| /* |
| * Copyright © 2012 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eugeni Dodonov <eugeni.dodonov@intel.com> |
| * |
| */ |
| |
| #include "i915_drv.h" |
| #include "intel_drv.h" |
| |
| struct ddi_buf_trans { |
| u32 trans1; /* balance leg enable, de-emph level */ |
| u32 trans2; /* vref sel, vswing */ |
| }; |
| |
| /* HDMI/DVI modes ignore everything but the last 2 items. So we share |
| * them for both DP and FDI transports, allowing those ports to |
| * automatically adapt to HDMI connections as well |
| */ |
| static const struct ddi_buf_trans hsw_ddi_translations_dp[] = { |
| { 0x00FFFFFF, 0x0006000E }, |
| { 0x00D75FFF, 0x0005000A }, |
| { 0x00C30FFF, 0x00040006 }, |
| { 0x80AAAFFF, 0x000B0000 }, |
| { 0x00FFFFFF, 0x0005000A }, |
| { 0x00D75FFF, 0x000C0004 }, |
| { 0x80C30FFF, 0x000B0000 }, |
| { 0x00FFFFFF, 0x00040006 }, |
| { 0x80D75FFF, 0x000B0000 }, |
| }; |
| |
| static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = { |
| { 0x00FFFFFF, 0x0007000E }, |
| { 0x00D75FFF, 0x000F000A }, |
| { 0x00C30FFF, 0x00060006 }, |
| { 0x00AAAFFF, 0x001E0000 }, |
| { 0x00FFFFFF, 0x000F000A }, |
| { 0x00D75FFF, 0x00160004 }, |
| { 0x00C30FFF, 0x001E0000 }, |
| { 0x00FFFFFF, 0x00060006 }, |
| { 0x00D75FFF, 0x001E0000 }, |
| }; |
| |
| static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = { |
| /* Idx NT mV d T mV d db */ |
| { 0x00FFFFFF, 0x0006000E }, /* 0: 400 400 0 */ |
| { 0x00E79FFF, 0x000E000C }, /* 1: 400 500 2 */ |
| { 0x00D75FFF, 0x0005000A }, /* 2: 400 600 3.5 */ |
| { 0x00FFFFFF, 0x0005000A }, /* 3: 600 600 0 */ |
| { 0x00E79FFF, 0x001D0007 }, /* 4: 600 750 2 */ |
| { 0x00D75FFF, 0x000C0004 }, /* 5: 600 900 3.5 */ |
| { 0x00FFFFFF, 0x00040006 }, /* 6: 800 800 0 */ |
| { 0x80E79FFF, 0x00030002 }, /* 7: 800 1000 2 */ |
| { 0x00FFFFFF, 0x00140005 }, /* 8: 850 850 0 */ |
| { 0x00FFFFFF, 0x000C0004 }, /* 9: 900 900 0 */ |
| { 0x00FFFFFF, 0x001C0003 }, /* 10: 950 950 0 */ |
| { 0x80FFFFFF, 0x00030002 }, /* 11: 1000 1000 0 */ |
| }; |
| |
| static const struct ddi_buf_trans bdw_ddi_translations_edp[] = { |
| { 0x00FFFFFF, 0x00000012 }, |
| { 0x00EBAFFF, 0x00020011 }, |
| { 0x00C71FFF, 0x0006000F }, |
| { 0x00AAAFFF, 0x000E000A }, |
| { 0x00FFFFFF, 0x00020011 }, |
| { 0x00DB6FFF, 0x0005000F }, |
| { 0x00BEEFFF, 0x000A000C }, |
| { 0x00FFFFFF, 0x0005000F }, |
| { 0x00DB6FFF, 0x000A000C }, |
| }; |
| |
| static const struct ddi_buf_trans bdw_ddi_translations_dp[] = { |
| { 0x00FFFFFF, 0x0007000E }, |
| { 0x00D75FFF, 0x000E000A }, |
| { 0x00BEFFFF, 0x00140006 }, |
| { 0x80B2CFFF, 0x001B0002 }, |
| { 0x00FFFFFF, 0x000E000A }, |
| { 0x00DB6FFF, 0x00160005 }, |
| { 0x80C71FFF, 0x001A0002 }, |
| { 0x00F7DFFF, 0x00180004 }, |
| { 0x80D75FFF, 0x001B0002 }, |
| }; |
| |
| static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = { |
| { 0x00FFFFFF, 0x0001000E }, |
| { 0x00D75FFF, 0x0004000A }, |
| { 0x00C30FFF, 0x00070006 }, |
| { 0x00AAAFFF, 0x000C0000 }, |
| { 0x00FFFFFF, 0x0004000A }, |
| { 0x00D75FFF, 0x00090004 }, |
| { 0x00C30FFF, 0x000C0000 }, |
| { 0x00FFFFFF, 0x00070006 }, |
| { 0x00D75FFF, 0x000C0000 }, |
| }; |
| |
| static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = { |
| /* Idx NT mV d T mV df db */ |
| { 0x00FFFFFF, 0x0007000E }, /* 0: 400 400 0 */ |
| { 0x00D75FFF, 0x000E000A }, /* 1: 400 600 3.5 */ |
| { 0x00BEFFFF, 0x00140006 }, /* 2: 400 800 6 */ |
| { 0x00FFFFFF, 0x0009000D }, /* 3: 450 450 0 */ |
| { 0x00FFFFFF, 0x000E000A }, /* 4: 600 600 0 */ |
| { 0x00D7FFFF, 0x00140006 }, /* 5: 600 800 2.5 */ |
| { 0x80CB2FFF, 0x001B0002 }, /* 6: 600 1000 4.5 */ |
| { 0x00FFFFFF, 0x00140006 }, /* 7: 800 800 0 */ |
| { 0x80E79FFF, 0x001B0002 }, /* 8: 800 1000 2 */ |
| { 0x80FFFFFF, 0x001B0002 }, /* 9: 1000 1000 0 */ |
| }; |
| |
| static const struct ddi_buf_trans skl_ddi_translations_dp[] = { |
| { 0x00000018, 0x000000a2 }, |
| { 0x00004014, 0x0000009B }, |
| { 0x00006012, 0x00000088 }, |
| { 0x00008010, 0x00000087 }, |
| { 0x00000018, 0x0000009B }, |
| { 0x00004014, 0x00000088 }, |
| { 0x00006012, 0x00000087 }, |
| { 0x00000018, 0x00000088 }, |
| { 0x00004014, 0x00000087 }, |
| }; |
| |
| static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = { |
| /* Idx NT mV T mV db */ |
| { 0x00000018, 0x000000a0 }, /* 0: 400 400 0 */ |
| { 0x00004014, 0x00000098 }, /* 1: 400 600 3.5 */ |
| { 0x00006012, 0x00000088 }, /* 2: 400 800 6 */ |
| { 0x00000018, 0x0000003c }, /* 3: 450 450 0 */ |
| { 0x00000018, 0x00000098 }, /* 4: 600 600 0 */ |
| { 0x00003015, 0x00000088 }, /* 5: 600 800 2.5 */ |
| { 0x00005013, 0x00000080 }, /* 6: 600 1000 4.5 */ |
| { 0x00000018, 0x00000088 }, /* 7: 800 800 0 */ |
| { 0x00000096, 0x00000080 }, /* 8: 800 1000 2 */ |
| { 0x00000018, 0x00000080 }, /* 9: 1200 1200 0 */ |
| }; |
| |
| enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder) |
| { |
| struct drm_encoder *encoder = &intel_encoder->base; |
| int type = intel_encoder->type; |
| |
| if (type == INTEL_OUTPUT_DP_MST) { |
| struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary; |
| return intel_dig_port->port; |
| } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || |
| type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) { |
| struct intel_digital_port *intel_dig_port = |
| enc_to_dig_port(encoder); |
| return intel_dig_port->port; |
| |
| } else if (type == INTEL_OUTPUT_ANALOG) { |
| return PORT_E; |
| |
| } else { |
| DRM_ERROR("Invalid DDI encoder type %d\n", type); |
| BUG(); |
| } |
| } |
| |
| /* |
| * Starting with Haswell, DDI port buffers must be programmed with correct |
| * values in advance. The buffer values are different for FDI and DP modes, |
| * but the HDMI/DVI fields are shared among those. So we program the DDI |
| * in either FDI or DP modes only, as HDMI connections will work with both |
| * of those |
| */ |
| static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 reg; |
| int i, n_hdmi_entries, hdmi_800mV_0dB; |
| int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift; |
| const struct ddi_buf_trans *ddi_translations_fdi; |
| const struct ddi_buf_trans *ddi_translations_dp; |
| const struct ddi_buf_trans *ddi_translations_edp; |
| const struct ddi_buf_trans *ddi_translations_hdmi; |
| const struct ddi_buf_trans *ddi_translations; |
| |
| if (IS_SKYLAKE(dev)) { |
| ddi_translations_fdi = NULL; |
| ddi_translations_dp = skl_ddi_translations_dp; |
| ddi_translations_edp = skl_ddi_translations_dp; |
| ddi_translations_hdmi = skl_ddi_translations_hdmi; |
| n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi); |
| hdmi_800mV_0dB = 7; |
| } else if (IS_BROADWELL(dev)) { |
| ddi_translations_fdi = bdw_ddi_translations_fdi; |
| ddi_translations_dp = bdw_ddi_translations_dp; |
| ddi_translations_edp = bdw_ddi_translations_edp; |
| ddi_translations_hdmi = bdw_ddi_translations_hdmi; |
| n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi); |
| hdmi_800mV_0dB = 7; |
| } else if (IS_HASWELL(dev)) { |
| ddi_translations_fdi = hsw_ddi_translations_fdi; |
| ddi_translations_dp = hsw_ddi_translations_dp; |
| ddi_translations_edp = hsw_ddi_translations_dp; |
| ddi_translations_hdmi = hsw_ddi_translations_hdmi; |
| n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi); |
