| /* |
| * Freescale DMA ALSA SoC PCM driver |
| * |
| * Author: Timur Tabi <timur@freescale.com> |
| * |
| * Copyright 2007-2010 Freescale Semiconductor, Inc. |
| * |
| * This file is licensed under the terms of the GNU General Public License |
| * version 2. This program is licensed "as is" without any warranty of any |
| * kind, whether express or implied. |
| * |
| * This driver implements ASoC support for the Elo DMA controller, which is |
| * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms, |
| * the PCM driver is what handles the DMA buffer. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/gfp.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_platform.h> |
| #include <linux/list.h> |
| #include <linux/slab.h> |
| |
| #include <sound/core.h> |
| #include <sound/pcm.h> |
| #include <sound/pcm_params.h> |
| #include <sound/soc.h> |
| |
| #include <asm/io.h> |
| |
| #include "fsl_dma.h" |
| #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */ |
| |
| /* |
| * The formats that the DMA controller supports, which is anything |
| * that is 8, 16, or 32 bits. |
| */ |
| #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \ |
| SNDRV_PCM_FMTBIT_U8 | \ |
| SNDRV_PCM_FMTBIT_S16_LE | \ |
| SNDRV_PCM_FMTBIT_S16_BE | \ |
| SNDRV_PCM_FMTBIT_U16_LE | \ |
| SNDRV_PCM_FMTBIT_U16_BE | \ |
| SNDRV_PCM_FMTBIT_S24_LE | \ |
| SNDRV_PCM_FMTBIT_S24_BE | \ |
| SNDRV_PCM_FMTBIT_U24_LE | \ |
| SNDRV_PCM_FMTBIT_U24_BE | \ |
| SNDRV_PCM_FMTBIT_S32_LE | \ |
| SNDRV_PCM_FMTBIT_S32_BE | \ |
| SNDRV_PCM_FMTBIT_U32_LE | \ |
| SNDRV_PCM_FMTBIT_U32_BE) |
| struct dma_object { |
| struct snd_soc_platform_driver dai; |
| dma_addr_t ssi_stx_phys; |
| dma_addr_t ssi_srx_phys; |
| unsigned int ssi_fifo_depth; |
| struct ccsr_dma_channel __iomem *channel; |
| unsigned int irq; |
| bool assigned; |
| char path[1]; |
| }; |
| |
| /* |
| * The number of DMA links to use. Two is the bare minimum, but if you |
| * have really small links you might need more. |
| */ |
| #define NUM_DMA_LINKS 2 |
| |
| /** fsl_dma_private: p-substream DMA data |
| * |
| * Each substream has a 1-to-1 association with a DMA channel. |
| * |
| * The link[] array is first because it needs to be aligned on a 32-byte |
| * boundary, so putting it first will ensure alignment without padding the |
| * structure. |
| * |
| * @link[]: array of link descriptors |
| * @dma_channel: pointer to the DMA channel's registers |
| * @irq: IRQ for this DMA channel |
| * @substream: pointer to the substream object, needed by the ISR |
| * @ssi_sxx_phys: bus address of the STX or SRX register to use |
| * @ld_buf_phys: physical address of the LD buffer |
| * @current_link: index into link[] of the link currently being processed |
| * @dma_buf_phys: physical address of the DMA buffer |
| * @dma_buf_next: physical address of the next period to process |
| * @dma_buf_end: physical address of the byte after the end of the DMA |
| * @buffer period_size: the size of a single period |
| * @num_periods: the number of periods in the DMA buffer |
| */ |
| struct fsl_dma_private { |
| struct fsl_dma_link_descriptor link[NUM_DMA_LINKS]; |
| struct ccsr_dma_channel __iomem *dma_channel; |
| unsigned int irq; |
| struct snd_pcm_substream *substream; |
| dma_addr_t ssi_sxx_phys; |
| unsigned int ssi_fifo_depth; |
| dma_addr_t ld_buf_phys; |
| unsigned int current_link; |
| dma_addr_t dma_buf_phys; |
| dma_addr_t dma_buf_next; |
| dma_addr_t dma_buf_end; |
| size_t period_size; |
| unsigned int num_periods; |
| }; |
| |
| /** |
| * fsl_dma_hardare: define characteristics of the PCM hardware. |
| * |
| * The PCM hardware is the Freescale DMA controller. This structure defines |
| * the capabilities of that hardware. |
| * |
| * Since the sampling rate and data format are not controlled by the DMA |
| * controller, we specify no limits for those values. The only exception is |
| * period_bytes_min, which is set to a reasonably low value to prevent the |
| * DMA controller from generating too many interrupts per second. |
| * |
| * Since each link descriptor has a 32-bit byte count field, we set |
