blob: 0d8cd9bbe101a07c9e39aa3a1759ba85a76381e6 [file] [log] [blame]
#
# For a description of the syntax of this configuration file,
# see Documentation/kbuild/kconfig-language.txt.
#
config SCHED_MC
def_bool y
depends on SMP
config MMU
def_bool y
config ZONE_DMA
def_bool y
depends on 64BIT
config LOCKDEP_SUPPORT
def_bool y
config STACKTRACE_SUPPORT
def_bool y
config HAVE_LATENCYTOP_SUPPORT
def_bool y
config RWSEM_GENERIC_SPINLOCK
bool
config RWSEM_XCHGADD_ALGORITHM
def_bool y
config ARCH_HAS_ILOG2_U32
bool
default n
config ARCH_HAS_ILOG2_U64
bool
default n
config GENERIC_HWEIGHT
def_bool y
config GENERIC_TIME
def_bool y
config GENERIC_TIME_VSYSCALL
def_bool y
config GENERIC_CLOCKEVENTS
def_bool y
config GENERIC_BUG
bool
depends on BUG
default y
config GENERIC_BUG_RELATIVE_POINTERS
def_bool y
config NO_IOMEM
def_bool y
config NO_DMA
def_bool y
config GENERIC_LOCKBREAK
bool
default y
depends on SMP && PREEMPT
config PGSTE
bool
default y if KVM
config VIRT_CPU_ACCOUNTING
def_bool y
config ARCH_SUPPORTS_DEBUG_PAGEALLOC
def_bool y
mainmenu "Linux Kernel Configuration"
config S390
def_bool y
select USE_GENERIC_SMP_HELPERS if SMP
select HAVE_SYSCALL_WRAPPERS
select HAVE_FUNCTION_TRACER
select HAVE_FUNCTION_TRACE_MCOUNT_TEST
select HAVE_FTRACE_MCOUNT_RECORD
select HAVE_SYSCALL_TRACEPOINTS
select HAVE_DYNAMIC_FTRACE
select HAVE_FUNCTION_GRAPH_TRACER
select HAVE_REGS_AND_STACK_ACCESS_API
select HAVE_DEFAULT_NO_SPIN_MUTEXES
select HAVE_OPROFILE
select HAVE_KPROBES
select HAVE_KRETPROBES
select HAVE_KVM if 64BIT
select HAVE_ARCH_TRACEHOOK
select INIT_ALL_POSSIBLE
select HAVE_PERF_EVENTS
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_BZIP2
select HAVE_KERNEL_LZMA
select ARCH_INLINE_SPIN_TRYLOCK
select ARCH_INLINE_SPIN_TRYLOCK_BH
select ARCH_INLINE_SPIN_LOCK
select ARCH_INLINE_SPIN_LOCK_BH
select ARCH_INLINE_SPIN_LOCK_IRQ
select ARCH_INLINE_SPIN_LOCK_IRQSAVE
select ARCH_INLINE_SPIN_UNLOCK
select ARCH_INLINE_SPIN_UNLOCK_BH
select ARCH_INLINE_SPIN_UNLOCK_IRQ
select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE
select ARCH_INLINE_READ_TRYLOCK
select ARCH_INLINE_READ_LOCK
select ARCH_INLINE_READ_LOCK_BH
select ARCH_INLINE_READ_LOCK_IRQ
select ARCH_INLINE_READ_LOCK_IRQSAVE
select ARCH_INLINE_READ_UNLOCK
select ARCH_INLINE_READ_UNLOCK_BH
select ARCH_INLINE_READ_UNLOCK_IRQ
select ARCH_INLINE_READ_UNLOCK_IRQRESTORE
select ARCH_INLINE_WRITE_TRYLOCK
select ARCH_INLINE_WRITE_LOCK
select ARCH_INLINE_WRITE_LOCK_BH
select ARCH_INLINE_WRITE_LOCK_IRQ
select ARCH_INLINE_WRITE_LOCK_IRQSAVE
select ARCH_INLINE_WRITE_UNLOCK
select ARCH_INLINE_WRITE_UNLOCK_BH
select ARCH_INLINE_WRITE_UNLOCK_IRQ
select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE
config SCHED_OMIT_FRAME_POINTER
bool
default y
source "init/Kconfig"
source "kernel/Kconfig.freezer"
menu "Base setup"
comment "Processor type and features"
source "kernel/time/Kconfig"
config 64BIT
bool "64 bit kernel"
help
Select this option if you have a 64 bit IBM zSeries machine
and want to use the 64 bit addressing mode.
config 32BIT
bool
default y if !64BIT
config KTIME_SCALAR
def_bool 32BIT
config SMP
bool "Symmetric multi-processing support"
---help---
This enables support for systems with more than one CPU. If you have
a system with only one CPU, like most personal computers, say N. If
you have a system with more than one CPU, say Y.