| hdmi_800mV_0dB = 6; |
| } else { |
| WARN(1, "ddi translation table missing\n"); |
| ddi_translations_edp = bdw_ddi_translations_dp; |
| ddi_translations_fdi = bdw_ddi_translations_fdi; |
| ddi_translations_dp = bdw_ddi_translations_dp; |
| ddi_translations_hdmi = bdw_ddi_translations_hdmi; |
| n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi); |
| hdmi_800mV_0dB = 7; |
| } |
| |
| switch (port) { |
| case PORT_A: |
| ddi_translations = ddi_translations_edp; |
| break; |
| case PORT_B: |
| case PORT_C: |
| ddi_translations = ddi_translations_dp; |
| break; |
| case PORT_D: |
| if (intel_dp_is_edp(dev, PORT_D)) |
| ddi_translations = ddi_translations_edp; |
| else |
| ddi_translations = ddi_translations_dp; |
| break; |
| case PORT_E: |
| if (ddi_translations_fdi) |
| ddi_translations = ddi_translations_fdi; |
| else |
| ddi_translations = ddi_translations_dp; |
| break; |
| default: |
| BUG(); |
| } |
| |
| for (i = 0, reg = DDI_BUF_TRANS(port); |
| i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) { |
| I915_WRITE(reg, ddi_translations[i].trans1); |
| reg += 4; |
| I915_WRITE(reg, ddi_translations[i].trans2); |
| reg += 4; |
| } |
| |
| /* Choose a good default if VBT is badly populated */ |
| if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN || |
| hdmi_level >= n_hdmi_entries) |
| hdmi_level = hdmi_800mV_0dB; |
| |
| /* Entry 9 is for HDMI: */ |
| I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1); |
| reg += 4; |
| I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2); |
| reg += 4; |
| } |
| |
| /* Program DDI buffers translations for DP. By default, program ports A-D in DP |
| * mode and port E for FDI. |
| */ |
| void intel_prepare_ddi(struct drm_device *dev) |
| { |
| int port; |
| |
| if (!HAS_DDI(dev)) |
| return; |
| |
| for (port = PORT_A; port <= PORT_E; port++) |
| intel_prepare_ddi_buffers(dev, port); |
| } |
| |
| static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv, |
| enum port port) |
| { |
| uint32_t reg = DDI_BUF_CTL(port); |
| int i; |
| |
| for (i = 0; i < 8; i++) { |
| udelay(1); |
| if (I915_READ(reg) & DDI_BUF_IS_IDLE) |
| return; |
| } |
| DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port)); |
| } |
| |
| /* Starting with Haswell, different DDI ports can work in FDI mode for |
| * connection to the PCH-located connectors. For this, it is necessary to train |
| * both the DDI port and PCH receiver for the desired DDI buffer settings. |
| * |
| * The recommended port to work in FDI mode is DDI E, which we use here. Also, |
| * please note that when FDI mode is active on DDI E, it shares 2 lines with |
| * DDI A (which is used for eDP) |
| */ |
| |
| void hsw_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| u32 temp, i, rx_ctl_val; |
| |
| /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the |
| * mode set "sequence for CRT port" document: |
| * - TP1 to TP2 time with the default value |
| * - FDI delay to 90h |
| * |
| * WaFDIAutoLinkSetTimingOverrride:hsw |
| */ |
| I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) | |
| FDI_RX_PWRDN_LANE0_VAL(2) | |
| FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); |
| |
| /* Enable the PCH Receiver FDI PLL */ |
| rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE | |
| FDI_RX_PLL_ENABLE | |
| FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); |
| I915_WRITE(_FDI_RXA_CTL, rx_ctl_val); |
| POSTING_READ(_FDI_RXA_CTL); |
| udelay(220); |
| |
| /* Switch from Rawclk to PCDclk */ |
| rx_ctl_val |= FDI_PCDCLK; |
| I915_WRITE(_FDI_RXA_CTL, rx_ctl_val); |
| |
| /* Configure Port Clock Select */ |
| I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel); |
| WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL); |
| |
| /* Start the training iterating through available voltages and emphasis, |
| * testing each value twice. */ |
| for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) { |
| /* Configure DP_TP_CTL with auto-training */ |
| I915_WRITE(DP_TP_CTL(PORT_E), |
| DP_TP_CTL_FDI_AUTOTRAIN | |
| DP_TP_CTL_ENHANCED_FRAME_ENABLE | |
| DP_TP_CTL_LINK_TRAIN_PAT1 | |
| DP_TP_CTL_ENABLE); |
| |
| /* Configure and enable DDI_BUF_CTL for DDI E with next voltage. |
| * DDI E does not support port reversal, the functionality is |
| * achieved on the PCH side in FDI_RX_CTL, so no need to set the |
| * port reversal bit */ |
| I915_WRITE(DDI_BUF_CTL(PORT_E), |
| DDI_BUF_CTL_ENABLE | |
| ((intel_crtc->config->fdi_lanes - 1) << 1) | |
| DDI_BUF_TRANS_SELECT(i / 2)); |
| POSTING_READ(DDI_BUF_CTL(PORT_E)); |
| |
| udelay(600); |
| |
| /* Program PCH FDI Receiver TU */ |
| I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64)); |
| |
| /* Enable PCH FDI Receiver with auto-training */ |
| rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO; |
| I915_WRITE(_FDI_RXA_CTL, rx_ctl_val); |
| POSTING_READ(_FDI_RXA_CTL); |
| |
| /* Wait for FDI receiver lane calibration */ |
| udelay(30); |
| |
| /* Unset FDI_RX_MISC pwrdn lanes */ |
| temp = I915_READ(_FDI_RXA_MISC); |
| temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); |
| I915_WRITE(_FDI_RXA_MISC, temp); |
| POSTING_READ(_FDI_RXA_MISC); |
| |
| /* Wait for FDI auto training time */ |
| udelay(5); |
| |
| temp = I915_READ(DP_TP_STATUS(PORT_E)); |
| if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) { |
| DRM_DEBUG_KMS("FDI link training done on step %d\n", i); |
| |
| /* Enable normal pixel sending for FDI */ |
| I915_WRITE(DP_TP_CTL(PORT_E), |
| DP_TP_CTL_FDI_AUTOTRAIN | |
| DP_TP_CTL_LINK_TRAIN_NORMAL | |
| DP_TP_CTL_ENHANCED_FRAME_ENABLE | |
| DP_TP_CTL_ENABLE); |
| |
| return; |
| } |
| |
| temp = I915_READ(DDI_BUF_CTL(PORT_E)); |
| temp &= ~DDI_BUF_CTL_ENABLE; |
| I915_WRITE(DDI_BUF_CTL(PORT_E), temp); |
| POSTING_READ(DDI_BUF_CTL(PORT_E)); |
| |
| /* Disable DP_TP_CTL and FDI_RX_CTL and retry */ |
| temp = I915_READ(DP_TP_CTL(PORT_E)); |
| temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); |
| temp |= DP_TP_CTL_LINK_TRAIN_PAT1; |
| I915_WRITE(DP_TP_CTL(PORT_E), temp); |
| POSTING_READ(DP_TP_CTL(PORT_E)); |
| |
| intel_wait_ddi_buf_idle(dev_priv, PORT_E); |
| |
| rx_ctl_val &= ~FDI_RX_ENABLE; |
| I915_WRITE(_FDI_RXA_CTL, rx_ctl_val); |
| POSTING_READ(_FDI_RXA_CTL); |
| |
| /* Reset FDI_RX_MISC pwrdn lanes */ |
| temp = I915_READ(_FDI_RXA_MISC); |
| temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); |
| temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2); |
| I915_WRITE(_FDI_RXA_MISC, temp); |
| POSTING_READ(_FDI_RXA_MISC); |
| } |
| |
| DRM_ERROR("FDI link training failed!\n"); |
| } |
| |
| void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct intel_digital_port *intel_dig_port = |
| enc_to_dig_port(&encoder->base); |
| |
| intel_dp->DP = intel_dig_port->saved_port_bits | |
| DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0); |
| intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count); |
| |
| } |
| |
| static struct intel_encoder * |
| intel_ddi_get_crtc_encoder(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *intel_encoder, *ret = NULL; |
| int num_encoders = 0; |
| |
| for_each_encoder_on_crtc(dev, crtc, intel_encoder) { |
| ret = intel_encoder; |
| num_encoders++; |
| } |
| |
