err) {
pr_err("%s: %s: failed to setup tx desc: %d\n",
mmc_hostname(mmc), __func__, err);
goto desc_err;
}
cq_host->mrq_slot[tag] = mrq;
/* PM QoS */
sdhci_msm_pm_qos_irq_vote(host);
cmdq_pm_qos_vote(host, mrq);
ring_doorbell:
/* Ensure the task descriptor list is flushed before ringing doorbell */
wmb();
if (cmdq_readl(cq_host, CQTDBR) & (1 << tag)) {
cmdq_dumpregs(cq_host);
BUG_ON(1);
}
MMC_TRACE(mmc, "%s: tag: %d\n", __func__, tag);
cmdq_writel(cq_host, 1 << tag, CQTDBR);
/* Commit the doorbell write immediately */
wmb();
return err;
desc_err:
if (cq_host->ops->crypto_cfg_end) {
err = cq_host->ops->crypto_cfg_end(mmc, mrq);
if (err) {
pr_err("%s: failed to end ice config: err %d tag %d\n",
mmc_hostname(mmc), err, tag);
}
}
if (!(cq_host->caps & CMDQ_CAP_CRYPTO_SUPPORT) &&
cq_host->ops->crypto_cfg_reset)
cq_host->ops->crypto_cfg_reset(mmc, tag);
ice_err:
if (err)
cmdq_runtime_pm_put(cq_host);
out:
return err;
}
static int cmdq_get_first_valid_tag(struct cmdq_host *cq_host)
{
u32 dbr_set = 0, tag = 0;
dbr_set = cmdq_readl(cq_host, CQTDBR);
if (!dbr_set) {
pr_err("%s: spurious/force error interrupt\n",
mmc_hostname(cq_host->mmc));
cmdq_halt_poll(cq_host->mmc, false);
mmc_host_clr_halt(cq_host->mmc);
return -EINVAL;
}
tag = ffs(dbr_set) - 1;
pr_err("%s: error tag selected: tag = %d\n",
mmc_hostname(cq_host->mmc), tag);
return tag;
}
static bool cmdq_is_valid_tag(struct mmc_host *mmc, unsigned int tag)
{
struct mmc_cmdq_context_info *ctx_info = &mmc->cmdq_ctx;
return
(!!(ctx_info->data_active_reqs & (1 << tag)) || tag == DCMD_SLOT);
}
static void cmdq_finish_data(struct mmc_host *mmc, unsigned int tag)
{
struct mmc_request *mrq;
struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc);
int offset = 0;
int err = 0;
if (cq_host->offset_changed)
offset = CQ_V5_VENDOR_CFG;
mrq = get_req_by_tag(cq_host, tag);
if (tag == cq_host->dcmd_slot)
mrq->cmd->resp[0] = cmdq_readl(cq_host, CQCRDCT);
if (mrq->cmdq_req->cmdq_req_flags & DCMD)
cmdq_writel(cq_host,
cmdq_readl(cq_host, CQ_VENDOR_CFG + offset) |
CMDQ_SEND_STATUS_TRIGGER, CQ_VENDOR_CFG + offset);
cmdq_runtime_pm_put(cq_host);
if (!(mrq->cmdq_req->cmdq_req_flags & DCMD)) {
if (cq_host->ops->crypto_cfg_end) {
err = cq_host->ops->crypto_cfg_end(mmc, mrq);
if (err) {
pr_err("%s: failed to end ice config: err %d tag %d\n",
mmc_hostname(mmc), err, tag);
}
}
}
if (!(cq_host->caps & CMDQ_CAP_CRYPTO_SUPPORT) &&
cq_host->ops->crypto_cfg_reset)
cq_host->ops->crypto_cfg_reset(mmc, tag);
mrq->done(mrq);
}
irqreturn_t cmdq_irq(struct mmc_host *mmc, int err, bool is_cmd_err)
{
u32 status;
unsigned long tag = 0, comp_status;
struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc);
unsigned long err_info = 0;
struct mmc_request *mrq;
int ret;
u32 dbr_set = 0;
u32 dev_pend_set = 0;
int stat_err = 0;
status = cmdq_readl(cq_host, CQIS);
if (!status && !err)
return IRQ_NONE;
MMC_TRACE(mmc, "%s: CQIS: 0x%x err: %d\n",
__func__, status, err);
stat_err = status & (CQIS_RED | CQIS_GCE | CQIS_ICCE);
if (err || stat_err) {
err_info = cmdq_readl(cq_host, CQTERRI);
pr_err("%s: err: %d status: 0x%08x task-err-info (0x%08lx)\n",
mmc_hostname(mmc), err, status, err_info);
/* Dump the registers before clearing Interrupt */
cmdq_dumpregs(cq_host);
/*
* Need to halt CQE in case of error in interrupt context itself
* otherwise CQE may proceed with sending CMD to device even if
* CQE/card is in error state.
