blob: 1983adc192432936e67b3ab128627596604b6f2d [file] [log] [blame]
/*
* Copyright (c) 2005 Voltaire Inc. All rights reserved.
* Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
* Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
* Copyright (c) 2005-2006 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/completion.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/mutex.h>
#include <linux/random.h>
#include <linux/idr.h>
#include <linux/inetdevice.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/ipv6.h>
#include <rdma/rdma_cm.h>
#include <rdma/rdma_cm_ib.h>
#include <rdma/rdma_netlink.h>
#include <rdma/ib_cache.h>
#include <rdma/ib_cm.h>
#include <rdma/ib_sa.h>
#include <rdma/iw_cm.h>
MODULE_AUTHOR("Sean Hefty");
MODULE_DESCRIPTION("Generic RDMA CM Agent");
MODULE_LICENSE("Dual BSD/GPL");
#define CMA_CM_RESPONSE_TIMEOUT 20
#define CMA_MAX_CM_RETRIES 15
#define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
#define CMA_IBOE_PACKET_LIFETIME 18
static void cma_add_one(struct ib_device *device);
static void cma_remove_one(struct ib_device *device);
static struct ib_client cma_client = {
.name = "cma",
.add = cma_add_one,
.remove = cma_remove_one
};
static struct ib_sa_client sa_client;
static struct rdma_addr_client addr_client;
static LIST_HEAD(dev_list);
static LIST_HEAD(listen_any_list);
static DEFINE_MUTEX(lock);
static struct workqueue_struct *cma_wq;
static DEFINE_IDR(sdp_ps);
static DEFINE_IDR(tcp_ps);
static DEFINE_IDR(udp_ps);
static DEFINE_IDR(ipoib_ps);
static DEFINE_IDR(ib_ps);
struct cma_device {
struct list_head list;
struct ib_device *device;
struct completion comp;
atomic_t refcount;
struct list_head id_list;
};
struct rdma_bind_list {
struct idr *ps;
struct hlist_head owners;
unsigned short port;
};
enum {
CMA_OPTION_AFONLY,
};
/*
* Device removal can occur at anytime, so we need extra handling to
* serialize notifying the user of device removal with other callbacks.
* We do this by disabling removal notification while a callback is in process,
* and reporting it after the callback completes.
*/
struct rdma_id_private {
struct rdma_cm_id id;
struct rdma_bind_list *bind_list;
struct hlist_node node;
struct list_head list; /* listen_any_list or cma_device.list */
struct list_head listen_list; /* per device listens */
struct cma_device *cma_dev;
struct list_head mc_list;
int internal_id;
enum rdma_cm_state state;
spinlock_t lock;
struct mutex qp_mutex;
struct completion comp;
atomic_t refcount;
struct mutex handler_mutex;
int backlog;
int timeout_ms;
struct ib_sa_query *query;
int query_id;
union {
struct ib_cm_id *ib;
struct iw_cm_id *iw;
} cm_id;
u32 seq_num;
u32 qkey;
u32 qp_num;
pid_t owner;
u32 options;
u8 srq;
u8 tos;
u8 reuseaddr;
u8 afonly;
};
struct cma_multicast {
struct rdma_id_private *id_priv;
union {
struct ib_sa_multicast *ib;
} multicast;
struct list_head list;
void *context;
struct sockaddr_storage addr;
struct kref mcref;
};
struct cma_work {
struct work_struct work;
struct rdma_id_private *id;
enum rdma_cm_state old_state;
enum rdma_cm_state new_state;
struct rdma_cm_event event;
};
struct cma_ndev_work {
struct work_struct work;
struct rdma_id_private *id;
struct rdma_cm_event event;
};
struct iboe_mcast_work {
struct work_struct work;
struct rdma_id_private *id;
struct cma_multicast *mc;
};
union cma_ip_addr {
struct in6_addr ip6;
struct {
__be32 pad[3];
__be32 addr;
} ip4;
};
struct cma_hdr {
u8 cma_version;
u8 ip_version; /* IP version: 7:4 */
__be16 port;
union cma_ip_addr src_addr;
union cma_ip_addr dst_addr;
};
struct sdp_hh {
u8 bsdh[16];
u8 sdp_version; /* Major version: 7:4 */
u8 ip_version; /* IP version: 7:4 */
u8 sdp_specific1[10];
__be16 port;
__be16 sdp_specific2;
union cma_ip_addr src_addr;
union cma_ip_addr dst_addr;
};
struct sdp_hah {
u8 bsdh[16];
u8 sdp_version;
};
#define CMA_VERSION 0x00
#define SDP_MAJ_VERSION 0x2
static int cma_comp(struct rdma_id_private *id_priv, enum rdma_cm_state comp)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&id_priv->lock, flags);
ret = (id_priv->state == comp);
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
static int cma_comp_exch(struct rdma_id_private *id_priv,
enum rdma_cm_state comp, enum rdma_cm_state exch)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&id_priv->lock, flags);
if ((ret = (id_priv->state == comp)))
id_priv->state = exch;
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
static enum rdma_cm_state cma_exch(struct rdma_id_private *id_priv,
enum rdma_cm_state exch)
{
unsigned long flags;
enum rdma_cm_state old;
spin_lock_irqsave(&id_priv->lock, flags);
old = id_priv->state;
id_priv->state = exch;
spin_unlock_irqrestore(&id_priv->lock, flags);
return old;
}
static inline u8 cma_get_ip_ver(struct cma_hdr *hdr)
{
return hdr->ip_version >> 4;
}
static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
{
hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
}
static inline u8 sdp_get_majv(u8 sdp_version)
{
return sdp_version >> 4;
}
static inline u8 sdp_get_ip_ver(struct sdp_hh *hh)
{
return hh->ip_version >> 4;
}
static inline void sdp_set_ip_ver(struct sdp_hh *hh, u8 ip_ver)
{
hh->ip_version = (ip_ver << 4) | (hh->ip_version & 0xF);
}
static void cma_attach_to_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev)
{
atomic_inc(&cma_dev->refcount);
id_priv->cma_dev = cma_dev;
id_priv->id.device = cma_dev->device;
id_priv->id.route.addr.dev_addr.transport =
rdma_node_get_transport(cma_dev->device->node_type);
list_add_tail(&id_priv->list, &cma_dev->id_list);
}
static inline void cma_deref_dev(struct cma_device *cma_dev)
{
if (atomic_dec_and_test(&cma_dev->refcount))
complete(&cma_dev->comp);
}
static inline void release_mc(struct kref *kref)
{
struct cma_multicast *mc = container_of(kref, struct cma_multicast, mcref);
kfree(mc->multicast.ib);
kfree(mc);
}
static void cma_release_dev(struct rdma_id_private *id_priv)
{
mutex_lock(&lock);
list_del(&id_priv->list);
cma_deref_dev(id_priv->cma_dev);
id_priv->cma_dev = NULL;
mutex_unlock(&lock);
}
static int cma_set_qkey(struct rdma_id_private *id_priv)
{
struct ib_sa_mcmember_rec rec;
int ret = 0;
if (id_priv->qkey)
return 0;
switch (id_priv->id.ps) {
case RDMA_PS_UDP:
id_priv->qkey = RDMA_UDP_QKEY;
break;
case RDMA_PS_IPOIB:
ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
ret = ib_sa_get_mcmember_rec(id_priv->id.device,
id_priv->id.port_num, &rec.mgid,
&rec);
if (!ret)
id_priv->qkey = be32_to_cpu(rec.qkey);
break;
default:
break;
}
return ret;
}
static int find_gid_port(struct ib_device *device, union ib_gid *gid, u8 port_num)
{
int i;
int err;
struct ib_port_attr props;
union ib_gid tmp;
err = ib_query_port(device, port_num, &props);
if (err)
return 1;
for (i = 0; i < props.gid_tbl_len; ++i) {
err = ib_query_gid(device, port_num, i, &tmp);
if (err)
return 1;
if (!memcmp(&tmp, gid, sizeof tmp))
return 0;
}
return -EAGAIN;
}
static int cma_acquire_dev(struct rdma_id_private *id_priv)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
struct cma_device *cma_dev;
union ib_gid gid, iboe_gid;
int ret = -ENODEV;
u8 port;
enum rdma_link_layer dev_ll = dev_addr->dev_type == ARPHRD_INFINIBAND ?