| if (num_encoders != 1) |
| WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders, |
| pipe_name(intel_crtc->pipe)); |
| |
| BUG_ON(ret == NULL); |
| return ret; |
| } |
| |
| static struct intel_encoder * |
| intel_ddi_get_crtc_new_encoder(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct intel_encoder *intel_encoder, *ret = NULL; |
| int num_encoders = 0; |
| |
| for_each_intel_encoder(dev, intel_encoder) { |
| if (intel_encoder->new_crtc == crtc) { |
| ret = intel_encoder; |
| num_encoders++; |
| } |
| } |
| |
| WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders, |
| pipe_name(crtc->pipe)); |
| |
| BUG_ON(ret == NULL); |
| return ret; |
| } |
| |
| #define LC_FREQ 2700 |
| #define LC_FREQ_2K U64_C(LC_FREQ * 2000) |
| |
| #define P_MIN 2 |
| #define P_MAX 64 |
| #define P_INC 2 |
| |
| /* Constraints for PLL good behavior */ |
| #define REF_MIN 48 |
| #define REF_MAX 400 |
| #define VCO_MIN 2400 |
| #define VCO_MAX 4800 |
| |
| #define abs_diff(a, b) ({ \ |
| typeof(a) __a = (a); \ |
| typeof(b) __b = (b); \ |
| (void) (&__a == &__b); \ |
| __a > __b ? (__a - __b) : (__b - __a); }) |
| |
| struct wrpll_rnp { |
| unsigned p, n2, r2; |
| }; |
| |
| static unsigned wrpll_get_budget_for_freq(int clock) |
| { |
| unsigned budget; |
| |
| switch (clock) { |
| case 25175000: |
| case 25200000: |
| case 27000000: |
| case 27027000: |
| case 37762500: |
| case 37800000: |
| case 40500000: |
| case 40541000: |
| case 54000000: |
| case 54054000: |
| case 59341000: |
| case 59400000: |
| case 72000000: |
| case 74176000: |
| case 74250000: |
| case 81000000: |
| case 81081000: |
| case 89012000: |
| case 89100000: |
| case 108000000: |
| case 108108000: |
| case 111264000: |
| case 111375000: |
| case 148352000: |
| case 148500000: |
| case 162000000: |
| case 162162000: |
| case 222525000: |
| case 222750000: |
| case 296703000: |
| case 297000000: |
| budget = 0; |
| break; |
| case 233500000: |
| case 245250000: |
| case 247750000: |
| case 253250000: |
| case 298000000: |
| budget = 1500; |
| break; |
| case 169128000: |
| case 169500000: |
| case 179500000: |
| case 202000000: |
| budget = 2000; |
| break; |
| case 256250000: |
| case 262500000: |
| case 270000000: |
| case 272500000: |
| case 273750000: |
| case 280750000: |
| case 281250000: |
| case 286000000: |
| case 291750000: |
| budget = 4000; |
| break; |
| case 267250000: |
| case 268500000: |
| budget = 5000; |
| break; |
| default: |
| budget = 1000; |
| break; |
| } |
| |
| return budget; |
| } |
| |
| static void wrpll_update_rnp(uint64_t freq2k, unsigned budget, |
| unsigned r2, unsigned n2, unsigned p, |
| struct wrpll_rnp *best) |
| { |
| uint64_t a, b, c, d, diff, diff_best; |
| |
| /* No best (r,n,p) yet */ |
| if (best->p == 0) { |
| best->p = p; |
| best->n2 = n2; |
| best->r2 = r2; |
| return; |
| } |
| |
| /* |
| * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to |
| * freq2k. |
| * |
| * delta = 1e6 * |
| * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) / |
| * freq2k; |
| * |
| * and we would like delta <= budget. |
| * |
| * If the discrepancy is above the PPM-based budget, always prefer to |
| * improve upon the previous solution. However, if you're within the |
| * budget, try to maximize Ref * VCO, that is N / (P * R^2). |
| */ |
| a = freq2k * budget * p * r2; |
| b = freq2k * budget * best->p * best->r2; |
| diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2); |
| diff_best = abs_diff(freq2k * best->p * best->r2, |
| LC_FREQ_2K * best->n2); |
| c = 1000000 * diff; |
| d = 1000000 * diff_best; |
| |
| if (a < c && b < d) { |
| /* If both are above the budget, pick the closer */ |
| if (best->p * best->r2 * diff < p * r2 * diff_best) { |
| best->p = p; |
| best->n2 = n2; |
| best->r2 = r2; |
| } |
| } else if (a >= c && b < d) { |
| /* If A is below the threshold but B is above it? Update. */ |
| best->p = p; |
| best->n2 = n2; |
| best->r2 = r2; |
| } else if (a >= c && b >= d) { |
| /* Both are below the limit, so pick the higher n2/(r2*r2) */ |
| if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) { |
| best->p = p; |
| best->n2 = n2; |
| best->r2 = r2; |
| } |
| } |
| /* Otherwise a < c && b >= d, do nothing */ |
| } |
| |
| static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv, |
| int reg) |
| { |
| int refclk = LC_FREQ; |
| int n, p, r; |
| u32 wrpll; |
| |
| wrpll = I915_READ(reg); |
| switch (wrpll & WRPLL_PLL_REF_MASK) { |
| case WRPLL_PLL_SSC: |
| case WRPLL_PLL_NON_SSC: |
| /* |
| * We could calculate spread here, but our checking |
| * code only cares about 5% accuracy, and spread is a max of |
| * 0.5% downspread. |
| */ |
| refclk = 135; |
| break; |
| case WRPLL_PLL_LCPLL: |
| refclk = LC_FREQ; |
| break; |
| default: |
| WARN(1, "bad wrpll refclk\n"); |
| return 0; |
| } |
| |
| r = wrpll & WRPLL_DIVIDER_REF_MASK; |
| p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT; |
| n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT; |
| |
| /* Convert to KHz, p & r have a fixed point portion */ |
| return (refclk * n * 100) / (p * r); |
| } |
| |
| static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv, |
| uint32_t dpll) |
| { |
| uint32_t cfgcr1_reg, cfgcr2_reg; |
| uint32_t cfgcr1_val, cfgcr2_val; |
| uint32_t p0, p1, p2, dco_freq; |
| |
| cfgcr1_reg = GET_CFG_CR1_REG(dpll); |
| cfgcr2_reg = GET_CFG_CR2_REG(dpll); |
| |
| cfgcr1_val = I915_READ(cfgcr1_reg); |
| cfgcr2_val = I915_READ(cfgcr2_reg); |
| |
| p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK; |
| p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK; |
| |
| if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1)) |
| p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8; |
| else |
| p1 = 1; |
| |
| |
| switch (p0) { |
| case DPLL_CFGCR2_PDIV_1: |
| p0 = 1; |
| break; |
| case DPLL_CFGCR2_PDIV_2: |
| p0 = 2; |
| break; |
| case DPLL_CFGCR2_PDIV_3: |
| p0 = 3; |
| break; |
| case DPLL_CFGCR2_PDIV_7: |
| p0 = 7; |
| break; |
| } |
| |
| switch (p2) { |
| case DPLL_CFGCR2_KDIV_5: |
| p2 = 5; |
| break; |
| case DPLL_CFGCR2_KDIV_2: |
| p2 = 2; |
| break; |
| case DPLL_CFGCR2_KDIV_3: |
| p2 = 3; |
| break; |
| case DPLL_CFGCR2_KDIV_1: |
| p2 = 1; |
| break; |
| } |
| |
| dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000; |
| |
| dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 * |
| 1000) / 0x8000; |
| |
| return dco_freq / (p0 * p1 * p2 * 5); |
| } |
| |
| |
| static void skl_ddi_clock_get(struct intel_encoder *encoder, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; |
| int link_clock = 0; |
| uint32_t dpll_ctl1, dpll; |
| |
| dpll = pipe_config->ddi_pll_sel; |
| |
| dpll_ctl1 = I915_READ(DPLL_CTRL1); |
| |
| if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) { |
| link_clock = skl_calc_wrpll_link(dev_priv, dpll); |
| } else { |
| link_clock = dpll_ctl1 & DPLL_CRTL1_LINK_RATE_MASK(dpll); |
| link_clock >>= DPLL_CRTL1_LINK_RATE_SHIFT(dpll); |
| |
| switch (link_clock) { |
| case DPLL_CRTL1_LINK_RATE_810: |
| link_clock = 81000; |
| break; |
| case DPLL_CRTL1_LINK_RATE_1350: |
| link_clock = 135000; |
| break; |
| case DPLL_CRTL1_LINK_RATE_2700: |
| link_clock = 270000; |
| break; |
