| /* |
| * OMAP4 SMP source file. It contains platform specific fucntions |
| * needed for the linux smp kernel. |
| * |
| * Copyright (C) 2009 Texas Instruments, Inc. |
| * |
| * Author: |
| * Santosh Shilimkar <santosh.shilimkar@ti.com> |
| * |
| * Platform file needed for the OMAP4 SMP. This file is based on arm |
| * realview smp platform. |
| * * Copyright (c) 2002 ARM Limited. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/init.h> |
| #include <linux/device.h> |
| #include <linux/smp.h> |
| #include <linux/io.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/hardware/gic.h> |
| #include <asm/smp_scu.h> |
| |
| #include <mach/hardware.h> |
| #include <mach/omap-secure.h> |
| |
| #include "iomap.h" |
| #include "common.h" |
| #include "clockdomain.h" |
| |
| /* SCU base address */ |
| static void __iomem *scu_base; |
| |
| static DEFINE_SPINLOCK(boot_lock); |
| |
| void __iomem *omap4_get_scu_base(void) |
| { |
| return scu_base; |
| } |
| |
| void __cpuinit platform_secondary_init(unsigned int cpu) |
| { |
| /* |
| * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device. |
| * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA |
| * init and for CPU1, a secure PPA API provided. CPU0 must be ON |
| * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+. |
| * OMAP443X GP devices- SMP bit isn't accessible. |
| * OMAP446X GP devices - SMP bit access is enabled on both CPUs. |
| */ |
| if (cpu_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP)) |
| omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX, |
| 4, 0, 0, 0, 0, 0); |
| |
| /* |
| * If any interrupts are already enabled for the primary |
| * core (e.g. timer irq), then they will not have been enabled |
| * for us: do so |
| */ |
| gic_secondary_init(0); |
| |
| /* |
| * Synchronise with the boot thread. |
| */ |
| spin_lock(&boot_lock); |
| spin_unlock(&boot_lock); |
| } |
| |
| int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| static struct clockdomain *cpu1_clkdm; |
| static bool booted; |
| /* |
| * Set synchronisation state between this boot processor |
| * and the secondary one |
| */ |
| spin_lock(&boot_lock); |
| |
| /* |
| * Update the AuxCoreBoot0 with boot state for secondary core. |
| * omap_secondary_startup() routine will hold the secondary core till |
| * the AuxCoreBoot1 register is updated with cpu state |
| * A barrier is added to ensure that write buffer is drained |
| */ |
| omap_modify_auxcoreboot0(0x200, 0xfffffdff); |
| flush_cache_all(); |
| smp_wmb(); |
| |
| if (!cpu1_clkdm) |
| cpu1_clkdm = clkdm_lookup("mpu1_clkdm"); |
| |
| /* |
| * The SGI(Software Generated Interrupts) are not wakeup capable |
| * from low power states. This is known limitation on OMAP4 and |
| * needs to be worked around by using software forced clockdomain |
| * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to |
| * software force wakeup. The clockdomain is then put back to |
| * hardware supervised mode. |
| * More details can be found in OMAP4430 TRM - Version J |
| * Section : |
| * 4.3.4.2 Power States of CPU0 and CPU1 |
| */ |
| if (booted) { |
| clkdm_wakeup(cpu1_clkdm); |
| clkdm_allow_idle(cpu1_clkdm); |
| } else { |
| dsb_sev(); |
| booted = true; |
| } |
| |
| gic_raise_softirq(cpumask_of(cpu), 1); |
| |
| /* |
| * Now the secondary core is starting up let it run its |
| * calibrations, then wait for it to finish |
| */ |
| spin_unlock(&boot_lock); |
| |
| return 0; |
| } |
| |
| static void __init wakeup_secondary(void) |
| { |
| /* |
| * Write the address of secondary startup routine into the |
| * AuxCoreBoot1 where ROM code will jump and start executing |
| * on secondary core once out of WFE |
| * A barrier is added to ensure that write buffer is drained |
| */ |
| omap_auxcoreboot_addr(virt_to_phys(omap_secondary_startup)); |
| smp_wmb(); |
| |
| /* |
| * Send a 'sev' to wake the secondary core from WFE. |
| * Drain the outstanding writes to memory |
| */ |
| dsb_sev(); |
| mb(); |
| } |
| |
| /* |
| * Initialise the CPU possible map early - this describes the CPUs |
| * which may be present or become present in the system. |
| */ |
| void __init smp_init_cpus(void) |
| { |
| unsigned int i, ncores; |
| |
| /* |
| * Currently we can't call ioremap here because |
| * SoC detection won't work until after init_early. |
| */ |
| scu_base = OMAP2_L4_IO_ADDRESS(OMAP44XX_SCU_BASE); |
| BUG_ON(!scu_base); |
| |
| ncores = scu_get_core_count(scu_base); |
| |
| /* sanity check */ |
| if (ncores > nr_cpu_ids) { |
| pr_warn("SMP: %u cores greater than maximum (%u), clipping\n", |
| ncores, nr_cpu_ids); |
| ncores = nr_cpu_ids; |
| } |
| |
| for (i = 0; i < ncores; i++) |
| set_cpu_possible(i, true); |
| |
| set_smp_cross_call(gic_raise_softirq); |
| } |
| |
| void __init platform_smp_prepare_cpus(unsigned int max_cpus) |
| { |
| |
| /* |
| * Initialise the SCU and wake up the secondary core using |
| * wakeup_secondary(). |
| */ |
| scu_enable(scu_base); |
| wakeup_secondary(); |
| } |