IB_LINK_LAYER_INFINIBAND : IB_LINK_LAYER_ETHERNET;
if (dev_ll != IB_LINK_LAYER_INFINIBAND &&
id_priv->id.ps == RDMA_PS_IPOIB)
return -EINVAL;
mutex_lock(&lock);
iboe_addr_get_sgid(dev_addr, &iboe_gid);
memcpy(&gid, dev_addr->src_dev_addr +
rdma_addr_gid_offset(dev_addr), sizeof gid);
list_for_each_entry(cma_dev, &dev_list, list) {
for (port = 1; port <= cma_dev->device->phys_port_cnt; ++port) {
if (rdma_port_get_link_layer(cma_dev->device, port) == dev_ll) {
if (rdma_node_get_transport(cma_dev->device->node_type) == RDMA_TRANSPORT_IB &&
rdma_port_get_link_layer(cma_dev->device, port) == IB_LINK_LAYER_ETHERNET)
ret = find_gid_port(cma_dev->device, &iboe_gid, port);
else
ret = find_gid_port(cma_dev->device, &gid, port);
if (!ret) {
id_priv->id.port_num = port;
goto out;
} else if (ret == 1)
break;
}
}
}
out:
if (!ret)
cma_attach_to_dev(id_priv, cma_dev);
mutex_unlock(&lock);
return ret;
}
static void cma_deref_id(struct rdma_id_private *id_priv)
{
if (atomic_dec_and_test(&id_priv->refcount))
complete(&id_priv->comp);
}
static int cma_disable_callback(struct rdma_id_private *id_priv,
enum rdma_cm_state state)
{
mutex_lock(&id_priv->handler_mutex);
if (id_priv->state != state) {
mutex_unlock(&id_priv->handler_mutex);
return -EINVAL;
}
return 0;
}
struct rdma_cm_id *rdma_create_id(rdma_cm_event_handler event_handler,
void *context, enum rdma_port_space ps,
enum ib_qp_type qp_type)
{
struct rdma_id_private *id_priv;
id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
if (!id_priv)
return ERR_PTR(-ENOMEM);
id_priv->owner = task_pid_nr(current);
id_priv->state = RDMA_CM_IDLE;
id_priv->id.context = context;
id_priv->id.event_handler = event_handler;
id_priv->id.ps = ps;
id_priv->id.qp_type = qp_type;
spin_lock_init(&id_priv->lock);
mutex_init(&id_priv->qp_mutex);
init_completion(&id_priv->comp);
atomic_set(&id_priv->refcount, 1);
mutex_init(&id_priv->handler_mutex);
INIT_LIST_HEAD(&id_priv->listen_list);
INIT_LIST_HEAD(&id_priv->mc_list);
get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
return &id_priv->id;
}
EXPORT_SYMBOL(rdma_create_id);
static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
return ret;
ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
if (ret)
return ret;
qp_attr.qp_state = IB_QPS_RTR;
ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
if (ret)
return ret;
qp_attr.qp_state = IB_QPS_RTS;
qp_attr.sq_psn = 0;
ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
return ret;
}
static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
return ret;
return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
}
int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr)
{
struct rdma_id_private *id_priv;
struct ib_qp *qp;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (id->device != pd->device)
return -EINVAL;
qp = ib_create_qp(pd, qp_init_attr);
if (IS_ERR(qp))
return PTR_ERR(qp);
if (id->qp_type == IB_QPT_UD)
ret = cma_init_ud_qp(id_priv, qp);
else
ret = cma_init_conn_qp(id_priv, qp);
if (ret)
goto err;
id->qp = qp;
id_priv->qp_num = qp->qp_num;
id_priv->srq = (qp->srq != NULL);
return 0;
err:
ib_destroy_qp(qp);
return ret;
}
EXPORT_SYMBOL(rdma_create_qp);
void rdma_destroy_qp(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
id_priv = container_of(id, struct rdma_id_private, id);
mutex_lock(&id_priv->qp_mutex);
ib_destroy_qp(id_priv->id.qp);
id_priv->id.qp = NULL;
mutex_unlock(&id_priv->qp_mutex);
}
EXPORT_SYMBOL(rdma_destroy_qp);
static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
/* Need to update QP attributes from default values. */
qp_attr.qp_state = IB_QPS_INIT;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
if (ret)
goto out;
qp_attr.qp_state = IB_QPS_RTR;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
if (conn_param)
qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_qp_attr qp_attr;
int qp_attr_mask, ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
qp_attr.qp_state = IB_QPS_RTS;
ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
if (ret)
goto out;
if (conn_param)
qp_attr.max_rd_atomic = conn_param->initiator_depth;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_modify_qp_err(struct rdma_id_private *id_priv)
{
struct ib_qp_attr qp_attr;
int ret;
mutex_lock(&id_priv->qp_mutex);
if (!id_priv->id.qp) {
ret = 0;
goto out;
}
qp_attr.qp_state = IB_QPS_ERR;
ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
out:
mutex_unlock(&id_priv->qp_mutex);
return ret;
}
static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
struct ib_qp_attr *qp_attr, int *qp_attr_mask)
{
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
int ret;
u16 pkey;
if (rdma_port_get_link_layer(id_priv->id.device, id_priv->id.port_num) ==
IB_LINK_LAYER_INFINIBAND)
pkey = ib_addr_get_pkey(dev_addr);
else
pkey = 0xffff;
ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
pkey, &qp_attr->pkey_index);
if (ret)
return ret;
qp_attr->port_num = id_priv->id.port_num;
*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
if (id_priv->id.qp_type == IB_QPT_UD) {
ret = cma_set_qkey(id_priv);
if (ret)
return ret;
qp_attr->qkey = id_priv->qkey;
*qp_attr_mask |= IB_QP_QKEY;
} else {
qp_attr->qp_access_flags = 0;
*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
}
return 0;
}
int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
int *qp_attr_mask)
{
struct rdma_id_private *id_priv;
int ret = 0;
id_priv = container_of(id, struct rdma_id_private, id);
switch (rdma_node_get_transport(id_priv->id.device->node_type)) {
case RDMA_TRANSPORT_IB:
if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
else
ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
qp_attr_mask);
if (qp_attr->qp_state == IB_QPS_RTR)
qp_attr->rq_psn = id_priv->seq_num;
break;
case RDMA_TRANSPORT_IWARP:
if (!id_priv->cm_id.iw) {
qp_attr->qp_access_flags = 0;
*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
} else
ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
qp_attr_mask);
break;
default:
ret = -ENOSYS;
break;
}
return ret;
}
EXPORT_SYMBOL(rdma_init_qp_attr);
static inline int cma_zero_addr(struct sockaddr *addr)
{
struct in6_addr *ip6;
if (addr->sa_family == AF_INET)
return ipv4_is_zeronet(
((struct sockaddr_in *)addr)->sin_addr.s_addr);
else {
ip6 = &((struct sockaddr_in6 *) addr)->sin6_addr;
return (ip6->s6_addr32[0] | ip6->s6_addr32[1] |
ip6->s6_addr32[2] | ip6->s6_addr32[3]) == 0;
}
}
static inline int cma_loopback_addr(struct sockaddr *addr)
{
if (addr->sa_family == AF_INET)
return ipv4_is_loopback(
((struct sockaddr_in *) addr)->sin_addr.s_addr);
else
return ipv6_addr_loopback(
&((struct sockaddr_in6 *) addr)->sin6_addr);
}
static inline int cma_any_addr(struct sockaddr *addr)
{
return cma_zero_addr(addr) || cma_loopback_addr(addr);
}
static int cma_addr_cmp(struct sockaddr *src, struct sockaddr *dst)
{
if (src->sa_family != dst->sa_family)
return -1;
switch (src->sa_family) {
case AF_INET:
return ((struct sockaddr_in *) src)->sin_addr.s_addr !=
((struct sockaddr_in *) dst)->sin_addr.s_addr;
default:
return ipv6_addr_cmp(&((struct sockaddr_in6 *) src)->sin6_addr,
&((struct sockaddr_in6 *) dst)->sin6_addr);
}
}
static inline __be16 cma_port(struct sockaddr *addr)
{
if (addr->sa_family == AF_INET)
return ((struct sockaddr_in *) addr)->sin_port;
else
return ((struct sockaddr_in6 *) addr)->sin6_port;
}
static inline int cma_any_port(struct sockaddr *addr)
{
return !cma_port(addr);
}
static int cma_get_net_info(void *hdr, enum rdma_port_space ps,
u8 *ip_ver, __be16 *port,
union cma_ip_addr **src, union cma_ip_addr **dst)
{
switch (ps) {
case RDMA_PS_SDP:
if (sdp_get_majv(((struct sdp_hh *) hdr)->sdp_version) !=
SDP_MAJ_VERSION)
return -EINVAL;
*ip_ver = sdp_get_ip_ver(hdr);
*port = ((struct sdp_hh *) hdr)->port;
*src = &((struct sdp_hh *) hdr)->src_addr;
*dst = &((struct sdp_hh *) hdr)->dst_addr;
break;
default:
if (((struct cma_hdr *) hdr)->cma_version != CMA_VERSION)
return -EINVAL;
*ip_ver = cma_get_ip_ver(hdr);
*port = ((struct cma_hdr *) hdr)->port;
*src = &((struct cma_hdr *) hdr)->src_addr;
*dst = &((struct cma_hdr *) hdr)->dst_addr;
break;
}
if (*ip_ver != 4 && *ip_ver != 6)
return -EINVAL;
return 0;
}
static void cma_save_net_info(struct rdma_addr *addr,
struct rdma_addr *listen_addr,
u8 ip_ver, __be16 port,
union cma_ip_addr *src, union cma_ip_addr *dst)
{
struct sockaddr_in *listen4, *ip4;
struct sockaddr_in6 *listen6, *ip6;
switch (ip_ver) {
case 4:
listen4 = (struct sockaddr_in *) &listen_addr->src_addr;
ip4 = (struct sockaddr_in *) &addr->src_addr;
ip4->sin_family = listen4->sin_family;
ip4->sin_addr.s_addr = dst->ip4.addr;
ip4->sin_port = listen4->sin_port;
ip4 = (struct sockaddr_in *) &addr->dst_addr;
ip4->sin_family = listen4->sin_family;
ip4->sin_addr.s_addr = src->ip4.addr;
ip4->sin_port = port;
break;
case 6:
listen6 = (struct sockaddr_in6 *) &listen_addr->src_addr;
ip6 = (struct sockaddr_in6 *) &addr->src_addr;
ip6->sin6_family = listen6->sin6_family;
ip6->sin6_addr = dst->ip6;
ip6->sin6_port = listen6->sin6_port;
ip6 = (struct sockaddr_in6 *) &addr->dst_addr;
ip6->sin6_family = listen6->sin6_family;
ip6->sin6_addr = src->ip6;
ip6->sin6_port = port;
break;
default:
break;
}
}
static inline int cma_user_data_offset(enum rdma_port_space ps)
{
switch (ps) {
case RDMA_PS_SDP:
return 0;
default:
return sizeof(struct cma_hdr);
}
}
static void cma_cancel_route(struct rdma_id_private *id_priv)
{
switch (rdma_port_get_link_layer(id_priv->id.device, id_priv->id.port_num)) {
case IB_LINK_LAYER_INFINIBAND:
if (id_priv->query)
ib_sa_cancel_query(id_priv->query_id, id_priv->query);
break;
default:
break;
}
}
static void cma_cancel_listens(struct rdma_id_private *id_priv)
{
struct rdma_id_private *dev_id_priv;
/*
* Remove from listen_any_list to prevent added devices from spawning
* additional listen requests.
*/
mutex_lock(&lock);
list_del(&id_priv->list);
while (!list_empty(&id_priv->listen_list)) {
dev_id_priv = list_entry(id_priv->listen_list.next,
struct rdma_id_private, listen_list);
/* sync with device removal to avoid duplicate destruction */
list_del_init(&dev_id_priv->list);
list_del(&dev_id_priv->listen_list);
mutex_unlock(&lock);
rdma_destroy_id(&dev_id_priv->id);
mutex_lock(&lock);
}
mutex_unlock(&lock);
}
static void cma_cancel_operation(struct rdma_id_private *id_priv,
enum rdma_cm_state state)
{
switch (state) {
case RDMA_CM_ADDR_QUERY:
rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
break;
case RDMA_CM_ROUTE_QUERY:
cma_cancel_route(id_priv);
break;
case RDMA_CM_LISTEN:
if (cma_any_addr((struct sockaddr *) &id_priv->id.route.addr.src_addr)
&& !id_priv->cma_dev)
cma_cancel_listens(id_priv);
break;
default:
break;
}
}
static void cma_release_port(struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list = id_priv->bind_list;
if (!bind_list)
return;
mutex_lock(&lock);
hlist_del(&id_priv->node);
if (hlist_empty(&bind_list->owners)) {
idr_remove(bind_list->ps, bind_list->port);
kfree(bind_list);
}
mutex_unlock(&lock);
}
static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
{
struct cma_multicast *mc;
while (!list_empty(&id_priv->mc_list)) {
mc = container_of(id_priv->mc_list.next,
struct cma_multicast, list);
list_del(&mc->list);
switch (rdma_port_get_link_layer(id_priv->cma_dev->device, id_priv->id.port_num)) {
case IB_LINK_LAYER_INFINIBAND:
ib_sa_free_multicast(mc->multicast.ib);
kfree(mc);
break;
case IB_LINK_LAYER_ETHERNET:
kref_put(&mc->mcref, release_mc);
break;
default:
break;
}
}
}
void rdma_destroy_id(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
enum rdma_cm_state state;
id_priv = container_of(id, struct rdma_id_private, id);
state = cma_exch(id_priv, RDMA_CM_DESTROYING);
cma_cancel_operation(id_priv, state);
/*
* Wait for any active callback to finish. New callbacks will find
* the id_priv state set to destroying and abort.