| default: |
| WARN(1, "Unsupported link rate\n"); |
| break; |
| } |
| link_clock *= 2; |
| } |
| |
| pipe_config->port_clock = link_clock; |
| |
| if (pipe_config->has_dp_encoder) |
| pipe_config->base.adjusted_mode.crtc_clock = |
| intel_dotclock_calculate(pipe_config->port_clock, |
| &pipe_config->dp_m_n); |
| else |
| pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock; |
| } |
| |
| static void hsw_ddi_clock_get(struct intel_encoder *encoder, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; |
| int link_clock = 0; |
| u32 val, pll; |
| |
| val = pipe_config->ddi_pll_sel; |
| switch (val & PORT_CLK_SEL_MASK) { |
| case PORT_CLK_SEL_LCPLL_810: |
| link_clock = 81000; |
| break; |
| case PORT_CLK_SEL_LCPLL_1350: |
| link_clock = 135000; |
| break; |
| case PORT_CLK_SEL_LCPLL_2700: |
| link_clock = 270000; |
| break; |
| case PORT_CLK_SEL_WRPLL1: |
| link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1); |
| break; |
| case PORT_CLK_SEL_WRPLL2: |
| link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2); |
| break; |
| case PORT_CLK_SEL_SPLL: |
| pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK; |
| if (pll == SPLL_PLL_FREQ_810MHz) |
| link_clock = 81000; |
| else if (pll == SPLL_PLL_FREQ_1350MHz) |
| link_clock = 135000; |
| else if (pll == SPLL_PLL_FREQ_2700MHz) |
| link_clock = 270000; |
| else { |
| WARN(1, "bad spll freq\n"); |
| return; |
| } |
| break; |
| default: |
| WARN(1, "bad port clock sel\n"); |
| return; |
| } |
| |
| pipe_config->port_clock = link_clock * 2; |
| |
| if (pipe_config->has_pch_encoder) |
| pipe_config->base.adjusted_mode.crtc_clock = |
| intel_dotclock_calculate(pipe_config->port_clock, |
| &pipe_config->fdi_m_n); |
| else if (pipe_config->has_dp_encoder) |
| pipe_config->base.adjusted_mode.crtc_clock = |
| intel_dotclock_calculate(pipe_config->port_clock, |
| &pipe_config->dp_m_n); |
| else |
| pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock; |
| } |
| |
| void intel_ddi_clock_get(struct intel_encoder *encoder, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| |
| if (INTEL_INFO(dev)->gen <= 8) |
| hsw_ddi_clock_get(encoder, pipe_config); |
| else |
| skl_ddi_clock_get(encoder, pipe_config); |
| } |
| |
| static void |
| hsw_ddi_calculate_wrpll(int clock /* in Hz */, |
| unsigned *r2_out, unsigned *n2_out, unsigned *p_out) |
| { |
| uint64_t freq2k; |
| unsigned p, n2, r2; |
| struct wrpll_rnp best = { 0, 0, 0 }; |
| unsigned budget; |
| |
| freq2k = clock / 100; |
| |
| budget = wrpll_get_budget_for_freq(clock); |
| |
| /* Special case handling for 540 pixel clock: bypass WR PLL entirely |
| * and directly pass the LC PLL to it. */ |
| if (freq2k == 5400000) { |
| *n2_out = 2; |
| *p_out = 1; |
| *r2_out = 2; |
| return; |
| } |
| |
| /* |
| * Ref = LC_FREQ / R, where Ref is the actual reference input seen by |
| * the WR PLL. |
| * |
| * We want R so that REF_MIN <= Ref <= REF_MAX. |
| * Injecting R2 = 2 * R gives: |
| * REF_MAX * r2 > LC_FREQ * 2 and |
| * REF_MIN * r2 < LC_FREQ * 2 |
| * |
| * Which means the desired boundaries for r2 are: |
| * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN |
| * |
| */ |
| for (r2 = LC_FREQ * 2 / REF_MAX + 1; |
| r2 <= LC_FREQ * 2 / REF_MIN; |
| r2++) { |
| |
| /* |
| * VCO = N * Ref, that is: VCO = N * LC_FREQ / R |
| * |
| * Once again we want VCO_MIN <= VCO <= VCO_MAX. |
| * Injecting R2 = 2 * R and N2 = 2 * N, we get: |
| * VCO_MAX * r2 > n2 * LC_FREQ and |
| * VCO_MIN * r2 < n2 * LC_FREQ) |
| * |
| * Which means the desired boundaries for n2 are: |
| * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ |
| */ |
| for (n2 = VCO_MIN * r2 / LC_FREQ + 1; |
| n2 <= VCO_MAX * r2 / LC_FREQ; |
| n2++) { |
| |
| for (p = P_MIN; p <= P_MAX; p += P_INC) |
| wrpll_update_rnp(freq2k, budget, |
| r2, n2, p, &best); |
| } |
| } |
| |
| *n2_out = best.n2; |
| *p_out = best.p; |
| *r2_out = best.r2; |
| } |
| |
| static bool |
| hsw_ddi_pll_select(struct intel_crtc *intel_crtc, |
| struct intel_crtc_state *crtc_state, |
| struct intel_encoder *intel_encoder, |
| int clock) |
| { |
| if (intel_encoder->type == INTEL_OUTPUT_HDMI) { |
| struct intel_shared_dpll *pll; |
| uint32_t val; |
| unsigned p, n2, r2; |
| |
| hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p); |
| |
| val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL | |
| WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) | |
| WRPLL_DIVIDER_POST(p); |
| |
| crtc_state->dpll_hw_state.wrpll = val; |
| |
| pll = intel_get_shared_dpll(intel_crtc, crtc_state); |
| if (pll == NULL) { |
| DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n", |
| pipe_name(intel_crtc->pipe)); |
| return false; |
| } |
| |
| crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id); |
| } |
| |
| return true; |
| } |
| |
| struct skl_wrpll_params { |
| uint32_t dco_fraction; |
| uint32_t dco_integer; |
| uint32_t qdiv_ratio; |
| uint32_t qdiv_mode; |
| uint32_t kdiv; |
| uint32_t pdiv; |
| uint32_t central_freq; |
| }; |
| |
| static void |
| skl_ddi_calculate_wrpll(int clock /* in Hz */, |
| struct skl_wrpll_params *wrpll_params) |
| { |
| uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */ |
| uint64_t dco_central_freq[3] = {8400000000ULL, |
| 9000000000ULL, |
| 9600000000ULL}; |
| uint32_t min_dco_deviation = 400; |
| uint32_t min_dco_index = 3; |
| uint32_t P0[4] = {1, 2, 3, 7}; |
| uint32_t P2[4] = {1, 2, 3, 5}; |
| bool found = false; |
| uint32_t candidate_p = 0; |
| uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0}; |
| uint32_t candidate_p2[3] = {0}; |
| uint32_t dco_central_freq_deviation[3]; |
| uint32_t i, P1, k, dco_count; |
| bool retry_with_odd = false; |
| uint64_t dco_freq; |
| |
| /* Determine P0, P1 or P2 */ |
| for (dco_count = 0; dco_count < 3; dco_count++) { |
| found = false; |
| candidate_p = |
| div64_u64(dco_central_freq[dco_count], afe_clock); |
| if (retry_with_odd == false) |
| candidate_p = (candidate_p % 2 == 0 ? |
| candidate_p : candidate_p + 1); |
| |
| for (P1 = 1; P1 < candidate_p; P1++) { |
| for (i = 0; i < 4; i++) { |
| if (!(P0[i] != 1 || P1 == 1)) |
| continue; |
| |
| for (k = 0; k < 4; k++) { |
| if (P1 != 1 && P2[k] != 2) |
| continue; |
| |
| if (candidate_p == P0[i] * P1 * P2[k]) { |
| /* Found possible P0, P1, P2 */ |
| found = true; |
| candidate_p0[dco_count] = P0[i]; |
| candidate_p1[dco_count] = P1; |
| candidate_p2[dco_count] = P2[k]; |
| goto found; |
| } |
| |
| } |
| } |
| } |
| |
| found: |
| if (found) { |
| dco_central_freq_deviation[dco_count] = |
| div64_u64(10000 * |
| abs_diff((candidate_p * afe_clock), |
| dco_central_freq[dco_count]), |
| dco_central_freq[dco_count]); |
| |
| if (dco_central_freq_deviation[dco_count] < |
| min_dco_deviation) { |
| min_dco_deviation = |
| dco_central_freq_deviation[dco_count]; |
| min_dco_index = dco_count; |
| } |
| } |
| |
| if (min_dco_index > 2 && dco_count == 2) { |
| retry_with_odd = true; |
| dco_count = 0; |
| } |
| } |
| |
| if (min_dco_index > 2) { |
| WARN(1, "No valid values found for the given pixel clock\n"); |
| } else { |
| wrpll_params->central_freq = dco_central_freq[min_dco_index]; |
| |
| switch (dco_central_freq[min_dco_index]) { |