* CMDQ error handling will make sure that it is unhalted after
* handling all the errors.
*/
ret = cmdq_halt_poll(mmc, true);
if (ret)
pr_err("%s: %s: halt failed ret=%d\n",
mmc_hostname(mmc), __func__, ret);
/*
* Clear the CQIS after halting incase of error. This is done
* because if CQIS is cleared before halting, the CQ will
* continue with issueing commands for rest of requests with
* Doorbell rung. This will overwrite the Resp Arg register.
* So CQ must be halted first and then CQIS cleared incase
* of error
*/
cmdq_writel(cq_host, status, CQIS);
if (!err_info) {
/*
* It may so happen sometimes for few errors(like ADMA)
* that HW cannot give CQTERRI info.
* Thus below is a HW WA for recovering from such
* scenario.
* - To halt/disable CQE and do reset_all.
* Since there is no way to know which tag would
* have caused such error, so check for any first
* bit set in doorbell and proceed with an error.
*/
tag = cmdq_get_first_valid_tag(cq_host);
if (tag == -EINVAL)
goto hac;
mrq = get_req_by_tag(cq_host, tag);
if (mrq->data)
mrq->data->error = err;
else
mrq->cmd->error = err;
/*
* Get ADMA descriptor memory in case of ADMA
* error for debug.
*/
if (err == -EIO)
cmdq_dump_adma_mem(cq_host);
goto skip_cqterri;
}
if (is_cmd_err && (err_info & CQ_RMEFV)) {
tag = GET_CMD_ERR_TAG(err_info);
pr_err("%s: CMD err tag: %lu\n", __func__, tag);
/*
* In some cases CQTERRI is not providing reliable tag
* info. If the tag is not valid, complete the request
* with any valid tag so that all tags will get
* requeued.
*/
if (!cmdq_is_valid_tag(mmc, tag)) {
pr_err("%s: CMD err tag is invalid: %lu\n",
__func__, tag);
tag = cmdq_get_first_valid_tag(cq_host);
if (tag == -EINVAL)
goto hac;
}
mrq = get_req_by_tag(cq_host, tag);
/* CMD44/45/46/47 will not have a valid cmd */
if (mrq->cmd)
mrq->cmd->error = err;
else
mrq->data->error = err;
} else {
tag = GET_DAT_ERR_TAG(err_info);
pr_err("%s: Dat err tag: %lu\n", __func__, tag);
/*
* In some cases CQTERRI is not providing reliable tag
* info. If the tag is not valid, complete the request
* with any valid tag so that all tags will get
* requeued.
*/
if (!cmdq_is_valid_tag(mmc, tag)) {
pr_err("%s: CMD err tag is invalid: %lu\n",
__func__, tag);
tag = cmdq_get_first_valid_tag(cq_host);
if (tag == -EINVAL)
goto hac;
}
mrq = get_req_by_tag(cq_host, tag);
if (mrq->data)
mrq->data->error = err;
else
mrq->cmd->error = err;
}
skip_cqterri:
/*
* If CQE halt fails then, disable CQE
* from processing any further requests
*/
if (ret) {
cmdq_disable_nosync(mmc, true);
/*
* Enable legacy interrupts as CQE halt has failed.
* This is needed to send legacy commands like status
* cmd as part of error handling work.
*/
if (cq_host->ops->clear_set_irqs)
cq_host->ops->clear_set_irqs(mmc, false);
}
/*
* CQE detected a response error from device
* In most cases, this would require a reset.