*/
mutex_lock(&id_priv->handler_mutex);
mutex_unlock(&id_priv->handler_mutex);
if (id_priv->cma_dev) {
switch (rdma_node_get_transport(id_priv->id.device->node_type)) {
case RDMA_TRANSPORT_IB:
if (id_priv->cm_id.ib)
ib_destroy_cm_id(id_priv->cm_id.ib);
break;
case RDMA_TRANSPORT_IWARP:
if (id_priv->cm_id.iw)
iw_destroy_cm_id(id_priv->cm_id.iw);
break;
default:
break;
}
cma_leave_mc_groups(id_priv);
cma_release_dev(id_priv);
}
cma_release_port(id_priv);
cma_deref_id(id_priv);
wait_for_completion(&id_priv->comp);
if (id_priv->internal_id)
cma_deref_id(id_priv->id.context);
kfree(id_priv->id.route.path_rec);
kfree(id_priv);
}
EXPORT_SYMBOL(rdma_destroy_id);
static int cma_rep_recv(struct rdma_id_private *id_priv)
{
int ret;
ret = cma_modify_qp_rtr(id_priv, NULL);
if (ret)
goto reject;
ret = cma_modify_qp_rts(id_priv, NULL);
if (ret)
goto reject;
ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
if (ret)
goto reject;
return 0;
reject:
cma_modify_qp_err(id_priv);
ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
NULL, 0, NULL, 0);
return ret;
}
static int cma_verify_rep(struct rdma_id_private *id_priv, void *data)
{
if (id_priv->id.ps == RDMA_PS_SDP &&
sdp_get_majv(((struct sdp_hah *) data)->sdp_version) !=
SDP_MAJ_VERSION)
return -EINVAL;
return 0;
}
static void cma_set_rep_event_data(struct rdma_cm_event *event,
struct ib_cm_rep_event_param *rep_data,
void *private_data)
{
event->param.conn.private_data = private_data;
event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
event->param.conn.responder_resources = rep_data->responder_resources;
event->param.conn.initiator_depth = rep_data->initiator_depth;
event->param.conn.flow_control = rep_data->flow_control;
event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
event->param.conn.srq = rep_data->srq;
event->param.conn.qp_num = rep_data->remote_qpn;
}
static int cma_ib_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv = cm_id->context;
struct rdma_cm_event event;
int ret = 0;
if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
cma_disable_callback(id_priv, RDMA_CM_CONNECT)) ||
(ib_event->event == IB_CM_TIMEWAIT_EXIT &&
cma_disable_callback(id_priv, RDMA_CM_DISCONNECT)))
return 0;
memset(&event, 0, sizeof event);
switch (ib_event->event) {
case IB_CM_REQ_ERROR:
case IB_CM_REP_ERROR:
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = -ETIMEDOUT;
break;
case IB_CM_REP_RECEIVED:
event.status = cma_verify_rep(id_priv, ib_event->private_data);
if (event.status)
event.event = RDMA_CM_EVENT_CONNECT_ERROR;
else if (id_priv->id.qp && id_priv->id.ps != RDMA_PS_SDP) {
event.status = cma_rep_recv(id_priv);
event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
RDMA_CM_EVENT_ESTABLISHED;
} else
event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
ib_event->private_data);
break;
case IB_CM_RTU_RECEIVED:
case IB_CM_USER_ESTABLISHED:
event.event = RDMA_CM_EVENT_ESTABLISHED;
break;
case IB_CM_DREQ_ERROR:
event.status = -ETIMEDOUT; /* fall through */
case IB_CM_DREQ_RECEIVED:
case IB_CM_DREP_RECEIVED:
if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
RDMA_CM_DISCONNECT))
goto out;
event.event = RDMA_CM_EVENT_DISCONNECTED;
break;
case IB_CM_TIMEWAIT_EXIT:
event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
break;
case IB_CM_MRA_RECEIVED:
/* ignore event */
goto out;
case IB_CM_REJ_RECEIVED:
cma_modify_qp_err(id_priv);
event.status = ib_event->param.rej_rcvd.reason;
event.event = RDMA_CM_EVENT_REJECTED;
event.param.conn.private_data = ib_event->private_data;
event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
break;
default:
printk(KERN_ERR "RDMA CMA: unexpected IB CM event: %d\n",
ib_event->event);
goto out;
}
ret = id_priv->id.event_handler(&id_priv->id, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.ib = NULL;
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
rdma_destroy_id(&id_priv->id);
return ret;
}
out:
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static struct rdma_id_private *cma_new_conn_id(struct rdma_cm_id *listen_id,
struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv;
struct rdma_cm_id *id;
struct rdma_route *rt;
union cma_ip_addr *src, *dst;
__be16 port;
u8 ip_ver;
int ret;
if (cma_get_net_info(ib_event->private_data, listen_id->ps,
&ip_ver, &port, &src, &dst))
return NULL;
id = rdma_create_id(listen_id->event_handler, listen_id->context,
listen_id->ps, ib_event->param.req_rcvd.qp_type);
if (IS_ERR(id))
return NULL;
cma_save_net_info(&id->route.addr, &listen_id->route.addr,
ip_ver, port, src, dst);
rt = &id->route;
rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
rt->path_rec = kmalloc(sizeof *rt->path_rec * rt->num_paths,
GFP_KERNEL);
if (!rt->path_rec)
goto err;
rt->path_rec[0] = *ib_event->param.req_rcvd.primary_path;
if (rt->num_paths == 2)
rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
if (cma_any_addr((struct sockaddr *) &rt->addr.src_addr)) {
rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
} else {
ret = rdma_translate_ip((struct sockaddr *) &rt->addr.src_addr,
&rt->addr.dev_addr);
if (ret)
goto err;
}
rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
id_priv = container_of(id, struct rdma_id_private, id);
id_priv->state = RDMA_CM_CONNECT;
return id_priv;
err:
rdma_destroy_id(id);
return NULL;
}
static struct rdma_id_private *cma_new_udp_id(struct rdma_cm_id *listen_id,
struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv;
struct rdma_cm_id *id;
union cma_ip_addr *src, *dst;
__be16 port;
u8 ip_ver;
int ret;
id = rdma_create_id(listen_id->event_handler, listen_id->context,
listen_id->ps, IB_QPT_UD);
if (IS_ERR(id))
return NULL;
if (cma_get_net_info(ib_event->private_data, listen_id->ps,
&ip_ver, &port, &src, &dst))
goto err;
cma_save_net_info(&id->route.addr, &listen_id->route.addr,
ip_ver, port, src, dst);
if (!cma_any_addr((struct sockaddr *) &id->route.addr.src_addr)) {
ret = rdma_translate_ip((struct sockaddr *) &id->route.addr.src_addr,
&id->route.addr.dev_addr);
if (ret)
goto err;
}
id_priv = container_of(id, struct rdma_id_private, id);
id_priv->state = RDMA_CM_CONNECT;
return id_priv;
err:
rdma_destroy_id(id);
return NULL;
}
static void cma_set_req_event_data(struct rdma_cm_event *event,
struct ib_cm_req_event_param *req_data,
void *private_data, int offset)
{
event->param.conn.private_data = private_data + offset;
event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
event->param.conn.responder_resources = req_data->responder_resources;
event->param.conn.initiator_depth = req_data->initiator_depth;
event->param.conn.flow_control = req_data->flow_control;
event->param.conn.retry_count = req_data->retry_count;
event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
event->param.conn.srq = req_data->srq;
event->param.conn.qp_num = req_data->remote_qpn;
}
static int cma_check_req_qp_type(struct rdma_cm_id *id, struct ib_cm_event *ib_event)
{
return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
(ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
(id->qp_type == IB_QPT_UD)) ||
(!id->qp_type));
}
static int cma_req_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event)
{
struct rdma_id_private *listen_id, *conn_id;
struct rdma_cm_event event;
int offset, ret;
listen_id = cm_id->context;
if (!cma_check_req_qp_type(&listen_id->id, ib_event))
return -EINVAL;
if (cma_disable_callback(listen_id, RDMA_CM_LISTEN))
return -ECONNABORTED;
memset(&event, 0, sizeof event);
offset = cma_user_data_offset(listen_id->id.ps);
event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
conn_id = cma_new_udp_id(&listen_id->id, ib_event);
event.param.ud.private_data = ib_event->private_data + offset;
event.param.ud.private_data_len =
IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
} else {
conn_id = cma_new_conn_id(&listen_id->id, ib_event);
cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
ib_event->private_data, offset);
}
if (!conn_id) {
ret = -ENOMEM;
goto err1;
}
mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
ret = cma_acquire_dev(conn_id);
if (ret)
goto err2;
conn_id->cm_id.ib = cm_id;
cm_id->context = conn_id;
cm_id->cm_handler = cma_ib_handler;
/*
* Protect against the user destroying conn_id from another thread
* until we're done accessing it.
*/
atomic_inc(&conn_id->refcount);
ret = conn_id->id.event_handler(&conn_id->id, &event);
if (ret)
goto err3;
/*
* Acquire mutex to prevent user executing rdma_destroy_id()
* while we're accessing the cm_id.
*/
mutex_lock(&lock);
if (cma_comp(conn_id, RDMA_CM_CONNECT) && (conn_id->id.qp_type != IB_QPT_UD))
ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
mutex_unlock(&lock);
mutex_unlock(&conn_id->handler_mutex);
mutex_unlock(&listen_id->handler_mutex);
cma_deref_id(conn_id);
return 0;
err3:
cma_deref_id(conn_id);
/* Destroy the CM ID by returning a non-zero value. */
conn_id->cm_id.ib = NULL;
err2:
cma_exch(conn_id, RDMA_CM_DESTROYING);
mutex_unlock(&conn_id->handler_mutex);
err1:
mutex_unlock(&listen_id->handler_mutex);
if (conn_id)
rdma_destroy_id(&conn_id->id);
return ret;
}
static __be64 cma_get_service_id(enum rdma_port_space ps, struct sockaddr *addr)
{
return cpu_to_be64(((u64)ps << 16) + be16_to_cpu(cma_port(addr)));
}
static void cma_set_compare_data(enum rdma_port_space ps, struct sockaddr *addr,
struct ib_cm_compare_data *compare)
{
struct cma_hdr *cma_data, *cma_mask;
struct sdp_hh *sdp_data, *sdp_mask;
__be32 ip4_addr;
struct in6_addr ip6_addr;
memset(compare, 0, sizeof *compare);
cma_data = (void *) compare->data;
cma_mask = (void *) compare->mask;
sdp_data = (void *) compare->data;
sdp_mask = (void *) compare->mask;
switch (addr->sa_family) {
case AF_INET:
ip4_addr = ((struct sockaddr_in *) addr)->sin_addr.s_addr;
if (ps == RDMA_PS_SDP) {
sdp_set_ip_ver(sdp_data, 4);
sdp_set_ip_ver(sdp_mask, 0xF);
sdp_data->dst_addr.ip4.addr = ip4_addr;
sdp_mask->dst_addr.ip4.addr = htonl(~0);
} else {
cma_set_ip_ver(cma_data, 4);
cma_set_ip_ver(cma_mask, 0xF);
if (!cma_any_addr(addr)) {
cma_data->dst_addr.ip4.addr = ip4_addr;
cma_mask->dst_addr.ip4.addr = htonl(~0);
}
}
break;
case AF_INET6:
ip6_addr = ((struct sockaddr_in6 *) addr)->sin6_addr;
if (ps == RDMA_PS_SDP) {
sdp_set_ip_ver(sdp_data, 6);
sdp_set_ip_ver(sdp_mask, 0xF);
sdp_data->dst_addr.ip6 = ip6_addr;
memset(&sdp_mask->dst_addr.ip6, 0xFF,
sizeof sdp_mask->dst_addr.ip6);
} else {
cma_set_ip_ver(cma_data, 6);
cma_set_ip_ver(cma_mask, 0xF);
if (!cma_any_addr(addr)) {
cma_data->dst_addr.ip6 = ip6_addr;
memset(&cma_mask->dst_addr.ip6, 0xFF,
sizeof cma_mask->dst_addr.ip6);
}
}
break;
default:
break;
}
}
static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
{
struct rdma_id_private *id_priv = iw_id->context;
struct rdma_cm_event event;
struct sockaddr_in *sin;
int ret = 0;
if (cma_disable_callback(id_priv, RDMA_CM_CONNECT))
return 0;
memset(&event, 0, sizeof event);
switch (iw_event->event) {
case IW_CM_EVENT_CLOSE:
event.event = RDMA_CM_EVENT_DISCONNECTED;
break;
case IW_CM_EVENT_CONNECT_REPLY:
sin = (struct sockaddr_in *) &id_priv->id.route.addr.src_addr;
*sin = iw_event->local_addr;
sin = (struct sockaddr_in *) &id_priv->id.route.addr.dst_addr;
*sin = iw_event->remote_addr;
switch (iw_event->status) {
case 0:
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
break;
case -ECONNRESET:
case -ECONNREFUSED:
event.event = RDMA_CM_EVENT_REJECTED;
break;
case -ETIMEDOUT:
event.event = RDMA_CM_EVENT_UNREACHABLE;
break;
default:
event.event = RDMA_CM_EVENT_CONNECT_ERROR;
break;
}
break;
case IW_CM_EVENT_ESTABLISHED:
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
break;
default:
BUG_ON(1);
}
event.status = iw_event->status;
event.param.conn.private_data = iw_event->private_data;
event.param.conn.private_data_len = iw_event->private_data_len;
ret = id_priv->id.event_handler(&id_priv->id, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.iw = NULL;
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
rdma_destroy_id(&id_priv->id);
return ret;
}
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static int iw_conn_req_handler(struct iw_cm_id *cm_id,
struct iw_cm_event *iw_event)
{
struct rdma_cm_id *new_cm_id;
struct rdma_id_private *listen_id, *conn_id;
struct sockaddr_in *sin;
struct net_device *dev = NULL;
struct rdma_cm_event event;
int ret;
struct ib_device_attr attr;
listen_id = cm_id->context;
if (cma_disable_callback(listen_id, RDMA_CM_LISTEN))
return -ECONNABORTED;
/* Create a new RDMA id for the new IW CM ID */
new_cm_id = rdma_create_id(listen_id->id.event_handler,
listen_id->id.context,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(new_cm_id)) {
ret = -ENOMEM;
goto out;
}
conn_id = container_of(new_cm_id, struct rdma_id_private, id);
mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
conn_id->state = RDMA_CM_CONNECT;
dev = ip_dev_find(&init_net, iw_event->local_addr.sin_addr.s_addr);
if (!dev) {
ret = -EADDRNOTAVAIL;
mutex_unlock(&conn_id->handler_mutex);
rdma_destroy_id(new_cm_id);
goto out;
}
ret = rdma_copy_addr(&conn_id->id.route.addr.dev_addr, dev, NULL);
if (ret) {
mutex_unlock(&conn_id->handler_mutex);
rdma_destroy_id(new_cm_id);
goto out;
}
ret = cma_acquire_dev(conn_id);
if (ret) {
mutex_unlock(&conn_id->handler_mutex);
rdma_destroy_id(new_cm_id);
goto out;
}
conn_id->cm_id.iw = cm_id;
cm_id->context = conn_id;
cm_id->cm_handler = cma_iw_handler;
sin = (struct sockaddr_in *) &new_cm_id->route.addr.src_addr;
*sin = iw_event->local_addr;
sin = (struct sockaddr_in *) &new_cm_id->route.addr.dst_addr;
*sin = iw_event->remote_addr;
ret = ib_query_device(conn_id->id.device, &attr);
if (ret) {
mutex_unlock(&conn_id->handler_mutex);
rdma_destroy_id(new_cm_id);
goto out;
}
memset(&event, 0, sizeof event);
event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
event.param.conn.private_data = iw_event->private_data;
event.param.conn.private_data_len = iw_event->private_data_len;
event.param.conn.initiator_depth = iw_event->ird;
event.param.conn.responder_resources = iw_event->ord;
/*
* Protect against the user destroying conn_id from another thread
* until we're done accessing it.
*/
atomic_inc(&conn_id->refcount);
ret = conn_id->id.event_handler(&conn_id->id, &event);
if (ret) {
/* User wants to destroy the CM ID */
conn_id->cm_id.iw = NULL;
cma_exch(conn_id, RDMA_CM_DESTROYING);
mutex_unlock(&conn_id->handler_mutex);
cma_deref_id(conn_id);
rdma_destroy_id(&conn_id->id);
goto out;
}
mutex_unlock(&conn_id->handler_mutex);
cma_deref_id(conn_id);
out:
if (dev)
dev_put(dev);
mutex_unlock(&listen_id->handler_mutex);
return ret;
}
static int cma_ib_listen(struct rdma_id_private *id_priv)
{
struct ib_cm_compare_data compare_data;
struct sockaddr *addr;
struct ib_cm_id *id;
__be64 svc_id;
int ret;
id = ib_create_cm_id(id_priv->id.device, cma_req_handler, id_priv);
if (IS_ERR(id))
return PTR_ERR(id);
id_priv->cm_id.ib = id;
addr = (struct sockaddr *) &id_priv->id.route.addr.src_addr;
svc_id = cma_get_service_id(id_priv->id.ps, addr);
if (cma_any_addr(addr) && !id_priv->afonly)
ret = ib_cm_listen(id_priv->cm_id.ib, svc_id, 0, NULL);
else {
cma_set_compare_data(id_priv->id.ps, addr, &compare_data);
ret = ib_cm_listen(id_priv->cm_id.ib, svc_id, 0, &compare_data);
}
if (ret) {
ib_destroy_cm_id(id_priv->cm_id.ib);
id_priv->cm_id.ib = NULL;
}
return ret;
}
static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
{
int ret;
struct sockaddr_in *sin;
struct iw_cm_id *id;
id = iw_create_cm_id(id_priv->id.device,
iw_conn_req_handler,
id_priv);
if (IS_ERR(id))
return PTR_ERR(id);
id_priv->cm_id.iw = id;
sin = (struct sockaddr_in *) &id_priv->id.route.addr.src_addr;
id_priv->cm_id.iw->local_addr = *sin;
ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
if (ret) {
iw_destroy_cm_id(id_priv->cm_id.iw);
id_priv->cm_id.iw = NULL;
}
return ret;
}
static int cma_listen_handler(struct rdma_cm_id *id,
struct rdma_cm_event *event)
{
struct rdma_id_private *id_priv = id->context;
id->context = id_priv->id.context;
id->event_handler = id_priv->id.event_handler;
return id_priv->id.event_handler(id, event);
}
static void cma_listen_on_dev(struct rdma_id_private *id_priv,
struct cma_device *cma_dev)
{
struct rdma_id_private *dev_id_priv;
struct rdma_cm_id *id;
int ret;
id = rdma_create_id(cma_listen_handler, id_priv, id_priv->id.ps,
id_priv->id.qp_type);
if (IS_ERR(id))
return;
dev_id_priv = container_of(id, struct rdma_id_private, id);
dev_id_priv->state = RDMA_CM_ADDR_BOUND;
memcpy(&id->route.addr.src_addr, &id_priv->id.route.addr.src_addr,
ip_addr_size((struct sockaddr *) &id_priv->id.route.addr.src_addr));
cma_attach_to_dev(dev_id_priv, cma_dev);
list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list);
atomic_inc(&id_priv->refcount);
dev_id_priv->internal_id = 1;
dev_id_priv->afonly = id_priv->afonly;
ret = rdma_listen(id, id_priv->backlog);
if (ret)
printk(KERN_WARNING "RDMA CMA: cma_listen_on_dev, error %d, "
"listening on device %s\n", ret, cma_dev->device->name);
}
static void cma_listen_on_all(struct rdma_id_private *id_priv)
{
struct cma_device *cma_dev;
mutex_lock(&lock);
list_add_tail(&id_priv->list, &listen_any_list);
list_for_each_entry(cma_dev, &dev_list, list)
cma_listen_on_dev(id_priv, cma_dev);
mutex_unlock(&lock);
}
void rdma_set_service_type(struct rdma_cm_id *id, int tos)
{
struct rdma_id_private *id_priv;
id_priv = container_of(id, struct rdma_id_private, id);
id_priv->tos = (u8) tos;
}
EXPORT_SYMBOL(rdma_set_service_type);
static void cma_query_handler(int status, struct ib_sa_path_rec *path_rec,
void *context)
{
struct cma_work *work = context;
struct rdma_route *route;
route = &work->id->id.route;
if (!status) {
route->num_paths = 1;
*route->path_rec = *path_rec;
} else {
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ADDR_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
work->event.status = status;
}
queue_work(cma_wq, &work->work);
}
static int cma_query_ib_route(struct rdma_id_private *id_priv, int timeout_ms,
struct cma_work *work)
{
struct rdma_addr *addr = &id_priv->id.route.addr;
struct ib_sa_path_rec path_rec;
ib_sa_comp_mask comp_mask;
struct sockaddr_in6 *sin6;
memset(&path_rec, 0, sizeof path_rec);
rdma_addr_get_sgid(&addr->dev_addr, &path_rec.sgid);
rdma_addr_get_dgid(&addr->dev_addr, &path_rec.dgid);
path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(&addr->dev_addr));
path_rec.numb_path = 1;
path_rec.reversible = 1;
path_rec.service_id = cma_get_service_id(id_priv->id.ps,
(struct sockaddr *) &addr->dst_addr);
comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
if (addr->src_addr.ss_family == AF_INET) {
path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
} else {
sin6 = (struct sockaddr_in6 *) &addr->src_addr;
path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
}
id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
id_priv->id.port_num, &path_rec,
comp_mask, timeout_ms,
GFP_KERNEL, cma_query_handler,
work, &id_priv->query);
return (id_priv->query_id < 0) ? id_priv->query_id : 0;
}
static void cma_work_handler(struct work_struct *_work)
{
struct cma_work *work = container_of(_work, struct cma_work, work);
struct rdma_id_private *id_priv = work->id;
int destroy = 0;
mutex_lock(&id_priv->handler_mutex);
if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
goto out;
if (id_priv->id.event_handler(&id_priv->id, &work->event)) {
cma_exch(id_priv, RDMA_CM_DESTROYING);
destroy = 1;
}
out:
mutex_unlock(&id_priv->handler_mutex);
cma_deref_id(id_priv);
if (destroy)
rdma_destroy_id(&id_priv->id);
kfree(work);
}
static void cma_ndev_work_handler(struct work_struct *_work)
{
struct cma_ndev_work *work = container_of(_work, struct cma_ndev_work, work);
struct rdma_id_private *id_priv = work->id;
int destroy = 0;
mutex_lock(&id_priv->handler_mutex);
if (id_priv->state == RDMA_CM_DESTROYING ||
id_priv->state == RDMA_CM_DEVICE_REMOVAL)
goto out;
if (id_priv->id.event_handler(&id_priv->id, &work->event)) {
cma_exch(id_priv, RDMA_CM_DESTROYING);
destroy = 1;
}
out:
mutex_unlock(&id_priv->handler_mutex);
cma_deref_id(id_priv);
if (destroy)
rdma_destroy_id(&id_priv->id);
kfree(work);
}
static int cma_resolve_ib_route(struct rdma_id_private *id_priv, int timeout_ms)
{
struct rdma_route *route = &id_priv->id.route;
struct cma_work *work;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ROUTE_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
if (!route->path_rec) {
ret = -ENOMEM;
goto err1;
}
ret = cma_query_ib_route(id_priv, timeout_ms, work);
if (ret)
goto err2;
return 0;
err2:
kfree(route->path_rec);
route->path_rec = NULL;
err1:
kfree(work);
return ret;
}
int rdma_set_ib_paths(struct rdma_cm_id *id,
struct ib_sa_path_rec *path_rec, int num_paths)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
RDMA_CM_ROUTE_RESOLVED))
return -EINVAL;
id->route.path_rec = kmemdup(path_rec, sizeof *path_rec * num_paths,
GFP_KERNEL);
if (!id->route.path_rec) {
ret = -ENOMEM;
goto err;
}
id->route.num_paths = num_paths;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
return ret;
}
EXPORT_SYMBOL(rdma_set_ib_paths);
static int cma_resolve_iw_route(struct rdma_id_private *id_priv, int timeout_ms)
{
struct cma_work *work;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ROUTE_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
queue_work(cma_wq, &work->work);
return 0;
}
static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
{
struct rdma_route *route = &id_priv->id.route;
struct rdma_addr *addr = &route->addr;
struct cma_work *work;
int ret;
struct sockaddr_in *src_addr = (struct sockaddr_in *)&route->addr.src_addr;
struct sockaddr_in *dst_addr = (struct sockaddr_in *)&route->addr.dst_addr;
struct net_device *ndev = NULL;
u16 vid;
if (src_addr->sin_family != dst_addr->sin_family)
return -EINVAL;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
if (!route->path_rec) {
ret = -ENOMEM;
goto err1;
}
route->num_paths = 1;
if (addr->dev_addr.bound_dev_if)
ndev = dev_get_by_index(&init_net, addr->dev_addr.bound_dev_if);
if (!ndev) {
ret = -ENODEV;
goto err2;
}
vid = rdma_vlan_dev_vlan_id(ndev);
iboe_mac_vlan_to_ll(&route->path_rec->sgid, addr->dev_addr.src_dev_addr, vid);
iboe_mac_vlan_to_ll(&route->path_rec->dgid, addr->dev_addr.dst_dev_addr, vid);
route->path_rec->hop_limit = 1;
route->path_rec->reversible = 1;
route->path_rec->pkey = cpu_to_be16(0xffff);
route->path_rec->mtu_selector = IB_SA_EQ;
route->path_rec->sl = netdev_get_prio_tc_map(
ndev->priv_flags & IFF_802_1Q_VLAN ?