| case 9600000000ULL: |
| wrpll_params->central_freq = 0; |
| break; |
| case 9000000000ULL: |
| wrpll_params->central_freq = 1; |
| break; |
| case 8400000000ULL: |
| wrpll_params->central_freq = 3; |
| } |
| |
| switch (candidate_p0[min_dco_index]) { |
| case 1: |
| wrpll_params->pdiv = 0; |
| break; |
| case 2: |
| wrpll_params->pdiv = 1; |
| break; |
| case 3: |
| wrpll_params->pdiv = 2; |
| break; |
| case 7: |
| wrpll_params->pdiv = 4; |
| break; |
| default: |
| WARN(1, "Incorrect PDiv\n"); |
| } |
| |
| switch (candidate_p2[min_dco_index]) { |
| case 5: |
| wrpll_params->kdiv = 0; |
| break; |
| case 2: |
| wrpll_params->kdiv = 1; |
| break; |
| case 3: |
| wrpll_params->kdiv = 2; |
| break; |
| case 1: |
| wrpll_params->kdiv = 3; |
| break; |
| default: |
| WARN(1, "Incorrect KDiv\n"); |
| } |
| |
| wrpll_params->qdiv_ratio = candidate_p1[min_dco_index]; |
| wrpll_params->qdiv_mode = |
| (wrpll_params->qdiv_ratio == 1) ? 0 : 1; |
| |
| dco_freq = candidate_p0[min_dco_index] * |
| candidate_p1[min_dco_index] * |
| candidate_p2[min_dco_index] * afe_clock; |
| |
| /* |
| * Intermediate values are in Hz. |
| * Divide by MHz to match bsepc |
| */ |
| wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1))); |
| wrpll_params->dco_fraction = |
| div_u64(((div_u64(dco_freq, 24) - |
| wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1)); |
| |
| } |
| } |
| |
| |
| static bool |
| skl_ddi_pll_select(struct intel_crtc *intel_crtc, |
| struct intel_crtc_state *crtc_state, |
| struct intel_encoder *intel_encoder, |
| int clock) |
| { |
| struct intel_shared_dpll *pll; |
| uint32_t ctrl1, cfgcr1, cfgcr2; |
| |
| /* |
| * See comment in intel_dpll_hw_state to understand why we always use 0 |
| * as the DPLL id in this function. |
| */ |
| |
| ctrl1 = DPLL_CTRL1_OVERRIDE(0); |
| |
| if (intel_encoder->type == INTEL_OUTPUT_HDMI) { |
| struct skl_wrpll_params wrpll_params = { 0, }; |
| |
| ctrl1 |= DPLL_CTRL1_HDMI_MODE(0); |
| |
| skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params); |
| |
| cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE | |
| DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) | |
| wrpll_params.dco_integer; |
| |
| cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) | |
| DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) | |
| DPLL_CFGCR2_KDIV(wrpll_params.kdiv) | |
| DPLL_CFGCR2_PDIV(wrpll_params.pdiv) | |
| wrpll_params.central_freq; |
| } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) { |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| |
| switch (intel_dp->link_bw) { |
| case DP_LINK_BW_1_62: |
| ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810, 0); |
| break; |
| case DP_LINK_BW_2_7: |
| ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350, 0); |
| break; |
| case DP_LINK_BW_5_4: |
| ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700, 0); |
| break; |
| } |
| |
| cfgcr1 = cfgcr2 = 0; |
| } else /* eDP */ |
| return true; |
| |
| crtc_state->dpll_hw_state.ctrl1 = ctrl1; |
| crtc_state->dpll_hw_state.cfgcr1 = cfgcr1; |
| crtc_state->dpll_hw_state.cfgcr2 = cfgcr2; |
| |
| pll = intel_get_shared_dpll(intel_crtc, crtc_state); |
| if (pll == NULL) { |
| DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n", |
| pipe_name(intel_crtc->pipe)); |
| return false; |
| } |
| |
| /* shared DPLL id 0 is DPLL 1 */ |
| crtc_state->ddi_pll_sel = pll->id + 1; |
| |
| return true; |
| } |
| |
| /* |
| * Tries to find a *shared* PLL for the CRTC and store it in |
| * intel_crtc->ddi_pll_sel. |
| * |
| * For private DPLLs, compute_config() should do the selection for us. This |
| * function should be folded into compute_config() eventually. |
| */ |
| bool intel_ddi_pll_select(struct intel_crtc *intel_crtc, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct intel_encoder *intel_encoder = |
| intel_ddi_get_crtc_new_encoder(intel_crtc); |
| int clock = crtc_state->port_clock; |
| |
| if (IS_SKYLAKE(dev)) |
| return skl_ddi_pll_select(intel_crtc, crtc_state, |
| intel_encoder, clock); |
| else |
| return hsw_ddi_pll_select(intel_crtc, crtc_state, |
| intel_encoder, clock); |
| } |
| |
| void intel_ddi_set_pipe_settings(struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = crtc->dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); |
| enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; |
| int type = intel_encoder->type; |
| uint32_t temp; |
| |
| if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) { |
| temp = TRANS_MSA_SYNC_CLK; |
| switch (intel_crtc->config->pipe_bpp) { |
| case 18: |
| temp |= TRANS_MSA_6_BPC; |
| break; |
| case 24: |
| temp |= TRANS_MSA_8_BPC; |
| break; |
| case 30: |
| temp |= TRANS_MSA_10_BPC; |
| break; |
| case 36: |
| temp |= TRANS_MSA_12_BPC; |
| break; |
| default: |
| BUG(); |
| } |
| I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp); |
| } |
| } |
| |
| void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; |
| uint32_t temp; |
| temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); |
| if (state == true) |
| temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC; |
| else |
| temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC; |
| I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp); |
| } |
| |
| void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum pipe pipe = intel_crtc->pipe; |
| enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; |
| enum port port = intel_ddi_get_encoder_port(intel_encoder); |
| int type = intel_encoder->type; |
| uint32_t temp; |
| |
| /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */ |
| temp = TRANS_DDI_FUNC_ENABLE; |
| temp |= TRANS_DDI_SELECT_PORT(port); |
| |
| switch (intel_crtc->config->pipe_bpp) { |
| case 18: |
| temp |= TRANS_DDI_BPC_6; |
| break; |
| case 24: |
| temp |= TRANS_DDI_BPC_8; |
| break; |
| case 30: |
| temp |= TRANS_DDI_BPC_10; |
| break; |
| case 36: |
| temp |= TRANS_DDI_BPC_12; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC) |
| temp |= TRANS_DDI_PVSYNC; |
| if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC) |
| temp |= TRANS_DDI_PHSYNC; |
| |
| if (cpu_transcoder == TRANSCODER_EDP) { |
| switch (pipe) { |
| case PIPE_A: |
| /* On Haswell, can only use the always-on power well for |
| * eDP when not using the panel fitter, and when not |
| * using motion blur mitigation (which we don't |
| * support). */ |
| if (IS_HASWELL(dev) && |
| (intel_crtc->config->pch_pfit.enabled || |
| intel_crtc->config->pch_pfit.force_thru)) |
| temp |= TRANS_DDI_EDP_INPUT_A_ONOFF; |
| else |
| temp |= TRANS_DDI_EDP_INPUT_A_ON; |
| break; |
| case PIPE_B: |
| temp |= TRANS_DDI_EDP_INPUT_B_ONOFF; |
| break; |
| case PIPE_C: |
| temp |= TRANS_DDI_EDP_INPUT_C_ONOFF; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| } |
| |
| if (type == INTEL_OUTPUT_HDMI) { |
| if (intel_crtc->config->has_hdmi_sink) |
| temp |= TRANS_DDI_MODE_SELECT_HDMI; |
| else |
| temp |= TRANS_DDI_MODE_SELECT_DVI; |
| |
| } else if (type == INTEL_OUTPUT_ANALOG) { |
| temp |= TRANS_DDI_MODE_SELECT_FDI; |
| temp |= (intel_crtc->config->fdi_lanes - 1) << 1; |
| |
| } else if (type == INTEL_OUTPUT_DISPLAYPORT || |
| type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| |