*/
if (stat_err & CQIS_RED) {
/*
* will check if the RED error is due to a bkops
* exception once the queue is empty
*/
BUG_ON(!mmc->card);
if (mmc_card_configured_manual_bkops(mmc->card) ||
mmc_card_configured_auto_bkops(mmc->card))
mmc->card->bkops.needs_check = true;
mrq->cmdq_req->resp_err = true;
mmc->err_stats[MMC_ERR_CMDQ_RED]++;
pr_err("%s: Response error (0x%08x) from card !!!",
mmc_hostname(mmc), cmdq_readl(cq_host, CQCRA));
} else {
mrq->cmdq_req->resp_idx = cmdq_readl(cq_host, CQCRI);
mrq->cmdq_req->resp_arg = cmdq_readl(cq_host, CQCRA);
}
/*
* Generic Crypto error detected by CQE.
* Its a fatal, would require cmdq reset.
*/
if (stat_err & CQIS_GCE) {
if (mrq->data)
mrq->data->error = -EIO;
mmc->err_stats[MMC_ERR_CMDQ_GCE]++;
pr_err("%s: Crypto generic error while processing task %lu!",
mmc_hostname(mmc), tag);
MMC_TRACE(mmc, "%s: GCE error detected with tag %lu\n",
__func__, tag);
}
/*
* Invalid crypto config error detected by CQE, clear the task.
* Task can be cleared only when CQE is halt state.
*/
if (stat_err & CQIS_ICCE) {
/*
* Invalid Crypto Config Error is detected at the
* beginning of the transfer before the actual execution
* started. So just clear the task in CQE. No need to
* clear in device. Only the task which caused ICCE has
* to be cleared. Other tasks can be continue processing
* The first task which is about to be prepared would
* cause ICCE Error.
*/
dbr_set = cmdq_readl(cq_host, CQTDBR);
dev_pend_set = cmdq_readl(cq_host, CQDPT);
if (dbr_set ^ dev_pend_set)
tag = ffs(dbr_set ^ dev_pend_set) - 1;
mrq = get_req_by_tag(cq_host, tag);
mmc->err_stats[MMC_ERR_CMDQ_ICCE]++;
pr_err("%s: Crypto config error while processing task %lu!",
mmc_hostname(mmc), tag);
MMC_TRACE(mmc, "%s: ICCE error with tag %lu\n",
__func__, tag);
if (mrq->data)
mrq->data->error = -EIO;
else if (mrq->cmd)
mrq->cmd->error = -EIO;
/*
* If CQE is halted and tag is valid then clear the task
* then un-halt CQE and set flag to skip error recovery.
* If any of the condtions is not met thene it will
* enter into default error recovery path.
*/
if (!ret && (dbr_set ^ dev_pend_set)) {
ret = cmdq_clear_task_poll(cq_host, tag);
if (ret) {
pr_err("%s: %s: task[%lu] clear failed ret=%d\n",
mmc_hostname(mmc),
__func__, tag, ret);
} else if (!cmdq_halt_poll(mmc, false)) {
mrq->cmdq_req->skip_err_handling = true;
}
}
}
cmdq_finish_data(mmc, tag);
goto hac;
} else {
cmdq_writel(cq_host, status, CQIS);
}
if (status & CQIS_TCC) {
/* read CQTCN and complete the request */
comp_status = cmdq_readl(cq_host, CQTCN);
if (!comp_status)
goto hac;
/*
* The CQTCN must be cleared before notifying req completion
* to upper layers to avoid missing completion notification
* of new requests with the same tag.
*/
cmdq_writel(cq_host, comp_status, CQTCN);
/*
* A write memory barrier is necessary to guarantee that CQTCN
* gets cleared first before next doorbell for the same tag is
* set but that is already achieved by the barrier present
* before setting doorbell, hence one is not needed here.