If you say N here, the kernel will run on single and multiprocessor
machines, but will use only one CPU of a multiprocessor machine. If
you say Y here, the kernel will run on many, but not all,
singleprocessor machines. On a singleprocessor machine, the kernel
will run faster if you say N here.
See also the SMP-HOWTO available at
<http://www.tldp.org/docs.html#howto>.
Even if you don't know what to do here, say Y.
config NR_CPUS
int "Maximum number of CPUs (2-64)"
range 2 64
depends on SMP
default "32" if !64BIT
default "64" if 64BIT
help
This allows you to specify the maximum number of CPUs which this
kernel will support. The maximum supported value is 64 and the
minimum value which makes sense is 2.
This is purely to save memory - each supported CPU adds
approximately sixteen kilobytes to the kernel image.
config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs"
depends on SMP
select HOTPLUG
default n
help
Say Y here to be able to turn CPUs off and on. CPUs
can be controlled through /sys/devices/system/cpu/cpu#.
Say N if you want to disable CPU hotplug.
config MATHEMU
bool "IEEE FPU emulation"
depends on MARCH_G5
help
This option is required for IEEE compliant floating point arithmetic
on older S/390 machines. Say Y unless you know your machine doesn't
need this.
config COMPAT
bool "Kernel support for 31 bit emulation"
depends on 64BIT
select COMPAT_BINFMT_ELF
help
Select this option if you want to enable your system kernel to
handle system-calls from ELF binaries for 31 bit ESA. This option
(and some other stuff like libraries and such) is needed for
executing 31 bit applications. It is safe to say "Y".
config SYSVIPC_COMPAT
bool
depends on COMPAT && SYSVIPC
default y
config AUDIT_ARCH
bool
default y
config S390_EXEC_PROTECT
bool "Data execute protection"
help
This option allows to enable a buffer overflow protection for user
space programs and it also selects the addressing mode option above.
The kernel parameter noexec=on will enable this feature and also
switch the addressing modes, default is disabled. Enabling this (via
kernel parameter) on machines earlier than IBM System z9-109 EC/BC
will reduce system performance.
comment "Code generation options"
choice
prompt "Processor type"
default MARCH_G5
config MARCH_G5
bool "S/390 model G5 and G6"
depends on !64BIT
help
Select this to build a 31 bit kernel that works
on all S/390 and zSeries machines.
config MARCH_Z900
bool "IBM eServer zSeries model z800 and z900"
help
Select this to optimize for zSeries machines. This
will enable some optimizations that are not available
on older 31 bit only CPUs.
config MARCH_Z990
bool "IBM eServer zSeries model z890 and z990"
help
Select this enable optimizations for model z890/z990.
This will be slightly faster but does not work on
older machines such as the z900.
config MARCH_Z9_109
bool "IBM System z9"
help
Select this to enable optimizations for IBM System z9-109, IBM
System z9 Enterprise Class (z9 EC), and IBM System z9 Business
Class (z9 BC). The kernel will be slightly faster but will not
work on older machines such as the z990, z890, z900, and z800.
config MARCH_Z10
bool "IBM System z10"
help
Select this to enable optimizations for IBM System z10. The
kernel will be slightly faster but will not work on older
machines such as the z990, z890, z900, z800, z9-109, z9-ec
and z9-bc.
endchoice
config PACK_STACK
bool "Pack kernel stack"
help
This option enables the compiler option -mkernel-backchain if it
is available. If the option is available the compiler supports
the new stack layout which dramatically reduces the minimum stack
frame size. With an old compiler a non-leaf function needs a
minimum of 96 bytes on 31 bit and 160 bytes on 64 bit. With
-mkernel-backchain the minimum size drops to 16 byte on 31 bit
and 24 byte on 64 bit.
Say Y if you are unsure.
config SMALL_STACK
bool "Use 8kb for kernel stack instead of 16kb"
depends on PACK_STACK && 64BIT && !LOCKDEP
help
If you say Y here and the compiler supports the -mkernel-backchain
option the kernel will use a smaller kernel stack size. The reduced
size is 8kb instead of 16kb. This allows to run more threads on a
system and reduces the pressure on the memory management for higher
order page allocations.
Say N if you are unsure.
config CHECK_STACK
bool "Detect kernel stack overflow"
help
This option enables the compiler option -mstack-guard and
-mstack-size if they are available. If the compiler supports them
it will emit additional code to each function prolog to trigger
an illegal operation if the kernel stack is about to overflow.