| * period_bytes_max to the largest 32-bit number. We also have no maximum |
| * number of periods. |
| * |
| * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a |
| * limitation in the SSI driver requires the sample rates for playback and |
| * capture to be the same. |
| */ |
| static const struct snd_pcm_hardware fsl_dma_hardware = { |
| |
| .info = SNDRV_PCM_INFO_INTERLEAVED | |
| SNDRV_PCM_INFO_MMAP | |
| SNDRV_PCM_INFO_MMAP_VALID | |
| SNDRV_PCM_INFO_JOINT_DUPLEX | |
| SNDRV_PCM_INFO_PAUSE, |
| .formats = FSLDMA_PCM_FORMATS, |
| .period_bytes_min = 512, /* A reasonable limit */ |
| .period_bytes_max = (u32) -1, |
| .periods_min = NUM_DMA_LINKS, |
| .periods_max = (unsigned int) -1, |
| .buffer_bytes_max = 128 * 1024, /* A reasonable limit */ |
| }; |
| |
| /** |
| * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted |
| * |
| * This function should be called by the ISR whenever the DMA controller |
| * halts data transfer. |
| */ |
| static void fsl_dma_abort_stream(struct snd_pcm_substream *substream) |
| { |
| snd_pcm_stop_xrun(substream); |
| } |
| |
| /** |
| * fsl_dma_update_pointers - update LD pointers to point to the next period |
| * |
| * As each period is completed, this function changes the the link |
| * descriptor pointers for that period to point to the next period. |
| */ |
| static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private) |
| { |
| struct fsl_dma_link_descriptor *link = |
| &dma_private->link[dma_private->current_link]; |
| |
| /* Update our link descriptors to point to the next period. On a 36-bit |
| * system, we also need to update the ESAD bits. We also set (keep) the |
| * snoop bits. See the comments in fsl_dma_hw_params() about snooping. |
| */ |
| if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { |
| link->source_addr = cpu_to_be32(dma_private->dma_buf_next); |
| #ifdef CONFIG_PHYS_64BIT |
| link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | |
| upper_32_bits(dma_private->dma_buf_next)); |
| #endif |
| } else { |
| link->dest_addr = cpu_to_be32(dma_private->dma_buf_next); |
| #ifdef CONFIG_PHYS_64BIT |
| link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | |
| upper_32_bits(dma_private->dma_buf_next)); |
| #endif |
| } |
| |
| /* Update our variables for next time */ |
| dma_private->dma_buf_next += dma_private->period_size; |
| |
| if (dma_private->dma_buf_next >= dma_private->dma_buf_end) |
| dma_private->dma_buf_next = dma_private->dma_buf_phys; |
| |
| if (++dma_private->current_link >= NUM_DMA_LINKS) |
| dma_private->current_link = 0; |
| } |
| |
| /** |
| * fsl_dma_isr: interrupt handler for the DMA controller |
| * |
| * @irq: IRQ of the DMA channel |
| * @dev_id: pointer to the dma_private structure for this DMA channel |
| */ |
| static irqreturn_t fsl_dma_isr(int irq, void *dev_id) |
| { |
| struct fsl_dma_private *dma_private = dev_id; |
| struct snd_pcm_substream *substream = dma_private->substream; |
| struct snd_soc_pcm_runtime *rtd = substream->private_data; |
| struct device *dev = rtd->platform->dev; |
| struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; |
| irqreturn_t ret = IRQ_NONE; |
| u32 sr, sr2 = 0; |
| |
| /* We got an interrupt, so read the status register to see what we |
| were interrupted for. |
| */ |
| sr = in_be32(&dma_channel->sr); |
| |
| if (sr & CCSR_DMA_SR_TE) { |
| dev_err(dev, "dma transmit error\n"); |
| fsl_dma_abort_stream(substream); |
| sr2 |= CCSR_DMA_SR_TE; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sr & CCSR_DMA_SR_CH) |
| ret = IRQ_HANDLED; |
| |
| if (sr & CCSR_DMA_SR_PE) { |
| dev_err(dev, "dma programming error\n"); |
| fsl_dma_abort_stream(substream); |
| sr2 |= CCSR_DMA_SR_PE; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sr & CCSR_DMA_SR_EOLNI) { |
| sr2 |= CCSR_DMA_SR_EOLNI; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sr & CCSR_DMA_SR_CB) |
| ret = IRQ_HANDLED; |
| |
| if (sr & CCSR_DMA_SR_EOSI) { |
| /* Tell ALSA we completed a period. */ |
| snd_pcm_period_elapsed(substream); |
| |
| /* |
| * Update our link descriptors to point to the next period. We |