*/
for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
mrq = get_req_by_tag(cq_host, tag);
if (!((mrq->cmd && mrq->cmd->error) ||
mrq->cmdq_req->resp_err ||
(mrq->data && mrq->data->error))) {
/* complete the corresponding mrq */
pr_debug("%s: completing tag -> %lu\n",
mmc_hostname(mmc), tag);
MMC_TRACE(mmc, "%s: completing tag -> %lu\n",
__func__, tag);
cmdq_finish_data(mmc, tag);
}
}
}
hac:
if (status & CQIS_HAC) {
if (cq_host->ops->post_cqe_halt)
cq_host->ops->post_cqe_halt(mmc);
/* halt done: re-enable legacy interrupts */
if (cq_host->ops->clear_set_irqs)
cq_host->ops->clear_set_irqs(mmc, false);
/* halt is completed, wakeup waiting thread */
complete(&cq_host->halt_comp);
}
return IRQ_HANDLED;
}
EXPORT_SYMBOL(cmdq_irq);
/* cmdq_halt_poll - Halting CQE using polling method.
* @mmc: struct mmc_host
* @halt: bool halt
* This is used mainly from interrupt context to halt/unhalt
* CQE engine.
*/
static int cmdq_halt_poll(struct mmc_host *mmc, bool halt)
{
struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc);
int retries = 100;
if (!halt) {
if (cq_host->ops->set_data_timeout)
cq_host->ops->set_data_timeout(mmc, 0xf);
if (cq_host->ops->clear_set_irqs)
cq_host->ops->clear_set_irqs(mmc, true);
cmdq_writel(cq_host, cmdq_readl(cq_host, CQCTL) & ~HALT,
CQCTL);
mmc_host_clr_halt(mmc);
return 0;
}
cmdq_set_halt_irq(cq_host, false);
cmdq_writel(cq_host, cmdq_readl(cq_host, CQCTL) | HALT, CQCTL);
while (retries) {
if (!(cmdq_readl(cq_host, CQCTL) & HALT)) {
udelay(5);
retries--;
continue;
} else {
if (cq_host->ops->post_cqe_halt)
cq_host->ops->post_cqe_halt(mmc);
/* halt done: re-enable legacy interrupts */
if (cq_host->ops->clear_set_irqs)
cq_host->ops->clear_set_irqs(mmc,
false);
mmc_host_set_halt(mmc);
break;
}
}
cmdq_set_halt_irq(cq_host, true);
return retries ? 0 : -ETIMEDOUT;
}
/* May sleep */
static int cmdq_halt(struct mmc_host *mmc, bool halt)
{
struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc);
u32 ret = 0;
u32 config = 0;
int retries = 3;
cmdq_runtime_pm_get(cq_host);
if (halt) {
while (retries) {
cmdq_writel(cq_host, cmdq_readl(cq_host, CQCTL) | HALT,
CQCTL);
ret = wait_for_completion_timeout(&cq_host->halt_comp,
msecs_to_jiffies(HALT_TIMEOUT_MS));
if (!ret) {
pr_warn("%s: %s: HAC int timeout\n",
mmc_hostname(mmc), __func__);
if ((cmdq_readl(cq_host, CQCTL) & HALT)) {
/*
* Don't retry if CQE is halted but irq
* is not triggered in timeout period.
* And since we are returning error,
* un-halt CQE. Since irq was not fired
* yet, no need to set other params
*/
retries = 0;
config = cmdq_readl(cq_host, CQCTL);
config &= ~HALT;
cmdq_writel(cq_host, config, CQCTL);
} else {
pr_warn("%s: %s: retryng halt (%d)\n",
mmc_hostname(mmc), __func__,
retries);
retries--;
continue;
}
} else {
MMC_TRACE(mmc, "%s: halt done , retries: %d\n",
__func__, retries);
break;
}
}
ret = retries ? 0 : -ETIMEDOUT;
} else {
if (cq_host->ops->set_transfer_params)
cq_host->ops->set_transfer_params(mmc);
if (cq_host->ops->set_block_size)
cq_host->ops->set_block_size(mmc);
if (cq_host->ops->set_data_timeout)
cq_host->ops->set_data_timeout(mmc, 0xf);
if (cq_host->ops->clear_set_irqs)
cq_host->ops->clear_set_irqs(mmc, true);
MMC_TRACE(mmc, "%s: unhalt done\n", __func__);
cmdq_writel(cq_host, cmdq_readl(cq_host, CQCTL) & ~HALT,
CQCTL);
}
cmdq_runtime_pm_put(cq_host);
return ret;
}
static void cmdq_post_req(struct mmc_host *mmc, int tag, int err)
{
struct cmdq_host *cq_host;
struct mmc_request *mrq;
struct mmc_data *data;
struct sdhci_host *sdhci_host = mmc_priv(mmc);
if (WARN_ON(!mmc))
return;
cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc);
mrq = get_req_by_tag(cq_host, tag);
data = mrq->data;
if (data) {
data->error = err;
dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
(data->flags & MMC_DATA_READ) ?