| if (intel_dp->is_mst) { |
| temp |= TRANS_DDI_MODE_SELECT_DP_MST; |
| } else |
| temp |= TRANS_DDI_MODE_SELECT_DP_SST; |
| |
| temp |= DDI_PORT_WIDTH(intel_dp->lane_count); |
| } else if (type == INTEL_OUTPUT_DP_MST) { |
| struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp; |
| |
| if (intel_dp->is_mst) { |
| temp |= TRANS_DDI_MODE_SELECT_DP_MST; |
| } else |
| temp |= TRANS_DDI_MODE_SELECT_DP_SST; |
| |
| temp |= DDI_PORT_WIDTH(intel_dp->lane_count); |
| } else { |
| WARN(1, "Invalid encoder type %d for pipe %c\n", |
| intel_encoder->type, pipe_name(pipe)); |
| } |
| |
| I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp); |
| } |
| |
| void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv, |
| enum transcoder cpu_transcoder) |
| { |
| uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder); |
| uint32_t val = I915_READ(reg); |
| |
| val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC); |
| val |= TRANS_DDI_PORT_NONE; |
| I915_WRITE(reg, val); |
| } |
| |
| bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector) |
| { |
| struct drm_device *dev = intel_connector->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *intel_encoder = intel_connector->encoder; |
| int type = intel_connector->base.connector_type; |
| enum port port = intel_ddi_get_encoder_port(intel_encoder); |
| enum pipe pipe = 0; |
| enum transcoder cpu_transcoder; |
| enum intel_display_power_domain power_domain; |
| uint32_t tmp; |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| if (!intel_display_power_is_enabled(dev_priv, power_domain)) |
| return false; |
| |
| if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) |
| return false; |
| |
| if (port == PORT_A) |
| cpu_transcoder = TRANSCODER_EDP; |
| else |
| cpu_transcoder = (enum transcoder) pipe; |
| |
| tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); |
| |
| switch (tmp & TRANS_DDI_MODE_SELECT_MASK) { |
| case TRANS_DDI_MODE_SELECT_HDMI: |
| case TRANS_DDI_MODE_SELECT_DVI: |
| return (type == DRM_MODE_CONNECTOR_HDMIA); |
| |
| case TRANS_DDI_MODE_SELECT_DP_SST: |
| if (type == DRM_MODE_CONNECTOR_eDP) |
| return true; |
| return (type == DRM_MODE_CONNECTOR_DisplayPort); |
| case TRANS_DDI_MODE_SELECT_DP_MST: |
| /* if the transcoder is in MST state then |
| * connector isn't connected */ |
| return false; |
| |
| case TRANS_DDI_MODE_SELECT_FDI: |
| return (type == DRM_MODE_CONNECTOR_VGA); |
| |
| default: |
| return false; |
| } |
| } |
| |
| bool intel_ddi_get_hw_state(struct intel_encoder *encoder, |
| enum pipe *pipe) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_ddi_get_encoder_port(encoder); |
| enum intel_display_power_domain power_domain; |
| u32 tmp; |
| int i; |
| |
| power_domain = intel_display_port_power_domain(encoder); |
| if (!intel_display_power_is_enabled(dev_priv, power_domain)) |
| return false; |
| |
| tmp = I915_READ(DDI_BUF_CTL(port)); |
| |
| if (!(tmp & DDI_BUF_CTL_ENABLE)) |
| return false; |
| |
| if (port == PORT_A) { |
| tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); |
| |
| switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { |
| case TRANS_DDI_EDP_INPUT_A_ON: |
| case TRANS_DDI_EDP_INPUT_A_ONOFF: |
| *pipe = PIPE_A; |
| break; |
| case TRANS_DDI_EDP_INPUT_B_ONOFF: |
| *pipe = PIPE_B; |
| break; |
| case TRANS_DDI_EDP_INPUT_C_ONOFF: |
| *pipe = PIPE_C; |
| break; |
| } |
| |
| return true; |
| } else { |
| for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) { |
| tmp = I915_READ(TRANS_DDI_FUNC_CTL(i)); |
| |
| if ((tmp & TRANS_DDI_PORT_MASK) |
| == TRANS_DDI_SELECT_PORT(port)) { |
| if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST) |
| return false; |
| |
| *pipe = i; |
| return true; |
| } |
| } |
| } |
| |
| DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port)); |
| |
| return false; |
| } |
| |
| void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc) |
| { |
| struct drm_crtc *crtc = &intel_crtc->base; |
| struct drm_i915_private *dev_priv = crtc->dev->dev_private; |
| struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); |
| enum port port = intel_ddi_get_encoder_port(intel_encoder); |
| enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; |
| |
| if (cpu_transcoder != TRANSCODER_EDP) |
| I915_WRITE(TRANS_CLK_SEL(cpu_transcoder), |
| TRANS_CLK_SEL_PORT(port)); |
| } |
| |
| void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc) |
| { |
| struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; |
| enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; |
| |
| if (cpu_transcoder != TRANSCODER_EDP) |
| I915_WRITE(TRANS_CLK_SEL(cpu_transcoder), |
| TRANS_CLK_SEL_DISABLED); |
| } |
| |
| static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder) |
| { |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *crtc = to_intel_crtc(encoder->crtc); |
| enum port port = intel_ddi_get_encoder_port(intel_encoder); |
| int type = intel_encoder->type; |
| |
| if (type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| intel_edp_panel_on(intel_dp); |
| } |
| |
| if (IS_SKYLAKE(dev)) { |
| uint32_t dpll = crtc->config->ddi_pll_sel; |
| uint32_t val; |
| |
| /* |
| * DPLL0 is used for eDP and is the only "private" DPLL (as |
| * opposed to shared) on SKL |
| */ |
| if (type == INTEL_OUTPUT_EDP) { |
| WARN_ON(dpll != SKL_DPLL0); |
| |
| val = I915_READ(DPLL_CTRL1); |
| |
| val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | |
| DPLL_CTRL1_SSC(dpll) | |
| DPLL_CRTL1_LINK_RATE_MASK(dpll)); |
| val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6); |
| |
| I915_WRITE(DPLL_CTRL1, val); |
| POSTING_READ(DPLL_CTRL1); |
| } |
| |
| /* DDI -> PLL mapping */ |
| val = I915_READ(DPLL_CTRL2); |
| |
| val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) | |
| DPLL_CTRL2_DDI_CLK_SEL_MASK(port)); |
| val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) | |
| DPLL_CTRL2_DDI_SEL_OVERRIDE(port)); |
| |
| I915_WRITE(DPLL_CTRL2, val); |
| |
| } else { |
| WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE); |
| I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel); |
| } |
| |
| if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| |
| intel_ddi_init_dp_buf_reg(intel_encoder); |
| |
| intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); |
| intel_dp_start_link_train(intel_dp); |
| intel_dp_complete_link_train(intel_dp); |
| if (port != PORT_A || INTEL_INFO(dev)->gen >= 9) |
| intel_dp_stop_link_train(intel_dp); |
| } else if (type == INTEL_OUTPUT_HDMI) { |
| struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); |
| |
| intel_hdmi->set_infoframes(encoder, |
| crtc->config->has_hdmi_sink, |
| &crtc->config->base.adjusted_mode); |
| } |
| } |
| |
| static void intel_ddi_post_disable(struct intel_encoder *intel_encoder) |
| { |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_ddi_get_encoder_port(intel_encoder); |
| int type = intel_encoder->type; |
| uint32_t val; |
| bool wait = false; |
| |
| val = I915_READ(DDI_BUF_CTL(port)); |
| if (val & DDI_BUF_CTL_ENABLE) { |
| val &= ~DDI_BUF_CTL_ENABLE; |
| I915_WRITE(DDI_BUF_CTL(port), val); |
| wait = true; |
| } |
| |
| val = I915_READ(DP_TP_CTL(port)); |