| * only need to do this if the number of periods is not equal to |
| * the number of links. |
| */ |
| if (dma_private->num_periods != NUM_DMA_LINKS) |
| fsl_dma_update_pointers(dma_private); |
| |
| sr2 |= CCSR_DMA_SR_EOSI; |
| ret = IRQ_HANDLED; |
| } |
| |
| if (sr & CCSR_DMA_SR_EOLSI) { |
| sr2 |= CCSR_DMA_SR_EOLSI; |
| ret = IRQ_HANDLED; |
| } |
| |
| /* Clear the bits that we set */ |
| if (sr2) |
| out_be32(&dma_channel->sr, sr2); |
| |
| return ret; |
| } |
| |
| /** |
| * fsl_dma_new: initialize this PCM driver. |
| * |
| * This function is called when the codec driver calls snd_soc_new_pcms(), |
| * once for each .dai_link in the machine driver's snd_soc_card |
| * structure. |
| * |
| * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which |
| * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM |
| * is specified. Therefore, any DMA buffers we allocate will always be in low |
| * memory, but we support for 36-bit physical addresses anyway. |
| * |
| * Regardless of where the memory is actually allocated, since the device can |
| * technically DMA to any 36-bit address, we do need to set the DMA mask to 36. |
| */ |
| static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd) |
| { |
| struct snd_card *card = rtd->card->snd_card; |
| struct snd_pcm *pcm = rtd->pcm; |
| int ret; |
| |
| ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36)); |
| if (ret) |
| return ret; |
| |
| /* Some codecs have separate DAIs for playback and capture, so we |
| * should allocate a DMA buffer only for the streams that are valid. |
| */ |
| |
| if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) { |
| ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, |
| fsl_dma_hardware.buffer_bytes_max, |
| &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer); |
| if (ret) { |
| dev_err(card->dev, "can't alloc playback dma buffer\n"); |
| return ret; |
| } |
| } |
| |
| if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) { |
| ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, |
| fsl_dma_hardware.buffer_bytes_max, |
| &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer); |
| if (ret) { |
| dev_err(card->dev, "can't alloc capture dma buffer\n"); |
| snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_dma_open: open a new substream. |
| * |
| * Each substream has its own DMA buffer. |
| * |
| * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link |
| * descriptors that ping-pong from one period to the next. For example, if |
| * there are six periods and two link descriptors, this is how they look |
| * before playback starts: |
| * |
| * The last link descriptor |
| * ____________ points back to the first |
| * | | |
| * V | |
| * ___ ___ | |
| * | |->| |->| |
| * |___| |___| |
| * | | |
| * | | |
| * V V |
| * _________________________________________ |
| * | | | | | | | The DMA buffer is |
| * | | | | | | | divided into 6 parts |
| * |______|______|______|______|______|______| |
| * |
| * and here's how they look after the first period is finished playing: |
| * |
| * ____________ |
| * | | |
| * V | |
| * ___ ___ | |
| * | |->| |->| |
| * |___| |___| |
| * | | |
| * |______________ |
| * | | |
| * V V |
| * _________________________________________ |
| * | | | | | | | |
| * | | | | | | | |
| * |______|______|______|______|______|______| |
| * |
| * The first link descriptor now points to the third period. The DMA |
| * controller is currently playing the second period. When it finishes, it |
| * will jump back to the first descriptor and play the third period. |
| * |
| * There are four reasons we do this: |
| * |
| * 1. The only way to get the DMA controller to automatically restart the |
| * transfer when it gets to the end of the buffer is to use chaining |
| * mode. Basic direct mode doesn't offer that feature. |
| * 2. We need to receive an interrupt at the end of every period. The DMA |
| * controller can generate an interrupt at the end of every link transfer |
| * (aka segment). Making each period into a DMA segment will give us the |
| * interrupts we need. |
| * 3. By creating only two link descriptors, regardless of the number of |