DMA_FROM_DEVICE : DMA_TO_DEVICE);
if (err)
data->bytes_xfered = 0;
else
data->bytes_xfered = blk_rq_bytes(mrq->req);
/* we're in atomic context (soft-irq) so unvote async. */
sdhci_msm_pm_qos_irq_unvote(sdhci_host, true);
cmdq_pm_qos_unvote(sdhci_host, mrq);
}
}
static void cmdq_dumpstate(struct mmc_host *mmc)
{
struct cmdq_host *cq_host = (struct cmdq_host *)mmc_cmdq_private(mmc);
cmdq_runtime_pm_get(cq_host);
cmdq_dumpregs(cq_host);
cmdq_runtime_pm_put(cq_host);
}
static int cmdq_late_init(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = pltfm_host->priv;
/*
* TODO: This should basically move to something like "sdhci-cmdq-msm"
* for msm specific implementation.
*/
sdhci_msm_pm_qos_irq_init(host);
if (msm_host->pdata->pm_qos_data.cmdq_valid)
sdhci_msm_pm_qos_cpu_init(host,
msm_host->pdata->pm_qos_data.cmdq_latency);
return 0;
}
static const struct mmc_cmdq_host_ops cmdq_host_ops = {
.init = cmdq_late_init,
.enable = cmdq_enable,
.disable = cmdq_disable,
.request = cmdq_request,
.post_req = cmdq_post_req,
.halt = cmdq_halt,
.reset = cmdq_reset,
.dumpstate = cmdq_dumpstate,
};
struct cmdq_host *cmdq_pltfm_init(struct platform_device *pdev)
{
struct cmdq_host *cq_host;
struct resource *cmdq_memres = NULL;
/* check and setup CMDQ interface */
cmdq_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"cmdq_mem");
if (!cmdq_memres) {
dev_dbg(&pdev->dev, "CMDQ not supported\n");
return ERR_PTR(-EINVAL);
}
cq_host = kzalloc(sizeof(*cq_host), GFP_KERNEL);
if (!cq_host) {
dev_err(&pdev->dev, "failed to allocate memory for CMDQ\n");
return ERR_PTR(-ENOMEM);
}
cq_host->mmio = devm_ioremap(&pdev->dev,
cmdq_memres->start,
resource_size(cmdq_memres));
if (!cq_host->mmio) {
dev_err(&pdev->dev, "failed to remap cmdq regs\n");
kfree(cq_host);
return ERR_PTR(-EBUSY);
}
dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
return cq_host;
}
EXPORT_SYMBOL(cmdq_pltfm_init);
int cmdq_init(struct cmdq_host *cq_host, struct mmc_host *mmc,
bool dma64)
{
int err = 0;
cq_host->dma64 = dma64;
cq_host->mmc = mmc;
cq_host->mmc->cmdq_private = cq_host;
cq_host->num_slots = NUM_SLOTS;
cq_host->dcmd_slot = DCMD_SLOT;
mmc->cmdq_ops = &cmdq_host_ops;
mmc->num_cq_slots = NUM_SLOTS;
mmc->dcmd_cq_slot = DCMD_SLOT;
cq_host->mrq_slot = kzalloc(sizeof(cq_host->mrq_slot) *
cq_host->num_slots, GFP_KERNEL);
if (!cq_host->mrq_slot)
return -ENOMEM;
init_completion(&cq_host->halt_comp);
return err;
}
EXPORT_SYMBOL(cmdq_init);