| val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); |
| val |= DP_TP_CTL_LINK_TRAIN_PAT1; |
| I915_WRITE(DP_TP_CTL(port), val); |
| |
| if (wait) |
| intel_wait_ddi_buf_idle(dev_priv, port); |
| |
| if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); |
| intel_edp_panel_vdd_on(intel_dp); |
| intel_edp_panel_off(intel_dp); |
| } |
| |
| if (IS_SKYLAKE(dev)) |
| I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) | |
| DPLL_CTRL2_DDI_CLK_OFF(port))); |
| else |
| I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE); |
| } |
| |
| static void intel_enable_ddi(struct intel_encoder *intel_encoder) |
| { |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_crtc *crtc = encoder->crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_ddi_get_encoder_port(intel_encoder); |
| int type = intel_encoder->type; |
| |
| if (type == INTEL_OUTPUT_HDMI) { |
| struct intel_digital_port *intel_dig_port = |
| enc_to_dig_port(encoder); |
| |
| /* In HDMI/DVI mode, the port width, and swing/emphasis values |
| * are ignored so nothing special needs to be done besides |
| * enabling the port. |
| */ |
| I915_WRITE(DDI_BUF_CTL(port), |
| intel_dig_port->saved_port_bits | |
| DDI_BUF_CTL_ENABLE); |
| } else if (type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| |
| if (port == PORT_A && INTEL_INFO(dev)->gen < 9) |
| intel_dp_stop_link_train(intel_dp); |
| |
| intel_edp_backlight_on(intel_dp); |
| intel_psr_enable(intel_dp); |
| intel_edp_drrs_enable(intel_dp); |
| } |
| |
| if (intel_crtc->config->has_audio) { |
| intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO); |
| intel_audio_codec_enable(intel_encoder); |
| } |
| } |
| |
| static void intel_disable_ddi(struct intel_encoder *intel_encoder) |
| { |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_crtc *crtc = encoder->crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int type = intel_encoder->type; |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (intel_crtc->config->has_audio) { |
| intel_audio_codec_disable(intel_encoder); |
| intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO); |
| } |
| |
| if (type == INTEL_OUTPUT_EDP) { |
| struct intel_dp *intel_dp = enc_to_intel_dp(encoder); |
| |
| intel_edp_drrs_disable(intel_dp); |
| intel_psr_disable(intel_dp); |
| intel_edp_backlight_off(intel_dp); |
| } |
| } |
| |
| static int skl_get_cdclk_freq(struct drm_i915_private *dev_priv) |
| { |
| uint32_t lcpll1 = I915_READ(LCPLL1_CTL); |
| uint32_t cdctl = I915_READ(CDCLK_CTL); |
| uint32_t linkrate; |
| |
| if (!(lcpll1 & LCPLL_PLL_ENABLE)) { |
| WARN(1, "LCPLL1 not enabled\n"); |
| return 24000; /* 24MHz is the cd freq with NSSC ref */ |
| } |
| |
| if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540) |
| return 540000; |
| |
| linkrate = (I915_READ(DPLL_CTRL1) & |
| DPLL_CRTL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1; |
| |
| if (linkrate == DPLL_CRTL1_LINK_RATE_2160 || |
| linkrate == DPLL_CRTL1_LINK_RATE_1080) { |
| /* vco 8640 */ |
| switch (cdctl & CDCLK_FREQ_SEL_MASK) { |
| case CDCLK_FREQ_450_432: |
| return 432000; |
| case CDCLK_FREQ_337_308: |
| return 308570; |
| case CDCLK_FREQ_675_617: |
| return 617140; |
| default: |
| WARN(1, "Unknown cd freq selection\n"); |
| } |
| } else { |
| /* vco 8100 */ |
| switch (cdctl & CDCLK_FREQ_SEL_MASK) { |
| case CDCLK_FREQ_450_432: |
| return 450000; |
| case CDCLK_FREQ_337_308: |
| return 337500; |
| case CDCLK_FREQ_675_617: |
| return 675000; |
| default: |
| WARN(1, "Unknown cd freq selection\n"); |
| } |
| } |
| |
| /* error case, do as if DPLL0 isn't enabled */ |
| return 24000; |
| } |
| |
| static int bdw_get_cdclk_freq(struct drm_i915_private *dev_priv) |
| { |
| uint32_t lcpll = I915_READ(LCPLL_CTL); |
| uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK; |
| |
| if (lcpll & LCPLL_CD_SOURCE_FCLK) |
| return 800000; |
| else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) |
| return 450000; |
| else if (freq == LCPLL_CLK_FREQ_450) |
| return 450000; |
| else if (freq == LCPLL_CLK_FREQ_54O_BDW) |
| return 540000; |
| else if (freq == LCPLL_CLK_FREQ_337_5_BDW) |
| return 337500; |
| else |
| return 675000; |
| } |
| |
| static int hsw_get_cdclk_freq(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| uint32_t lcpll = I915_READ(LCPLL_CTL); |
| uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK; |
| |
| if (lcpll & LCPLL_CD_SOURCE_FCLK) |
| return 800000; |
| else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) |
| return 450000; |
| else if (freq == LCPLL_CLK_FREQ_450) |
| return 450000; |
| else if (IS_HSW_ULT(dev)) |
| return 337500; |
| else |
| return 540000; |
| } |
| |
| int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| |
| if (IS_SKYLAKE(dev)) |
| return skl_get_cdclk_freq(dev_priv); |
| |
| if (IS_BROADWELL(dev)) |
| return bdw_get_cdclk_freq(dev_priv); |
| |
| /* Haswell */ |
| return hsw_get_cdclk_freq(dev_priv); |
| } |
| |
| static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll); |
| POSTING_READ(WRPLL_CTL(pll->id)); |
| udelay(20); |
| } |
| |
| static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| uint32_t val; |
| |
| val = I915_READ(WRPLL_CTL(pll->id)); |
| I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE); |
| POSTING_READ(WRPLL_CTL(pll->id)); |
| } |
| |
| static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| uint32_t val; |
| |
| if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS)) |
| return false; |
| |
| val = I915_READ(WRPLL_CTL(pll->id)); |
| hw_state->wrpll = val; |
| |
| return val & WRPLL_PLL_ENABLE; |
| } |
| |
| static const char * const hsw_ddi_pll_names[] = { |
| "WRPLL 1", |
| "WRPLL 2", |
| }; |
| |
| static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv) |
| { |
| int i; |
| |
| dev_priv->num_shared_dpll = 2; |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| dev_priv->shared_dplls[i].id = i; |
| dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i]; |
| dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable; |
| dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable; |
| dev_priv->shared_dplls[i].get_hw_state = |
| hsw_ddi_pll_get_hw_state; |
| } |
| } |
| |
| static const char * const skl_ddi_pll_names[] = { |
| "DPLL 1", |
| "DPLL 2", |
| "DPLL 3", |
| }; |
| |
| struct skl_dpll_regs { |
| u32 ctl, cfgcr1, cfgcr2; |
| }; |
| |
| /* this array is indexed by the *shared* pll id */ |
| static const struct skl_dpll_regs skl_dpll_regs[3] = { |
| { |
| /* DPLL 1 */ |
| .ctl = LCPLL2_CTL, |
| .cfgcr1 = DPLL1_CFGCR1, |
| .cfgcr2 = DPLL1_CFGCR2, |
| }, |
| { |
| /* DPLL 2 */ |
| .ctl = WRPLL_CTL1, |
| .cfgcr1 = DPLL2_CFGCR1, |
| .cfgcr2 = DPLL2_CFGCR2, |
| }, |
| { |
| /* DPLL 3 */ |
| .ctl = WRPLL_CTL2, |
| .cfgcr1 = DPLL3_CFGCR1, |
| .cfgcr2 = DPLL3_CFGCR2, |
| }, |
| }; |
| |
| static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| uint32_t val; |
| unsigned int dpll; |
| const struct skl_dpll_regs *regs = skl_dpll_regs; |
| |
| /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */ |
| dpll = pll->id + 1; |
| |
| val = I915_READ(DPLL_CTRL1); |
| |
| val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) | |
| DPLL_CRTL1_LINK_RATE_MASK(dpll)); |