| * periods, we do not need to reallocate the link descriptors if the |
| * number of periods changes. |
| * 4. All of the audio data is still stored in a single, contiguous DMA |
| * buffer, which is what ALSA expects. We're just dividing it into |
| * contiguous parts, and creating a link descriptor for each one. |
| */ |
| static int fsl_dma_open(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct snd_soc_pcm_runtime *rtd = substream->private_data; |
| struct device *dev = rtd->platform->dev; |
| struct dma_object *dma = |
| container_of(rtd->platform->driver, struct dma_object, dai); |
| struct fsl_dma_private *dma_private; |
| struct ccsr_dma_channel __iomem *dma_channel; |
| dma_addr_t ld_buf_phys; |
| u64 temp_link; /* Pointer to next link descriptor */ |
| u32 mr; |
| unsigned int channel; |
| int ret = 0; |
| unsigned int i; |
| |
| /* |
| * Reject any DMA buffer whose size is not a multiple of the period |
| * size. We need to make sure that the DMA buffer can be evenly divided |
| * into periods. |
| */ |
| ret = snd_pcm_hw_constraint_integer(runtime, |
| SNDRV_PCM_HW_PARAM_PERIODS); |
| if (ret < 0) { |
| dev_err(dev, "invalid buffer size\n"); |
| return ret; |
| } |
| |
| channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; |
| |
| if (dma->assigned) { |
| dev_err(dev, "dma channel already assigned\n"); |
| return -EBUSY; |
| } |
| |
| dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private), |
| &ld_buf_phys, GFP_KERNEL); |
| if (!dma_private) { |
| dev_err(dev, "can't allocate dma private data\n"); |
| return -ENOMEM; |
| } |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) |
| dma_private->ssi_sxx_phys = dma->ssi_stx_phys; |
| else |
| dma_private->ssi_sxx_phys = dma->ssi_srx_phys; |
| |
| dma_private->ssi_fifo_depth = dma->ssi_fifo_depth; |
| dma_private->dma_channel = dma->channel; |
| dma_private->irq = dma->irq; |
| dma_private->substream = substream; |
| dma_private->ld_buf_phys = ld_buf_phys; |
| dma_private->dma_buf_phys = substream->dma_buffer.addr; |
| |
| ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio", |
| dma_private); |
| if (ret) { |
| dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n", |
| dma_private->irq, ret); |
| dma_free_coherent(dev, sizeof(struct fsl_dma_private), |
| dma_private, dma_private->ld_buf_phys); |
| return ret; |
| } |
| |
| dma->assigned = 1; |
| |
| snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); |
| snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); |
| runtime->private_data = dma_private; |
| |
| /* Program the fixed DMA controller parameters */ |
| |
| dma_channel = dma_private->dma_channel; |
| |
| temp_link = dma_private->ld_buf_phys + |
| sizeof(struct fsl_dma_link_descriptor); |
| |
| for (i = 0; i < NUM_DMA_LINKS; i++) { |
| dma_private->link[i].next = cpu_to_be64(temp_link); |
| |
| temp_link += sizeof(struct fsl_dma_link_descriptor); |
| } |
| /* The last link descriptor points to the first */ |
| dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys); |
| |
| /* Tell the DMA controller where the first link descriptor is */ |
| out_be32(&dma_channel->clndar, |
| CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys)); |
| out_be32(&dma_channel->eclndar, |
| CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys)); |
| |
| /* The manual says the BCR must be clear before enabling EMP */ |
| out_be32(&dma_channel->bcr, 0); |
| |
| /* |
| * Program the mode register for interrupts, external master control, |
| * and source/destination hold. Also clear the Channel Abort bit. |
| */ |
| mr = in_be32(&dma_channel->mr) & |
| ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE); |
| |
| /* |
| * We want External Master Start and External Master Pause enabled, |
| * because the SSI is controlling the DMA controller. We want the DMA |
| * controller to be set up in advance, and then we signal only the SSI |
| * to start transferring. |
| * |
| * We want End-Of-Segment Interrupts enabled, because this will generate |
| * an interrupt at the end of each segment (each link descriptor |