Say N if you are unsure.
config STACK_GUARD
int "Size of the guard area (128-1024)"
range 128 1024
depends on CHECK_STACK
default "256"
help
This allows you to specify the size of the guard area at the lower
end of the kernel stack. If the kernel stack points into the guard
area on function entry an illegal operation is triggered. The size
needs to be a power of 2. Please keep in mind that the size of an
interrupt frame is 184 bytes for 31 bit and 328 bytes on 64 bit.
The minimum size for the stack guard should be 256 for 31 bit and
512 for 64 bit.
config WARN_STACK
bool "Emit compiler warnings for function with broken stack usage"
help
This option enables the compiler options -mwarn-framesize and
-mwarn-dynamicstack. If the compiler supports these options it
will generate warnings for function which either use alloca or
create a stack frame bigger than CONFIG_WARN_STACK_SIZE.
Say N if you are unsure.
config WARN_STACK_SIZE
int "Maximum frame size considered safe (128-2048)"
range 128 2048
depends on WARN_STACK
default "2048"
help
This allows you to specify the maximum frame size a function may
have without the compiler complaining about it.
config ARCH_POPULATES_NODE_MAP
def_bool y
comment "Kernel preemption"
source "kernel/Kconfig.preempt"
config ARCH_SPARSEMEM_ENABLE
def_bool y
select SPARSEMEM_VMEMMAP_ENABLE
select SPARSEMEM_VMEMMAP
select SPARSEMEM_STATIC if !64BIT
config ARCH_SPARSEMEM_DEFAULT
def_bool y
config ARCH_SELECT_MEMORY_MODEL
def_bool y
config ARCH_ENABLE_MEMORY_HOTPLUG
def_bool y
depends on SPARSEMEM
config ARCH_ENABLE_MEMORY_HOTREMOVE
def_bool y
config ARCH_HIBERNATION_POSSIBLE
def_bool y if 64BIT
source "mm/Kconfig"
comment "I/O subsystem configuration"
config QDIO
tristate "QDIO support"
---help---
This driver provides the Queued Direct I/O base support for
IBM System z.
To compile this driver as a module, choose M here: the
module will be called qdio.
If unsure, say Y.
config CHSC_SCH
tristate "Support for CHSC subchannels"
help
This driver allows usage of CHSC subchannels. A CHSC subchannel
is usually present on LPAR only.
The driver creates a device /dev/chsc, which may be used to
obtain I/O configuration information about the machine and
to issue asynchronous chsc commands (DANGEROUS).
You will usually only want to use this interface on a special
LPAR designated for system management.
To compile this driver as a module, choose M here: the
module will be called chsc_sch.
If unsure, say N.
comment "Misc"
config IPL
bool "Builtin IPL record support"
help
If you want to use the produced kernel to IPL directly from a
device, you have to merge a bootsector specific to the device
into the first bytes of the kernel. You will have to select the
IPL device.
choice
prompt "IPL method generated into head.S"
depends on IPL
default IPL_VM
help
Select "tape" if you want to IPL the image from a Tape.
Select "vm_reader" if you are running under VM/ESA and want
to IPL the image from the emulated card reader.
config IPL_TAPE
bool "tape"
config IPL_VM
bool "vm_reader"
endchoice
source "fs/Kconfig.binfmt"
config FORCE_MAX_ZONEORDER
int
default "9"
config PROCESS_DEBUG
bool "Show crashed user process info"
help
Say Y to print all process fault locations to the console. This is
a debugging option; you probably do not want to set it unless you
are an S390 port maintainer.
config PFAULT
bool "Pseudo page fault support"
help
Select this option, if you want to use PFAULT pseudo page fault
handling under VM. If running native or in LPAR, this option
has no effect. If your VM does not support PFAULT, PAGEEX
pseudo page fault handling will be used.
Note that VM 4.2 supports PFAULT but has a bug in its
implementation that causes some problems.
Everybody who wants to run Linux under VM != VM4.2 should select
this option.
config SHARED_KERNEL
bool "VM shared kernel support"
help
Select this option, if you want to share the text segment of the
Linux kernel between different VM guests. This reduces memory
usage with lots of guests but greatly increases kernel size.
Also if a kernel was IPL'ed from a shared segment the kexec system
call will not work.
You should only select this option if you know what you are
doing and want to exploit this feature.
config CMM
tristate "Cooperative memory management"
help
Select this option, if you want to enable the kernel interface
to reduce the memory size of the system. This is accomplished
by allocating pages of memory and put them "on hold". This only
makes sense for a system running under VM where the unused pages
will be reused by VM for other guest systems. The interface
allows an external monitor to balance memory of many systems.