vlan_dev_real_dev(ndev) : ndev,
rt_tos2priority(id_priv->tos));
route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
route->path_rec->rate_selector = IB_SA_EQ;
route->path_rec->rate = iboe_get_rate(ndev);
dev_put(ndev);
route->path_rec->packet_life_time_selector = IB_SA_EQ;
route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
if (!route->path_rec->mtu) {
ret = -EINVAL;
goto err2;
}
work->old_state = RDMA_CM_ROUTE_QUERY;
work->new_state = RDMA_CM_ROUTE_RESOLVED;
work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
work->event.status = 0;
queue_work(cma_wq, &work->work);
return 0;
err2:
kfree(route->path_rec);
route->path_rec = NULL;
err1:
kfree(work);
return ret;
}
int rdma_resolve_route(struct rdma_cm_id *id, int timeout_ms)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
return -EINVAL;
atomic_inc(&id_priv->refcount);
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
switch (rdma_port_get_link_layer(id->device, id->port_num)) {
case IB_LINK_LAYER_INFINIBAND:
ret = cma_resolve_ib_route(id_priv, timeout_ms);
break;
case IB_LINK_LAYER_ETHERNET:
ret = cma_resolve_iboe_route(id_priv);
break;
default:
ret = -ENOSYS;
}
break;
case RDMA_TRANSPORT_IWARP:
ret = cma_resolve_iw_route(id_priv, timeout_ms);
break;
default:
ret = -ENOSYS;
break;
}
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
cma_deref_id(id_priv);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_route);
static int cma_bind_loopback(struct rdma_id_private *id_priv)
{
struct cma_device *cma_dev;
struct ib_port_attr port_attr;
union ib_gid gid;
u16 pkey;
int ret;
u8 p;
mutex_lock(&lock);
if (list_empty(&dev_list)) {
ret = -ENODEV;
goto out;
}
list_for_each_entry(cma_dev, &dev_list, list)
for (p = 1; p <= cma_dev->device->phys_port_cnt; ++p)
if (!ib_query_port(cma_dev->device, p, &port_attr) &&
port_attr.state == IB_PORT_ACTIVE)
goto port_found;
p = 1;
cma_dev = list_entry(dev_list.next, struct cma_device, list);
port_found:
ret = ib_get_cached_gid(cma_dev->device, p, 0, &gid);
if (ret)
goto out;
ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
if (ret)
goto out;
id_priv->id.route.addr.dev_addr.dev_type =
(rdma_port_get_link_layer(cma_dev->device, p) == IB_LINK_LAYER_INFINIBAND) ?
ARPHRD_INFINIBAND : ARPHRD_ETHER;
rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
id_priv->id.port_num = p;
cma_attach_to_dev(id_priv, cma_dev);
out:
mutex_unlock(&lock);
return ret;
}
static void addr_handler(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *dev_addr, void *context)
{
struct rdma_id_private *id_priv = context;
struct rdma_cm_event event;
memset(&event, 0, sizeof event);
mutex_lock(&id_priv->handler_mutex);
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
RDMA_CM_ADDR_RESOLVED))
goto out;
if (!status && !id_priv->cma_dev)
status = cma_acquire_dev(id_priv);
if (status) {
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
RDMA_CM_ADDR_BOUND))
goto out;
event.event = RDMA_CM_EVENT_ADDR_ERROR;
event.status = status;
} else {
memcpy(&id_priv->id.route.addr.src_addr, src_addr,
ip_addr_size(src_addr));
event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
}
if (id_priv->id.event_handler(&id_priv->id, &event)) {
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
cma_deref_id(id_priv);
rdma_destroy_id(&id_priv->id);
return;
}
out:
mutex_unlock(&id_priv->handler_mutex);
cma_deref_id(id_priv);
}
static int cma_resolve_loopback(struct rdma_id_private *id_priv)
{
struct cma_work *work;
struct sockaddr *src, *dst;
union ib_gid gid;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
if (!id_priv->cma_dev) {
ret = cma_bind_loopback(id_priv);
if (ret)
goto err;
}
rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
src = (struct sockaddr *) &id_priv->id.route.addr.src_addr;
if (cma_zero_addr(src)) {
dst = (struct sockaddr *) &id_priv->id.route.addr.dst_addr;
if ((src->sa_family = dst->sa_family) == AF_INET) {
((struct sockaddr_in *)src)->sin_addr =
((struct sockaddr_in *)dst)->sin_addr;
} else {
((struct sockaddr_in6 *)src)->sin6_addr =
((struct sockaddr_in6 *)dst)->sin6_addr;
}
}
work->id = id_priv;
INIT_WORK(&work->work, cma_work_handler);
work->old_state = RDMA_CM_ADDR_QUERY;
work->new_state = RDMA_CM_ADDR_RESOLVED;
work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
queue_work(cma_wq, &work->work);
return 0;
err:
kfree(work);
return ret;
}
static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
struct sockaddr *dst_addr)
{
if (!src_addr || !src_addr->sa_family) {
src_addr = (struct sockaddr *) &id->route.addr.src_addr;
if ((src_addr->sa_family = dst_addr->sa_family) == AF_INET6) {
((struct sockaddr_in6 *) src_addr)->sin6_scope_id =
((struct sockaddr_in6 *) dst_addr)->sin6_scope_id;
}
}
return rdma_bind_addr(id, src_addr);
}
int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
struct sockaddr *dst_addr, int timeout_ms)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (id_priv->state == RDMA_CM_IDLE) {
ret = cma_bind_addr(id, src_addr, dst_addr);
if (ret)
return ret;
}
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY))
return -EINVAL;
atomic_inc(&id_priv->refcount);
memcpy(&id->route.addr.dst_addr, dst_addr, ip_addr_size(dst_addr));
if (cma_any_addr(dst_addr))
ret = cma_resolve_loopback(id_priv);
else
ret = rdma_resolve_ip(&addr_client, (struct sockaddr *) &id->route.addr.src_addr,
dst_addr, &id->route.addr.dev_addr,
timeout_ms, addr_handler, id_priv);
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
cma_deref_id(id_priv);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_addr);
int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
{
struct rdma_id_private *id_priv;
unsigned long flags;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irqsave(&id_priv->lock, flags);
if (id_priv->state == RDMA_CM_IDLE) {
id_priv->reuseaddr = reuse;
ret = 0;
} else {
ret = -EINVAL;
}
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
EXPORT_SYMBOL(rdma_set_reuseaddr);
int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
{
struct rdma_id_private *id_priv;
unsigned long flags;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irqsave(&id_priv->lock, flags);
if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
id_priv->options |= (1 << CMA_OPTION_AFONLY);
id_priv->afonly = afonly;
ret = 0;
} else {
ret = -EINVAL;
}
spin_unlock_irqrestore(&id_priv->lock, flags);
return ret;
}
EXPORT_SYMBOL(rdma_set_afonly);
static void cma_bind_port(struct rdma_bind_list *bind_list,
struct rdma_id_private *id_priv)
{
struct sockaddr_in *sin;
sin = (struct sockaddr_in *) &id_priv->id.route.addr.src_addr;
sin->sin_port = htons(bind_list->port);
id_priv->bind_list = bind_list;
hlist_add_head(&id_priv->node, &bind_list->owners);
}
static int cma_alloc_port(struct idr *ps, struct rdma_id_private *id_priv,
unsigned short snum)
{
struct rdma_bind_list *bind_list;
int port, ret;
bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
if (!bind_list)
return -ENOMEM;
do {
ret = idr_get_new_above(ps, bind_list, snum, &port);
} while ((ret == -EAGAIN) && idr_pre_get(ps, GFP_KERNEL));
if (ret)
goto err1;
if (port != snum) {
ret = -EADDRNOTAVAIL;
goto err2;
}
bind_list->ps = ps;
bind_list->port = (unsigned short) port;
cma_bind_port(bind_list, id_priv);
return 0;
err2:
idr_remove(ps, port);
err1:
kfree(bind_list);
return ret;
}
static int cma_alloc_any_port(struct idr *ps, struct rdma_id_private *id_priv)
{
static unsigned int last_used_port;
int low, high, remaining;
unsigned int rover;
inet_get_local_port_range(&low, &high);
remaining = (high - low) + 1;
rover = net_random() % remaining + low;
retry:
if (last_used_port != rover &&
!idr_find(ps, (unsigned short) rover)) {
int ret = cma_alloc_port(ps, id_priv, rover);
/*
* Remember previously used port number in order to avoid
* re-using same port immediately after it is closed.
*/
if (!ret)
last_used_port = rover;
if (ret != -EADDRNOTAVAIL)
return ret;
}
if (--remaining) {
rover++;
if ((rover < low) || (rover > high))
rover = low;
goto retry;
}
return -EADDRNOTAVAIL;
}
/*
* Check that the requested port is available. This is called when trying to
* bind to a specific port, or when trying to listen on a bound port. In
* the latter case, the provided id_priv may already be on the bind_list, but
* we still need to check that it's okay to start listening.