| * represents one segment). Each DMA segment is the same thing as an |
| * ALSA period, so this is how we get an interrupt at the end of every |
| * period. |
| * |
| * We want Error Interrupt enabled, so that we can get an error if |
| * the DMA controller is mis-programmed somehow. |
| */ |
| mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN | |
| CCSR_DMA_MR_EMS_EN; |
| |
| /* For playback, we want the destination address to be held. For |
| capture, set the source address to be held. */ |
| mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? |
| CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE; |
| |
| out_be32(&dma_channel->mr, mr); |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_dma_hw_params: continue initializing the DMA links |
| * |
| * This function obtains hardware parameters about the opened stream and |
| * programs the DMA controller accordingly. |
| * |
| * One drawback of big-endian is that when copying integers of different |
| * sizes to a fixed-sized register, the address to which the integer must be |
| * copied is dependent on the size of the integer. |
| * |
| * For example, if P is the address of a 32-bit register, and X is a 32-bit |
| * integer, then X should be copied to address P. However, if X is a 16-bit |
| * integer, then it should be copied to P+2. If X is an 8-bit register, |
| * then it should be copied to P+3. |
| * |
| * So for playback of 8-bit samples, the DMA controller must transfer single |
| * bytes from the DMA buffer to the last byte of the STX0 register, i.e. |
| * offset by 3 bytes. For 16-bit samples, the offset is two bytes. |
| * |
| * For 24-bit samples, the offset is 1 byte. However, the DMA controller |
| * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4, |
| * and 8 bytes at a time). So we do not support packed 24-bit samples. |
| * 24-bit data must be padded to 32 bits. |
| */ |
| static int fsl_dma_hw_params(struct snd_pcm_substream *substream, |
| struct snd_pcm_hw_params *hw_params) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct fsl_dma_private *dma_private = runtime->private_data; |
| struct snd_soc_pcm_runtime *rtd = substream->private_data; |
| struct device *dev = rtd->platform->dev; |
| |
| /* Number of bits per sample */ |
| unsigned int sample_bits = |
| snd_pcm_format_physical_width(params_format(hw_params)); |
| |
| /* Number of bytes per frame */ |
| unsigned int sample_bytes = sample_bits / 8; |
| |
| /* Bus address of SSI STX register */ |
| dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys; |
| |
| /* Size of the DMA buffer, in bytes */ |
| size_t buffer_size = params_buffer_bytes(hw_params); |
| |
| /* Number of bytes per period */ |
| size_t period_size = params_period_bytes(hw_params); |
| |
| /* Pointer to next period */ |
| dma_addr_t temp_addr = substream->dma_buffer.addr; |
| |
| /* Pointer to DMA controller */ |
| struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; |
| |
| u32 mr; /* DMA Mode Register */ |
| |
| unsigned int i; |
| |
| /* Initialize our DMA tracking variables */ |
| dma_private->period_size = period_size; |
| dma_private->num_periods = params_periods(hw_params); |
| dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size; |
| dma_private->dma_buf_next = dma_private->dma_buf_phys + |
| (NUM_DMA_LINKS * period_size); |
| |
| if (dma_private->dma_buf_next >= dma_private->dma_buf_end) |
| /* This happens if the number of periods == NUM_DMA_LINKS */ |
| dma_private->dma_buf_next = dma_private->dma_buf_phys; |
| |
| mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK | |
| CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK); |
| |
| /* Due to a quirk of the SSI's STX register, the target address |
| * for the DMA operations depends on the sample size. So we calculate |
| * that offset here. While we're at it, also tell the DMA controller |
| * how much data to transfer per sample. |
| */ |
| switch (sample_bits) { |
| case 8: |
| mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1; |
| ssi_sxx_phys += 3; |
| break; |
| case 16: |
| mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2; |