Everybody who wants to run Linux under VM should select this
option.
config CMM_PROC
bool "/proc interface to cooperative memory management"
depends on CMM
help
Select this option to enable the /proc interface to the
cooperative memory management.
config CMM_IUCV
bool "IUCV special message interface to cooperative memory management"
depends on CMM && (SMSGIUCV=y || CMM=SMSGIUCV)
help
Select this option to enable the special message interface to
the cooperative memory management.
config APPLDATA_BASE
bool "Linux - VM Monitor Stream, base infrastructure"
depends on PROC_FS
help
This provides a kernel interface for creating and updating z/VM APPLDATA
monitor records. The monitor records are updated at certain time
intervals, once the timer is started.
Writing 1 or 0 to /proc/appldata/timer starts(1) or stops(0) the timer,
i.e. enables or disables monitoring on the Linux side.
A custom interval value (in seconds) can be written to
/proc/appldata/interval.
Defaults are 60 seconds interval and timer off.
The /proc entries can also be read from, showing the current settings.
config APPLDATA_MEM
tristate "Monitor memory management statistics"
depends on APPLDATA_BASE && VM_EVENT_COUNTERS
help
This provides memory management related data to the Linux - VM Monitor
Stream, like paging/swapping rate, memory utilisation, etc.
Writing 1 or 0 to /proc/appldata/memory creates(1) or removes(0) a z/VM
APPLDATA monitor record, i.e. enables or disables monitoring this record
on the z/VM side.
Default is disabled.
The /proc entry can also be read from, showing the current settings.
This can also be compiled as a module, which will be called
appldata_mem.o.
config APPLDATA_OS
tristate "Monitor OS statistics"
depends on APPLDATA_BASE
help
This provides OS related data to the Linux - VM Monitor Stream, like
CPU utilisation, etc.
Writing 1 or 0 to /proc/appldata/os creates(1) or removes(0) a z/VM
APPLDATA monitor record, i.e. enables or disables monitoring this record
on the z/VM side.
Default is disabled.
This can also be compiled as a module, which will be called
appldata_os.o.
config APPLDATA_NET_SUM
tristate "Monitor overall network statistics"
depends on APPLDATA_BASE && NET
help
This provides network related data to the Linux - VM Monitor Stream,
currently there is only a total sum of network I/O statistics, no
per-interface data.
Writing 1 or 0 to /proc/appldata/net_sum creates(1) or removes(0) a z/VM
APPLDATA monitor record, i.e. enables or disables monitoring this record
on the z/VM side.
Default is disabled.
This can also be compiled as a module, which will be called
appldata_net_sum.o.
source kernel/Kconfig.hz
config S390_HYPFS_FS
bool "s390 hypervisor file system support"
select SYS_HYPERVISOR
default y
help
This is a virtual file system intended to provide accounting
information in an s390 hypervisor environment.
config KEXEC
bool "kexec system call"
help
kexec is a system call that implements the ability to shutdown your
current kernel, and to start another kernel. It is like a reboot
but is independent of hardware/microcode support.
config ZFCPDUMP
bool "zfcpdump support"
select SMP
default n
help
Select this option if you want to build an zfcpdump enabled kernel.
Refer to <file:Documentation/s390/zfcpdump.txt> for more details on this.
config S390_GUEST
bool "s390 guest support for KVM (EXPERIMENTAL)"
depends on 64BIT && EXPERIMENTAL
select VIRTIO
select VIRTIO_RING
select VIRTIO_CONSOLE
help
Select this option if you want to run the kernel as a guest under
the KVM hypervisor. This will add detection for KVM as well as a
virtio transport. If KVM is detected, the virtio console will be
the default console.
config SECCOMP
bool "Enable seccomp to safely compute untrusted bytecode"
depends on PROC_FS
default y
help
This kernel feature is useful for number crunching applications
that may need to compute untrusted bytecode during their
execution. By using pipes or other transports made available to
the process as file descriptors supporting the read/write
syscalls, it's possible to isolate those applications in
their own address space using seccomp. Once seccomp is
enabled via /proc/<pid>/seccomp, it cannot be disabled
and the task is only allowed to execute a few safe syscalls
defined by each seccomp mode.
If unsure, say Y.
endmenu
menu "Power Management"
source "kernel/power/Kconfig"
endmenu
source "net/Kconfig"
config PCMCIA
def_bool n
config CCW
def_bool y
source "drivers/Kconfig"
source "fs/Kconfig"
source "arch/s390/Kconfig.debug"
source "security/Kconfig"
source "crypto/Kconfig"
source "lib/Kconfig"
source "arch/s390/kvm/Kconfig"