*/
static int cma_check_port(struct rdma_bind_list *bind_list,
struct rdma_id_private *id_priv, uint8_t reuseaddr)
{
struct rdma_id_private *cur_id;
struct sockaddr *addr, *cur_addr;
struct hlist_node *node;
addr = (struct sockaddr *) &id_priv->id.route.addr.src_addr;
hlist_for_each_entry(cur_id, node, &bind_list->owners, node) {
if (id_priv == cur_id)
continue;
if ((cur_id->state != RDMA_CM_LISTEN) && reuseaddr &&
cur_id->reuseaddr)
continue;
cur_addr = (struct sockaddr *) &cur_id->id.route.addr.src_addr;
if (id_priv->afonly && cur_id->afonly &&
(addr->sa_family != cur_addr->sa_family))
continue;
if (cma_any_addr(addr) || cma_any_addr(cur_addr))
return -EADDRNOTAVAIL;
if (!cma_addr_cmp(addr, cur_addr))
return -EADDRINUSE;
}
return 0;
}
static int cma_use_port(struct idr *ps, struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list;
unsigned short snum;
int ret;
snum = ntohs(cma_port((struct sockaddr *) &id_priv->id.route.addr.src_addr));
if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
bind_list = idr_find(ps, snum);
if (!bind_list) {
ret = cma_alloc_port(ps, id_priv, snum);
} else {
ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
if (!ret)
cma_bind_port(bind_list, id_priv);
}
return ret;
}
static int cma_bind_listen(struct rdma_id_private *id_priv)
{
struct rdma_bind_list *bind_list = id_priv->bind_list;
int ret = 0;
mutex_lock(&lock);
if (bind_list->owners.first->next)
ret = cma_check_port(bind_list, id_priv, 0);
mutex_unlock(&lock);
return ret;
}
static int cma_get_port(struct rdma_id_private *id_priv)
{
struct idr *ps;
int ret;
switch (id_priv->id.ps) {
case RDMA_PS_SDP:
ps = &sdp_ps;
break;
case RDMA_PS_TCP:
ps = &tcp_ps;
break;
case RDMA_PS_UDP:
ps = &udp_ps;
break;
case RDMA_PS_IPOIB:
ps = &ipoib_ps;
break;
case RDMA_PS_IB:
ps = &ib_ps;
break;
default:
return -EPROTONOSUPPORT;
}
mutex_lock(&lock);
if (cma_any_port((struct sockaddr *) &id_priv->id.route.addr.src_addr))
ret = cma_alloc_any_port(ps, id_priv);
else
ret = cma_use_port(ps, id_priv);
mutex_unlock(&lock);
return ret;
}
static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
struct sockaddr *addr)
{
#if IS_ENABLED(CONFIG_IPV6)
struct sockaddr_in6 *sin6;
if (addr->sa_family != AF_INET6)
return 0;
sin6 = (struct sockaddr_in6 *) addr;
if ((ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL) &&
!sin6->sin6_scope_id)
return -EINVAL;
dev_addr->bound_dev_if = sin6->sin6_scope_id;
#endif
return 0;
}
int rdma_listen(struct rdma_cm_id *id, int backlog)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (id_priv->state == RDMA_CM_IDLE) {
((struct sockaddr *) &id->route.addr.src_addr)->sa_family = AF_INET;
ret = rdma_bind_addr(id, (struct sockaddr *) &id->route.addr.src_addr);
if (ret)
return ret;
}
if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN))
return -EINVAL;
if (id_priv->reuseaddr) {
ret = cma_bind_listen(id_priv);
if (ret)
goto err;
}
id_priv->backlog = backlog;
if (id->device) {
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
ret = cma_ib_listen(id_priv);
if (ret)
goto err;
break;
case RDMA_TRANSPORT_IWARP:
ret = cma_iw_listen(id_priv, backlog);
if (ret)
goto err;
break;
default:
ret = -ENOSYS;
goto err;
}
} else
cma_listen_on_all(id_priv);
return 0;
err:
id_priv->backlog = 0;
cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
return ret;
}
EXPORT_SYMBOL(rdma_listen);
int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
{
struct rdma_id_private *id_priv;
int ret;
if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6)
return -EAFNOSUPPORT;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
return -EINVAL;
ret = cma_check_linklocal(&id->route.addr.dev_addr, addr);
if (ret)
goto err1;
if (!cma_any_addr(addr)) {
ret = rdma_translate_ip(addr, &id->route.addr.dev_addr);
if (ret)
goto err1;
ret = cma_acquire_dev(id_priv);
if (ret)
goto err1;
}
memcpy(&id->route.addr.src_addr, addr, ip_addr_size(addr));
if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
if (addr->sa_family == AF_INET)
id_priv->afonly = 1;
#if IS_ENABLED(CONFIG_IPV6)
else if (addr->sa_family == AF_INET6)
id_priv->afonly = init_net.ipv6.sysctl.bindv6only;
#endif
}
ret = cma_get_port(id_priv);
if (ret)
goto err2;
return 0;
err2:
if (id_priv->cma_dev)
cma_release_dev(id_priv);
err1:
cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
return ret;
}
EXPORT_SYMBOL(rdma_bind_addr);
static int cma_format_hdr(void *hdr, enum rdma_port_space ps,
struct rdma_route *route)
{
struct cma_hdr *cma_hdr;
struct sdp_hh *sdp_hdr;
if (route->addr.src_addr.ss_family == AF_INET) {
struct sockaddr_in *src4, *dst4;
src4 = (struct sockaddr_in *) &route->addr.src_addr;
dst4 = (struct sockaddr_in *) &route->addr.dst_addr;
switch (ps) {
case RDMA_PS_SDP:
sdp_hdr = hdr;
if (sdp_get_majv(sdp_hdr->sdp_version) != SDP_MAJ_VERSION)
return -EINVAL;
sdp_set_ip_ver(sdp_hdr, 4);
sdp_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
sdp_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
sdp_hdr->port = src4->sin_port;
break;
default:
cma_hdr = hdr;
cma_hdr->cma_version = CMA_VERSION;
cma_set_ip_ver(cma_hdr, 4);
cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
cma_hdr->port = src4->sin_port;
break;
}
} else {
struct sockaddr_in6 *src6, *dst6;
src6 = (struct sockaddr_in6 *) &route->addr.src_addr;
dst6 = (struct sockaddr_in6 *) &route->addr.dst_addr;
switch (ps) {
case RDMA_PS_SDP:
sdp_hdr = hdr;
if (sdp_get_majv(sdp_hdr->sdp_version) != SDP_MAJ_VERSION)
return -EINVAL;
sdp_set_ip_ver(sdp_hdr, 6);
sdp_hdr->src_addr.ip6 = src6->sin6_addr;
sdp_hdr->dst_addr.ip6 = dst6->sin6_addr;
sdp_hdr->port = src6->sin6_port;
break;
default:
cma_hdr = hdr;
cma_hdr->cma_version = CMA_VERSION;
cma_set_ip_ver(cma_hdr, 6);
cma_hdr->src_addr.ip6 = src6->sin6_addr;
cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
cma_hdr->port = src6->sin6_port;
break;
}
}
return 0;
}
static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
struct ib_cm_event *ib_event)
{
struct rdma_id_private *id_priv = cm_id->context;
struct rdma_cm_event event;
struct ib_cm_sidr_rep_event_param *rep = &ib_event->param.sidr_rep_rcvd;
int ret = 0;
if (cma_disable_callback(id_priv, RDMA_CM_CONNECT))
return 0;
memset(&event, 0, sizeof event);
switch (ib_event->event) {
case IB_CM_SIDR_REQ_ERROR:
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = -ETIMEDOUT;
break;
case IB_CM_SIDR_REP_RECEIVED:
event.param.ud.private_data = ib_event->private_data;
event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
if (rep->status != IB_SIDR_SUCCESS) {
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = ib_event->param.sidr_rep_rcvd.status;
break;
}
ret = cma_set_qkey(id_priv);
if (ret) {
event.event = RDMA_CM_EVENT_ADDR_ERROR;
event.status = -EINVAL;
break;
}
if (id_priv->qkey != rep->qkey) {
event.event = RDMA_CM_EVENT_UNREACHABLE;
event.status = -EINVAL;
break;
}
ib_init_ah_from_path(id_priv->id.device, id_priv->id.port_num,
id_priv->id.route.path_rec,
&event.param.ud.ah_attr);
event.param.ud.qp_num = rep->qpn;
event.param.ud.qkey = rep->qkey;
event.event = RDMA_CM_EVENT_ESTABLISHED;
event.status = 0;
break;
default:
printk(KERN_ERR "RDMA CMA: unexpected IB CM event: %d\n",
ib_event->event);
goto out;
}
ret = id_priv->id.event_handler(&id_priv->id, &event);
if (ret) {
/* Destroy the CM ID by returning a non-zero value. */
id_priv->cm_id.ib = NULL;
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
rdma_destroy_id(&id_priv->id);
return ret;
}
out:
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_sidr_req_param req;
struct rdma_route *route;
struct ib_cm_id *id;
int ret;
req.private_data_len = sizeof(struct cma_hdr) +
conn_param->private_data_len;
if (req.private_data_len < conn_param->private_data_len)
return -EINVAL;
req.private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
if (!req.private_data)
return -ENOMEM;
if (conn_param->private_data && conn_param->private_data_len)
memcpy((void *) req.private_data + sizeof(struct cma_hdr),
conn_param->private_data, conn_param->private_data_len);
route = &id_priv->id.route;
ret = cma_format_hdr((void *) req.private_data, id_priv->id.ps, route);
if (ret)
goto out;
id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
id_priv);
if (IS_ERR(id)) {
ret = PTR_ERR(id);
goto out;
}
id_priv->cm_id.ib = id;
req.path = route->path_rec;
req.service_id = cma_get_service_id(id_priv->id.ps,
(struct sockaddr *) &route->addr.dst_addr);
req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
req.max_cm_retries = CMA_MAX_CM_RETRIES;
ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
if (ret) {
ib_destroy_cm_id(id_priv->cm_id.ib);
id_priv->cm_id.ib = NULL;
}
out:
kfree(req.private_data);
return ret;
}
static int cma_connect_ib(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_req_param req;
struct rdma_route *route;
void *private_data;
struct ib_cm_id *id;
int offset, ret;
memset(&req, 0, sizeof req);
offset = cma_user_data_offset(id_priv->id.ps);
req.private_data_len = offset + conn_param->private_data_len;
if (req.private_data_len < conn_param->private_data_len)
return -EINVAL;
private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
if (!private_data)
return -ENOMEM;
if (conn_param->private_data && conn_param->private_data_len)
memcpy(private_data + offset, conn_param->private_data,
conn_param->private_data_len);
id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
if (IS_ERR(id)) {
ret = PTR_ERR(id);
goto out;
}
id_priv->cm_id.ib = id;
route = &id_priv->id.route;
ret = cma_format_hdr(private_data, id_priv->id.ps, route);
if (ret)
goto out;
req.private_data = private_data;
req.primary_path = &route->path_rec[0];
if (route->num_paths == 2)
req.alternate_path = &route->path_rec[1];
req.service_id = cma_get_service_id(id_priv->id.ps,
(struct sockaddr *) &route->addr.dst_addr);
req.qp_num = id_priv->qp_num;
req.qp_type = id_priv->id.qp_type;
req.starting_psn = id_priv->seq_num;
req.responder_resources = conn_param->responder_resources;
req.initiator_depth = conn_param->initiator_depth;
req.flow_control = conn_param->flow_control;
req.retry_count = min_t(u8, 7, conn_param->retry_count);