| ssi_sxx_phys += 2; |
| break; |
| case 32: |
| mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4; |
| break; |
| default: |
| /* We should never get here */ |
| dev_err(dev, "unsupported sample size %u\n", sample_bits); |
| return -EINVAL; |
| } |
| |
| /* |
| * BWC determines how many bytes are sent/received before the DMA |
| * controller checks the SSI to see if it needs to stop. BWC should |
| * always be a multiple of the frame size, so that we always transmit |
| * whole frames. Each frame occupies two slots in the FIFO. The |
| * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two |
| * (MR[BWC] can only represent even powers of two). |
| * |
| * To simplify the process, we set BWC to the largest value that is |
| * less than or equal to the FIFO watermark. For playback, this ensures |
| * that we transfer the maximum amount without overrunning the FIFO. |
| * For capture, this ensures that we transfer the maximum amount without |
| * underrunning the FIFO. |
| * |
| * f = SSI FIFO depth |
| * w = SSI watermark value (which equals f - 2) |
| * b = DMA bandwidth count (in bytes) |
| * s = sample size (in bytes, which equals frame_size * 2) |
| * |
| * For playback, we never transmit more than the transmit FIFO |
| * watermark, otherwise we might write more data than the FIFO can hold. |
| * The watermark is equal to the FIFO depth minus two. |
| * |
| * For capture, two equations must hold: |
| * w > f - (b / s) |
| * w >= b / s |
| * |
| * So, b > 2 * s, but b must also be <= s * w. To simplify, we set |
| * b = s * w, which is equal to |
| * (dma_private->ssi_fifo_depth - 2) * sample_bytes. |
| */ |
| mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes); |
| |
| out_be32(&dma_channel->mr, mr); |
| |
| for (i = 0; i < NUM_DMA_LINKS; i++) { |
| struct fsl_dma_link_descriptor *link = &dma_private->link[i]; |
| |
| link->count = cpu_to_be32(period_size); |
| |
| /* The snoop bit tells the DMA controller whether it should tell |
| * the ECM to snoop during a read or write to an address. For |
| * audio, we use DMA to transfer data between memory and an I/O |
| * device (the SSI's STX0 or SRX0 register). Snooping is only |
| * needed if there is a cache, so we need to snoop memory |
| * addresses only. For playback, that means we snoop the source |
| * but not the destination. For capture, we snoop the |
| * destination but not the source. |
| * |
| * Note that failing to snoop properly is unlikely to cause |
| * cache incoherency if the period size is larger than the |
| * size of L1 cache. This is because filling in one period will |
| * flush out the data for the previous period. So if you |
| * increased period_bytes_min to a large enough size, you might |
| * get more performance by not snooping, and you'll still be |
| * okay. You'll need to update fsl_dma_update_pointers() also. |
| */ |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { |
| link->source_addr = cpu_to_be32(temp_addr); |
| link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | |
| upper_32_bits(temp_addr)); |
| |
| link->dest_addr = cpu_to_be32(ssi_sxx_phys); |
| link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | |
| upper_32_bits(ssi_sxx_phys)); |
| } else { |
| link->source_addr = cpu_to_be32(ssi_sxx_phys); |
| link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | |
| upper_32_bits(ssi_sxx_phys)); |
| |
| link->dest_addr = cpu_to_be32(temp_addr); |
| link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | |
| upper_32_bits(temp_addr)); |
| } |
| |
| temp_addr += period_size; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_dma_pointer: determine the current position of the DMA transfer |
| * |
| * This function is called by ALSA when ALSA wants to know where in the |
| * stream buffer the hardware currently is. |
| * |
| * For playback, the SAR register contains the physical address of the most |
| * recent DMA transfer. For capture, the value is in the DAR register. |
| * |
| * The base address of the buffer is stored in the source_addr field of the |
| * first link descriptor. |
| */ |
| static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct fsl_dma_private *dma_private = runtime->private_data; |
| struct snd_soc_pcm_runtime *rtd = substream->private_data; |
| struct device *dev = rtd->platform->dev; |
| struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; |
| dma_addr_t position; |
| snd_pcm_uframes_t frames; |
| |
| /* Obtain the current DMA pointer, but don't read the ESAD bits if we |
| * only have 32-bit DMA addresses. This function is typically called |
| * in interrupt context, so we need to optimize it. |
| */ |
| if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { |
| position = in_be32(&dma_channel->sar); |
| #ifdef CONFIG_PHYS_64BIT |
| position |= (u64)(in_be32(&dma_channel->satr) & |
| CCSR_DMA_ATR_ESAD_MASK) << 32; |
| #endif |
| } else { |
| position = in_be32(&dma_channel->dar); |
| #ifdef CONFIG_PHYS_64BIT |
| position |= (u64)(in_be32(&dma_channel->datr) & |
| CCSR_DMA_ATR_ESAD_MASK) << 32; |
| #endif |
| } |
| |
| /* |
| * When capture is started, the SSI immediately starts to fill its FIFO. |
| * This means that the DMA controller is not started until the FIFO is |
| * full. However, ALSA calls this function before that happens, when |
| * MR.DAR is still zero. In this case, just return zero to indicate |
| * that nothing has been received yet. |
| */ |
| if (!position) |
| return 0; |
| |
| if ((position < dma_private->dma_buf_phys) || |
| (position > dma_private->dma_buf_end)) { |
| dev_err(dev, "dma pointer is out of range, halting stream\n"); |
| return SNDRV_PCM_POS_XRUN; |
| } |
| |
| frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys); |
| |
| /* |
| * If the current address is just past the end of the buffer, wrap it |
| * around. |
| */ |
| if (frames == runtime->buffer_size) |
| frames = 0; |
| |
| return frames; |
| } |
| |
| /** |
| * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params() |
| * |
| * Release the resources allocated in fsl_dma_hw_params() and de-program the |
| * registers. |
| * |
| * This function can be called multiple times. |
| */ |
| static int fsl_dma_hw_free(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct fsl_dma_private *dma_private = runtime->private_data; |
| |
| if (dma_private) { |
| struct ccsr_dma_channel __iomem *dma_channel; |
| |
| dma_channel = dma_private->dma_channel; |
| |
| /* Stop the DMA */ |
| out_be32(&dma_channel->mr, CCSR_DMA_MR_CA); |
| out_be32(&dma_channel->mr, 0); |
| |
| /* Reset all the other registers */ |
| out_be32(&dma_channel->sr, -1); |
| out_be32(&dma_channel->clndar, 0); |
| out_be32(&dma_channel->eclndar, 0); |
| out_be32(&dma_channel->satr, 0); |
| out_be32(&dma_channel->sar, 0); |
| out_be32(&dma_channel->datr, 0); |
| out_be32(&dma_channel->dar, 0); |
| out_be32(&dma_channel->bcr, 0); |
| out_be32(&dma_channel->nlndar, 0); |
| out_be32(&dma_channel->enlndar, 0); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * fsl_dma_close: close the stream. |
| */ |
| static int fsl_dma_close(struct snd_pcm_substream *substream) |
| { |
| struct snd_pcm_runtime *runtime = substream->runtime; |
| struct fsl_dma_private *dma_private = runtime->private_data; |
| struct snd_soc_pcm_runtime *rtd = substream->private_data; |
| struct device *dev = rtd->platform->dev; |
| struct dma_object *dma = |
| container_of(rtd->platform->driver, struct dma_object, dai); |
| |
| if (dma_private) { |
| if (dma_private->irq) |
| free_irq(dma_private->irq, dma_private); |
| |
| /* Deallocate the fsl_dma_private structure */ |
| dma_free_coherent(dev, sizeof(struct fsl_dma_private), |
| dma_private, dma_private->ld_buf_phys); |
| substream->runtime->private_data = NULL; |
| } |
| |
| dma->assigned = 0; |
| |
| return 0; |
| } |
| |
| /* |
| * Remove this PCM driver. |
| */ |
| static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm) |
| { |
| struct snd_pcm_substream *substream; |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) { |
| substream = pcm->streams[i].substream; |
| if (substream) { |
| snd_dma_free_pages(&substream->dma_buffer); |
| substream->dma_buffer.area = NULL; |
| substream->dma_buffer.addr = 0; |
| } |
| } |
| } |