req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
req.max_cm_retries = CMA_MAX_CM_RETRIES;
req.srq = id_priv->srq ? 1 : 0;
ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
out:
if (ret && !IS_ERR(id)) {
ib_destroy_cm_id(id);
id_priv->cm_id.ib = NULL;
}
kfree(private_data);
return ret;
}
static int cma_connect_iw(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct iw_cm_id *cm_id;
struct sockaddr_in* sin;
int ret;
struct iw_cm_conn_param iw_param;
cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
if (IS_ERR(cm_id))
return PTR_ERR(cm_id);
id_priv->cm_id.iw = cm_id;
sin = (struct sockaddr_in*) &id_priv->id.route.addr.src_addr;
cm_id->local_addr = *sin;
sin = (struct sockaddr_in*) &id_priv->id.route.addr.dst_addr;
cm_id->remote_addr = *sin;
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
goto out;
if (conn_param) {
iw_param.ord = conn_param->initiator_depth;
iw_param.ird = conn_param->responder_resources;
iw_param.private_data = conn_param->private_data;
iw_param.private_data_len = conn_param->private_data_len;
iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
} else {
memset(&iw_param, 0, sizeof iw_param);
iw_param.qpn = id_priv->qp_num;
}
ret = iw_cm_connect(cm_id, &iw_param);
out:
if (ret) {
iw_destroy_cm_id(cm_id);
id_priv->cm_id.iw = NULL;
}
return ret;
}
int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
return -EINVAL;
if (!id->qp) {
id_priv->qp_num = conn_param->qp_num;
id_priv->srq = conn_param->srq;
}
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
if (id->qp_type == IB_QPT_UD)
ret = cma_resolve_ib_udp(id_priv, conn_param);
else
ret = cma_connect_ib(id_priv, conn_param);
break;
case RDMA_TRANSPORT_IWARP:
ret = cma_connect_iw(id_priv, conn_param);
break;
default:
ret = -ENOSYS;
break;
}
if (ret)
goto err;
return 0;
err:
cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
return ret;
}
EXPORT_SYMBOL(rdma_connect);
static int cma_accept_ib(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct ib_cm_rep_param rep;
int ret;
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
goto out;
ret = cma_modify_qp_rts(id_priv, conn_param);
if (ret)
goto out;
memset(&rep, 0, sizeof rep);
rep.qp_num = id_priv->qp_num;
rep.starting_psn = id_priv->seq_num;
rep.private_data = conn_param->private_data;
rep.private_data_len = conn_param->private_data_len;
rep.responder_resources = conn_param->responder_resources;
rep.initiator_depth = conn_param->initiator_depth;
rep.failover_accepted = 0;
rep.flow_control = conn_param->flow_control;
rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
rep.srq = id_priv->srq ? 1 : 0;
ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
out:
return ret;
}
static int cma_accept_iw(struct rdma_id_private *id_priv,
struct rdma_conn_param *conn_param)
{
struct iw_cm_conn_param iw_param;
int ret;
ret = cma_modify_qp_rtr(id_priv, conn_param);
if (ret)
return ret;
iw_param.ord = conn_param->initiator_depth;
iw_param.ird = conn_param->responder_resources;
iw_param.private_data = conn_param->private_data;
iw_param.private_data_len = conn_param->private_data_len;
if (id_priv->id.qp) {
iw_param.qpn = id_priv->qp_num;
} else
iw_param.qpn = conn_param->qp_num;
return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
}
static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
enum ib_cm_sidr_status status,
const void *private_data, int private_data_len)
{
struct ib_cm_sidr_rep_param rep;
int ret;
memset(&rep, 0, sizeof rep);
rep.status = status;
if (status == IB_SIDR_SUCCESS) {
ret = cma_set_qkey(id_priv);
if (ret)
return ret;
rep.qp_num = id_priv->qp_num;
rep.qkey = id_priv->qkey;
}
rep.private_data = private_data;
rep.private_data_len = private_data_len;
return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
}
int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
id_priv->owner = task_pid_nr(current);
if (!cma_comp(id_priv, RDMA_CM_CONNECT))
return -EINVAL;
if (!id->qp && conn_param) {
id_priv->qp_num = conn_param->qp_num;
id_priv->srq = conn_param->srq;
}
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
if (id->qp_type == IB_QPT_UD) {
if (conn_param)
ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
conn_param->private_data,
conn_param->private_data_len);
else
ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
NULL, 0);
} else {
if (conn_param)
ret = cma_accept_ib(id_priv, conn_param);
else
ret = cma_rep_recv(id_priv);
}
break;
case RDMA_TRANSPORT_IWARP:
ret = cma_accept_iw(id_priv, conn_param);
break;
default:
ret = -ENOSYS;
break;
}
if (ret)
goto reject;
return 0;
reject:
cma_modify_qp_err(id_priv);
rdma_reject(id, NULL, 0);
return ret;
}
EXPORT_SYMBOL(rdma_accept);
int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
switch (id->device->node_type) {
case RDMA_NODE_IB_CA:
ret = ib_cm_notify(id_priv->cm_id.ib, event);
break;
default:
ret = 0;
break;
}
return ret;
}
EXPORT_SYMBOL(rdma_notify);
int rdma_reject(struct rdma_cm_id *id, const void *private_data,
u8 private_data_len)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
if (id->qp_type == IB_QPT_UD)
ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT,
private_data, private_data_len);
else
ret = ib_send_cm_rej(id_priv->cm_id.ib,
IB_CM_REJ_CONSUMER_DEFINED, NULL,
0, private_data, private_data_len);
break;
case RDMA_TRANSPORT_IWARP:
ret = iw_cm_reject(id_priv->cm_id.iw,
private_data, private_data_len);
break;
default:
ret = -ENOSYS;
break;
}
return ret;
}
EXPORT_SYMBOL(rdma_reject);
int rdma_disconnect(struct rdma_cm_id *id)
{
struct rdma_id_private *id_priv;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!id_priv->cm_id.ib)
return -EINVAL;
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
ret = cma_modify_qp_err(id_priv);
if (ret)
goto out;
/* Initiate or respond to a disconnect. */
if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0))
ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0);
break;
case RDMA_TRANSPORT_IWARP:
ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
break;
default:
ret = -EINVAL;
break;
}
out:
return ret;
}
EXPORT_SYMBOL(rdma_disconnect);
static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
{
struct rdma_id_private *id_priv;
struct cma_multicast *mc = multicast->context;
struct rdma_cm_event event;
int ret;
id_priv = mc->id_priv;
if (cma_disable_callback(id_priv, RDMA_CM_ADDR_BOUND) &&
cma_disable_callback(id_priv, RDMA_CM_ADDR_RESOLVED))
return 0;
mutex_lock(&id_priv->qp_mutex);
if (!status && id_priv->id.qp)
status = ib_attach_mcast(id_priv->id.qp, &multicast->rec.mgid,
be16_to_cpu(multicast->rec.mlid));
mutex_unlock(&id_priv->qp_mutex);
memset(&event, 0, sizeof event);
event.status = status;
event.param.ud.private_data = mc->context;
if (!status) {
event.event = RDMA_CM_EVENT_MULTICAST_JOIN;
ib_init_ah_from_mcmember(id_priv->id.device,
id_priv->id.port_num, &multicast->rec,
&event.param.ud.ah_attr);
event.param.ud.qp_num = 0xFFFFFF;
event.param.ud.qkey = be32_to_cpu(multicast->rec.qkey);
} else
event.event = RDMA_CM_EVENT_MULTICAST_ERROR;
ret = id_priv->id.event_handler(&id_priv->id, &event);
if (ret) {
cma_exch(id_priv, RDMA_CM_DESTROYING);
mutex_unlock(&id_priv->handler_mutex);
rdma_destroy_id(&id_priv->id);
return 0;
}
mutex_unlock(&id_priv->handler_mutex);
return 0;
}
static void cma_set_mgid(struct rdma_id_private *id_priv,
struct sockaddr *addr, union ib_gid *mgid)
{
unsigned char mc_map[MAX_ADDR_LEN];
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
struct sockaddr_in *sin = (struct sockaddr_in *) addr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
if (cma_any_addr(addr)) {
memset(mgid, 0, sizeof *mgid);
} else if ((addr->sa_family == AF_INET6) &&
((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
0xFF10A01B)) {
/* IPv6 address is an SA assigned MGID. */
memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
} else if ((addr->sa_family == AF_INET6)) {
ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
if (id_priv->id.ps == RDMA_PS_UDP)
mc_map[7] = 0x01; /* Use RDMA CM signature */
*mgid = *(union ib_gid *) (mc_map + 4);
} else {
ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
if (id_priv->id.ps == RDMA_PS_UDP)
mc_map[7] = 0x01; /* Use RDMA CM signature */
*mgid = *(union ib_gid *) (mc_map + 4);
}
}
static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
struct cma_multicast *mc)
{
struct ib_sa_mcmember_rec rec;
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
ib_sa_comp_mask comp_mask;
int ret;
ib_addr_get_mgid(dev_addr, &rec.mgid);
ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
&rec.mgid, &rec);
if (ret)
return ret;
cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
if (id_priv->id.ps == RDMA_PS_UDP)
rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
rdma_addr_get_sgid(dev_addr, &rec.port_gid);
rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
rec.join_state = 1;
comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
IB_SA_MCMEMBER_REC_FLOW_LABEL |
IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
if (id_priv->id.ps == RDMA_PS_IPOIB)
comp_mask |= IB_SA_MCMEMBER_REC_RATE |
IB_SA_MCMEMBER_REC_RATE_SELECTOR |
IB_SA_MCMEMBER_REC_MTU_SELECTOR |
IB_SA_MCMEMBER_REC_MTU |
IB_SA_MCMEMBER_REC_HOP_LIMIT;
mc->multicast.ib = ib_sa_join_multicast(&sa_client, id_priv->id.device,
id_priv->id.port_num, &rec,
comp_mask, GFP_KERNEL,
cma_ib_mc_handler, mc);
return PTR_RET(mc->multicast.ib);
}
static void iboe_mcast_work_handler(struct work_struct *work)
{
struct iboe_mcast_work *mw = container_of(work, struct iboe_mcast_work, work);
struct cma_multicast *mc = mw->mc;
struct ib_sa_multicast *m = mc->multicast.ib;
mc->multicast.ib->context = mc;
cma_ib_mc_handler(0, m);
kref_put(&mc->mcref, release_mc);
kfree(mw);
}
static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid)
{
struct sockaddr_in *sin = (struct sockaddr_in *)addr;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
if (cma_any_addr(addr)) {
memset(mgid, 0, sizeof *mgid);
} else if (addr->sa_family == AF_INET6) {
memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
} else {