| |
| /** |
| * find_ssi_node -- returns the SSI node that points to its DMA channel node |
| * |
| * Although this DMA driver attempts to operate independently of the other |
| * devices, it still needs to determine some information about the SSI device |
| * that it's working with. Unfortunately, the device tree does not contain |
| * a pointer from the DMA channel node to the SSI node -- the pointer goes the |
| * other way. So we need to scan the device tree for SSI nodes until we find |
| * the one that points to the given DMA channel node. It's ugly, but at least |
| * it's contained in this one function. |
| */ |
| static struct device_node *find_ssi_node(struct device_node *dma_channel_np) |
| { |
| struct device_node *ssi_np, *np; |
| |
| for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") { |
| /* Check each DMA phandle to see if it points to us. We |
| * assume that device_node pointers are a valid comparison. |
| */ |
| np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0); |
| of_node_put(np); |
| if (np == dma_channel_np) |
| return ssi_np; |
| |
| np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0); |
| of_node_put(np); |
| if (np == dma_channel_np) |
| return ssi_np; |
| } |
| |
| return NULL; |
| } |
| |
| static struct snd_pcm_ops fsl_dma_ops = { |
| .open = fsl_dma_open, |
| .close = fsl_dma_close, |
| .ioctl = snd_pcm_lib_ioctl, |
| .hw_params = fsl_dma_hw_params, |
| .hw_free = fsl_dma_hw_free, |
| .pointer = fsl_dma_pointer, |
| }; |
| |
| static int fsl_soc_dma_probe(struct platform_device *pdev) |
| { |
| struct dma_object *dma; |
| struct device_node *np = pdev->dev.of_node; |
| struct device_node *ssi_np; |
| struct resource res; |
| const uint32_t *iprop; |
| int ret; |
| |
| /* Find the SSI node that points to us. */ |
| ssi_np = find_ssi_node(np); |
| if (!ssi_np) { |
| dev_err(&pdev->dev, "cannot find parent SSI node\n"); |
| return -ENODEV; |
| } |
| |
| ret = of_address_to_resource(ssi_np, 0, &res); |
| if (ret) { |
| dev_err(&pdev->dev, "could not determine resources for %s\n", |
| ssi_np->full_name); |
| of_node_put(ssi_np); |
| return ret; |
| } |
| |
| dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL); |
| if (!dma) { |
| dev_err(&pdev->dev, "could not allocate dma object\n"); |
| of_node_put(ssi_np); |
| return -ENOMEM; |
| } |
| |
| strcpy(dma->path, np->full_name); |
| dma->dai.ops = &fsl_dma_ops; |
| dma->dai.pcm_new = fsl_dma_new; |
| dma->dai.pcm_free = fsl_dma_free_dma_buffers; |
| |
| /* Store the SSI-specific information that we need */ |
| dma->ssi_stx_phys = res.start + CCSR_SSI_STX0; |
| dma->ssi_srx_phys = res.start + CCSR_SSI_SRX0; |
| |
| iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL); |
| if (iprop) |
| dma->ssi_fifo_depth = be32_to_cpup(iprop); |
| else |
| /* Older 8610 DTs didn't have the fifo-depth property */ |
| dma->ssi_fifo_depth = 8; |
| |
| of_node_put(ssi_np); |
| |
| ret = snd_soc_register_platform(&pdev->dev, &dma->dai); |
| if (ret) { |
| dev_err(&pdev->dev, "could not register platform\n"); |
| kfree(dma); |
| return ret; |
| } |
| |
| dma->channel = of_iomap(np, 0); |
| dma->irq = irq_of_parse_and_map(np, 0); |
| |
| dev_set_drvdata(&pdev->dev, dma); |
| |
| return 0; |
| } |
| |
| static int fsl_soc_dma_remove(struct platform_device *pdev) |
| { |
| struct dma_object *dma = dev_get_drvdata(&pdev->dev); |
| |
| snd_soc_unregister_platform(&pdev->dev); |
| iounmap(dma->channel); |
| irq_dispose_mapping(dma->irq); |
| kfree(dma); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id fsl_soc_dma_ids[] = { |
| { .compatible = "fsl,ssi-dma-channel", }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids); |
| |
| static struct platform_driver fsl_soc_dma_driver = { |
| .driver = { |
| .name = "fsl-pcm-audio", |
| .of_match_table = fsl_soc_dma_ids, |
| }, |
| .probe = fsl_soc_dma_probe, |
| .remove = fsl_soc_dma_remove, |
| }; |
| |
| module_platform_driver(fsl_soc_dma_driver); |
| |
| MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); |
| MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver"); |
| MODULE_LICENSE("GPL v2"); |