mgid->raw[0] = 0xff;
mgid->raw[1] = 0x0e;
mgid->raw[2] = 0;
mgid->raw[3] = 0;
mgid->raw[4] = 0;
mgid->raw[5] = 0;
mgid->raw[6] = 0;
mgid->raw[7] = 0;
mgid->raw[8] = 0;
mgid->raw[9] = 0;
mgid->raw[10] = 0xff;
mgid->raw[11] = 0xff;
*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
}
}
static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
struct cma_multicast *mc)
{
struct iboe_mcast_work *work;
struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
int err;
struct sockaddr *addr = (struct sockaddr *)&mc->addr;
struct net_device *ndev = NULL;
if (cma_zero_addr((struct sockaddr *)&mc->addr))
return -EINVAL;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
mc->multicast.ib = kzalloc(sizeof(struct ib_sa_multicast), GFP_KERNEL);
if (!mc->multicast.ib) {
err = -ENOMEM;
goto out1;
}
cma_iboe_set_mgid(addr, &mc->multicast.ib->rec.mgid);
mc->multicast.ib->rec.pkey = cpu_to_be16(0xffff);
if (id_priv->id.ps == RDMA_PS_UDP)
mc->multicast.ib->rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
if (dev_addr->bound_dev_if)
ndev = dev_get_by_index(&init_net, dev_addr->bound_dev_if);
if (!ndev) {
err = -ENODEV;
goto out2;
}
mc->multicast.ib->rec.rate = iboe_get_rate(ndev);
mc->multicast.ib->rec.hop_limit = 1;
mc->multicast.ib->rec.mtu = iboe_get_mtu(ndev->mtu);
dev_put(ndev);
if (!mc->multicast.ib->rec.mtu) {
err = -EINVAL;
goto out2;
}
iboe_addr_get_sgid(dev_addr, &mc->multicast.ib->rec.port_gid);
work->id = id_priv;
work->mc = mc;
INIT_WORK(&work->work, iboe_mcast_work_handler);
kref_get(&mc->mcref);
queue_work(cma_wq, &work->work);
return 0;
out2:
kfree(mc->multicast.ib);
out1:
kfree(work);
return err;
}
int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
void *context)
{
struct rdma_id_private *id_priv;
struct cma_multicast *mc;
int ret;
id_priv = container_of(id, struct rdma_id_private, id);
if (!cma_comp(id_priv, RDMA_CM_ADDR_BOUND) &&
!cma_comp(id_priv, RDMA_CM_ADDR_RESOLVED))
return -EINVAL;
mc = kmalloc(sizeof *mc, GFP_KERNEL);
if (!mc)
return -ENOMEM;
memcpy(&mc->addr, addr, ip_addr_size(addr));
mc->context = context;
mc->id_priv = id_priv;
spin_lock(&id_priv->lock);
list_add(&mc->list, &id_priv->mc_list);
spin_unlock(&id_priv->lock);
switch (rdma_node_get_transport(id->device->node_type)) {
case RDMA_TRANSPORT_IB:
switch (rdma_port_get_link_layer(id->device, id->port_num)) {
case IB_LINK_LAYER_INFINIBAND:
ret = cma_join_ib_multicast(id_priv, mc);
break;
case IB_LINK_LAYER_ETHERNET:
kref_init(&mc->mcref);
ret = cma_iboe_join_multicast(id_priv, mc);
break;
default:
ret = -EINVAL;
}
break;
default:
ret = -ENOSYS;
break;
}
if (ret) {
spin_lock_irq(&id_priv->lock);
list_del(&mc->list);
spin_unlock_irq(&id_priv->lock);
kfree(mc);
}
return ret;
}
EXPORT_SYMBOL(rdma_join_multicast);
void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
{
struct rdma_id_private *id_priv;
struct cma_multicast *mc;
id_priv = container_of(id, struct rdma_id_private, id);
spin_lock_irq(&id_priv->lock);
list_for_each_entry(mc, &id_priv->mc_list, list) {
if (!memcmp(&mc->addr, addr, ip_addr_size(addr))) {
list_del(&mc->list);
spin_unlock_irq(&id_priv->lock);
if (id->qp)
ib_detach_mcast(id->qp,
&mc->multicast.ib->rec.mgid,
be16_to_cpu(mc->multicast.ib->rec.mlid));
if (rdma_node_get_transport(id_priv->cma_dev->device->node_type) == RDMA_TRANSPORT_IB) {
switch (rdma_port_get_link_layer(id->device, id->port_num)) {
case IB_LINK_LAYER_INFINIBAND:
ib_sa_free_multicast(mc->multicast.ib);
kfree(mc);
break;
case IB_LINK_LAYER_ETHERNET:
kref_put(&mc->mcref, release_mc);
break;
default:
break;
}
}
return;
}
}
spin_unlock_irq(&id_priv->lock);
}
EXPORT_SYMBOL(rdma_leave_multicast);
static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
{
struct rdma_dev_addr *dev_addr;
struct cma_ndev_work *work;
dev_addr = &id_priv->id.route.addr.dev_addr;
if ((dev_addr->bound_dev_if == ndev->ifindex) &&
memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
printk(KERN_INFO "RDMA CM addr change for ndev %s used by id %p\n",
ndev->name, &id_priv->id);
work = kzalloc(sizeof *work, GFP_KERNEL);
if (!work)
return -ENOMEM;
INIT_WORK(&work->work, cma_ndev_work_handler);
work->id = id_priv;
work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
atomic_inc(&id_priv->refcount);
queue_work(cma_wq, &work->work);
}
return 0;
}
static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
void *ctx)
{
struct net_device *ndev = (struct net_device *)ctx;
struct cma_device *cma_dev;
struct rdma_id_private *id_priv;
int ret = NOTIFY_DONE;
if (dev_net(ndev) != &init_net)
return NOTIFY_DONE;
if (event != NETDEV_BONDING_FAILOVER)
return NOTIFY_DONE;
if (!(ndev->flags & IFF_MASTER) || !(ndev->priv_flags & IFF_BONDING))
return NOTIFY_DONE;
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list)
list_for_each_entry(id_priv, &cma_dev->id_list, list) {
ret = cma_netdev_change(ndev, id_priv);
if (ret)
goto out;
}
out:
mutex_unlock(&lock);
return ret;
}
static struct notifier_block cma_nb = {
.notifier_call = cma_netdev_callback
};
static void cma_add_one(struct ib_device *device)
{
struct cma_device *cma_dev;
struct rdma_id_private *id_priv;
cma_dev = kmalloc(sizeof *cma_dev, GFP_KERNEL);
if (!cma_dev)
return;
cma_dev->device = device;
init_completion(&cma_dev->comp);
atomic_set(&cma_dev->refcount, 1);
INIT_LIST_HEAD(&cma_dev->id_list);
ib_set_client_data(device, &cma_client, cma_dev);
mutex_lock(&lock);
list_add_tail(&cma_dev->list, &dev_list);
list_for_each_entry(id_priv, &listen_any_list, list)
cma_listen_on_dev(id_priv, cma_dev);
mutex_unlock(&lock);
}
static int cma_remove_id_dev(struct rdma_id_private *id_priv)
{
struct rdma_cm_event event;
enum rdma_cm_state state;
int ret = 0;
/* Record that we want to remove the device */
state = cma_exch(id_priv, RDMA_CM_DEVICE_REMOVAL);
if (state == RDMA_CM_DESTROYING)
return 0;
cma_cancel_operation(id_priv, state);
mutex_lock(&id_priv->handler_mutex);
/* Check for destruction from another callback. */
if (!cma_comp(id_priv, RDMA_CM_DEVICE_REMOVAL))
goto out;
memset(&event, 0, sizeof event);
event.event = RDMA_CM_EVENT_DEVICE_REMOVAL;
ret = id_priv->id.event_handler(&id_priv->id, &event);
out:
mutex_unlock(&id_priv->handler_mutex);
return ret;
}
static void cma_process_remove(struct cma_device *cma_dev)
{
struct rdma_id_private *id_priv;
int ret;
mutex_lock(&lock);
while (!list_empty(&cma_dev->id_list)) {
id_priv = list_entry(cma_dev->id_list.next,
struct rdma_id_private, list);
list_del(&id_priv->listen_list);
list_del_init(&id_priv->list);
atomic_inc(&id_priv->refcount);
mutex_unlock(&lock);
ret = id_priv->internal_id ? 1 : cma_remove_id_dev(id_priv);
cma_deref_id(id_priv);
if (ret)
rdma_destroy_id(&id_priv->id);
mutex_lock(&lock);
}
mutex_unlock(&lock);
cma_deref_dev(cma_dev);
wait_for_completion(&cma_dev->comp);
}
static void cma_remove_one(struct ib_device *device)
{
struct cma_device *cma_dev;
cma_dev = ib_get_client_data(device, &cma_client);
if (!cma_dev)
return;
mutex_lock(&lock);
list_del(&cma_dev->list);
mutex_unlock(&lock);
cma_process_remove(cma_dev);
kfree(cma_dev);
}
static int cma_get_id_stats(struct sk_buff *skb, struct netlink_callback *cb)
{
struct nlmsghdr *nlh;
struct rdma_cm_id_stats *id_stats;
struct rdma_id_private *id_priv;
struct rdma_cm_id *id = NULL;
struct cma_device *cma_dev;
int i_dev = 0, i_id = 0;
/*
* We export all of the IDs as a sequence of messages. Each
* ID gets its own netlink message.
*/
mutex_lock(&lock);
list_for_each_entry(cma_dev, &dev_list, list) {
if (i_dev < cb->args[0]) {
i_dev++;
continue;
}
i_id = 0;
list_for_each_entry(id_priv, &cma_dev->id_list, list) {
if (i_id < cb->args[1]) {
i_id++;
continue;
}
id_stats = ibnl_put_msg(skb, &nlh, cb->nlh->nlmsg_seq,
sizeof *id_stats, RDMA_NL_RDMA_CM,
RDMA_NL_RDMA_CM_ID_STATS);
if (!id_stats)
goto out;
memset(id_stats, 0, sizeof *id_stats);
id = &id_priv->id;
id_stats->node_type = id->route.addr.dev_addr.dev_type;
id_stats->port_num = id->port_num;
id_stats->bound_dev_if =
id->route.addr.dev_addr.bound_dev_if;
if (id->route.addr.src_addr.ss_family == AF_INET) {
if (ibnl_put_attr(skb, nlh,
sizeof(struct sockaddr_in),
&id->route.addr.src_addr,
RDMA_NL_RDMA_CM_ATTR_SRC_ADDR)) {
goto out;
}
if (ibnl_put_attr(skb, nlh,
sizeof(struct sockaddr_in),
&id->route.addr.dst_addr,
RDMA_NL_RDMA_CM_ATTR_DST_ADDR)) {
goto out;
}
} else if (id->route.addr.src_addr.ss_family == AF_INET6) {
if (ibnl_put_attr(skb, nlh,
sizeof(struct sockaddr_in6),
&id->route.addr.src_addr,
RDMA_NL_RDMA_CM_ATTR_SRC_ADDR)) {
goto out;
}
if (ibnl_put_attr(skb, nlh,
sizeof(struct sockaddr_in6),
&id->route.addr.dst_addr,
RDMA_NL_RDMA_CM_ATTR_DST_ADDR)) {
goto out;
}
}
id_stats->pid = id_priv->owner;
id_stats->port_space = id->ps;
id_stats->cm_state = id_priv->state;
id_stats->qp_num = id_priv->qp_num;
id_stats->qp_type = id->qp_type;
i_id++;
}
cb->args[1] = 0;
i_dev++;
}
out:
mutex_unlock(&lock);
cb->args[0] = i_dev;
cb->args[1] = i_id;
return skb->len;
}
static const struct ibnl_client_cbs cma_cb_table[] = {
[RDMA_NL_RDMA_CM_ID_STATS] = { .dump = cma_get_id_stats },
};
static int __init cma_init(void)
{
int ret;
cma_wq = create_singlethread_workqueue("rdma_cm");
if (!cma_wq)
return -ENOMEM;
ib_sa_register_client(&sa_client);
rdma_addr_register_client(&addr_client);
register_netdevice_notifier(&cma_nb);
ret = ib_register_client(&cma_client);
if (ret)
goto err;
if (ibnl_add_client(RDMA_NL_RDMA_CM, RDMA_NL_RDMA_CM_NUM_OPS, cma_cb_table))
printk(KERN_WARNING "RDMA CMA: failed to add netlink callback\n");
return 0;
err:
unregister_netdevice_notifier(&cma_nb);
rdma_addr_unregister_client(&addr_client);
ib_sa_unregister_client(&sa_client);
destroy_workqueue(cma_wq);
return ret;
}
static void __exit cma_cleanup(void)
{
ibnl_remove_client(RDMA_NL_RDMA_CM);
ib_unregister_client(&cma_client);
unregister_netdevice_notifier(&cma_nb);
rdma_addr_unregister_client(&addr_client);
ib_sa_unregister_client(&sa_client);
destroy_workqueue(cma_wq);
idr_destroy(&sdp_ps);
idr_destroy(&tcp_ps);
idr_destroy(&udp_ps);
idr_destroy(&ipoib_ps);
idr_destroy(&ib_ps);
}
module_init(cma_init);
module_exit(cma_cleanup);