| val |= pll->config.hw_state.ctrl1 << (dpll * 6); |
| |
| I915_WRITE(DPLL_CTRL1, val); |
| POSTING_READ(DPLL_CTRL1); |
| |
| I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1); |
| I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2); |
| POSTING_READ(regs[pll->id].cfgcr1); |
| POSTING_READ(regs[pll->id].cfgcr2); |
| |
| /* the enable bit is always bit 31 */ |
| I915_WRITE(regs[pll->id].ctl, |
| I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE); |
| |
| if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5)) |
| DRM_ERROR("DPLL %d not locked\n", dpll); |
| } |
| |
| static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| const struct skl_dpll_regs *regs = skl_dpll_regs; |
| |
| /* the enable bit is always bit 31 */ |
| I915_WRITE(regs[pll->id].ctl, |
| I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE); |
| POSTING_READ(regs[pll->id].ctl); |
| } |
| |
| static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| uint32_t val; |
| unsigned int dpll; |
| const struct skl_dpll_regs *regs = skl_dpll_regs; |
| |
| if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS)) |
| return false; |
| |
| /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */ |
| dpll = pll->id + 1; |
| |
| val = I915_READ(regs[pll->id].ctl); |
| if (!(val & LCPLL_PLL_ENABLE)) |
| return false; |
| |
| val = I915_READ(DPLL_CTRL1); |
| hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f; |
| |
| /* avoid reading back stale values if HDMI mode is not enabled */ |
| if (val & DPLL_CTRL1_HDMI_MODE(dpll)) { |
| hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1); |
| hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2); |
| } |
| |
| return true; |
| } |
| |
| static void skl_shared_dplls_init(struct drm_i915_private *dev_priv) |
| { |
| int i; |
| |
| dev_priv->num_shared_dpll = 3; |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| dev_priv->shared_dplls[i].id = i; |
| dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i]; |
| dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable; |
| dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable; |
| dev_priv->shared_dplls[i].get_hw_state = |
| skl_ddi_pll_get_hw_state; |
| } |
| } |
| |
| void intel_ddi_pll_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t val = I915_READ(LCPLL_CTL); |
| |
| if (IS_SKYLAKE(dev)) |
| skl_shared_dplls_init(dev_priv); |
| else |
| hsw_shared_dplls_init(dev_priv); |
| |
| DRM_DEBUG_KMS("CDCLK running at %dKHz\n", |
| intel_ddi_get_cdclk_freq(dev_priv)); |
| |
| if (IS_SKYLAKE(dev)) { |
| if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) |
| DRM_ERROR("LCPLL1 is disabled\n"); |
| } else { |
| /* |
| * The LCPLL register should be turned on by the BIOS. For now |
| * let's just check its state and print errors in case |
| * something is wrong. Don't even try to turn it on. |
| */ |
| |
| if (val & LCPLL_CD_SOURCE_FCLK) |
| DRM_ERROR("CDCLK source is not LCPLL\n"); |
| |
| if (val & LCPLL_PLL_DISABLE) |
| DRM_ERROR("LCPLL is disabled\n"); |
| } |
| } |
| |
| void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder) |
| { |
| struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); |
| struct intel_dp *intel_dp = &intel_dig_port->dp; |
| struct drm_i915_private *dev_priv = encoder->dev->dev_private; |
| enum port port = intel_dig_port->port; |
| uint32_t val; |
| bool wait = false; |
| |
| if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) { |
| val = I915_READ(DDI_BUF_CTL(port)); |
| if (val & DDI_BUF_CTL_ENABLE) { |
| val &= ~DDI_BUF_CTL_ENABLE; |
| I915_WRITE(DDI_BUF_CTL(port), val); |
| wait = true; |
| } |
| |
| val = I915_READ(DP_TP_CTL(port)); |
| val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); |
| val |= DP_TP_CTL_LINK_TRAIN_PAT1; |
| I915_WRITE(DP_TP_CTL(port), val); |
| POSTING_READ(DP_TP_CTL(port)); |
| |
| if (wait) |
| intel_wait_ddi_buf_idle(dev_priv, port); |
| } |
| |
| val = DP_TP_CTL_ENABLE | |
| DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE; |
| if (intel_dp->is_mst) |
| val |= DP_TP_CTL_MODE_MST; |
| else { |
| val |= DP_TP_CTL_MODE_SST; |
| if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) |
| val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE; |
| } |
| I915_WRITE(DP_TP_CTL(port), val); |
| POSTING_READ(DP_TP_CTL(port)); |
| |
| intel_dp->DP |= DDI_BUF_CTL_ENABLE; |
| I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP); |
| POSTING_READ(DDI_BUF_CTL(port)); |
| |
| udelay(600); |
| } |
| |
| void intel_ddi_fdi_disable(struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = crtc->dev->dev_private; |
| struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc); |
| uint32_t val; |
| |
| intel_ddi_post_disable(intel_encoder); |
| |
| val = I915_READ(_FDI_RXA_CTL); |
| val &= ~FDI_RX_ENABLE; |
| I915_WRITE(_FDI_RXA_CTL, val); |
| |
| val = I915_READ(_FDI_RXA_MISC); |
| val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); |
| val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2); |
| I915_WRITE(_FDI_RXA_MISC, val); |
| |
| val = I915_READ(_FDI_RXA_CTL); |
| val &= ~FDI_PCDCLK; |
| I915_WRITE(_FDI_RXA_CTL, val); |
| |
| val = I915_READ(_FDI_RXA_CTL); |
| val &= ~FDI_RX_PLL_ENABLE; |
| I915_WRITE(_FDI_RXA_CTL, val); |
| } |
| |
| static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder) |
| { |
| struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base); |
| int type = intel_dig_port->base.type; |
| |
| if (type != INTEL_OUTPUT_DISPLAYPORT && |
| type != INTEL_OUTPUT_EDP && |
| type != INTEL_OUTPUT_UNKNOWN) { |
| return; |
| } |
| |
| intel_dp_hot_plug(intel_encoder); |
| } |
| |
| void intel_ddi_get_config(struct intel_encoder *encoder, |
| struct intel_crtc_state *pipe_config) |
| { |
| struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); |
| enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; |
| struct intel_hdmi *intel_hdmi; |
| u32 temp, flags = 0; |
| |
| temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); |
| if (temp & TRANS_DDI_PHSYNC) |
| flags |= DRM_MODE_FLAG_PHSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NHSYNC; |
| if (temp & TRANS_DDI_PVSYNC) |
| flags |= DRM_MODE_FLAG_PVSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NVSYNC; |
| |
| pipe_config->base.adjusted_mode.flags |= flags; |
| |
| switch (temp & TRANS_DDI_BPC_MASK) { |
| case TRANS_DDI_BPC_6: |
| pipe_config->pipe_bpp = 18; |
| break; |
| case TRANS_DDI_BPC_8: |
| pipe_config->pipe_bpp = 24; |
| break; |
| case TRANS_DDI_BPC_10: |
| pipe_config->pipe_bpp = 30; |
| break; |
| case TRANS_DDI_BPC_12: |
| pipe_config->pipe_bpp = 36; |
| break; |
| default: |
| break; |
| } |
| |
| switch (temp & TRANS_DDI_MODE_SELECT_MASK) { |
| case TRANS_DDI_MODE_SELECT_HDMI: |
| pipe_config->has_hdmi_sink = true; |
| intel_hdmi = enc_to_intel_hdmi(&encoder->base); |
| |
| if (intel_hdmi->infoframe_enabled(&encoder->base)) |
| pipe_config->has_infoframe = true; |
| break; |
| case TRANS_DDI_MODE_SELECT_DVI: |
| case TRANS_DDI_MODE_SELECT_FDI: |
| break; |
| case TRANS_DDI_MODE_SELECT_DP_SST: |
| case TRANS_DDI_MODE_SELECT_DP_MST: |
| pipe_config->has_dp_encoder = true; |
| intel_dp_get_m_n(intel_crtc, pipe_config); |
| break; |
| default: |
| break; |
| } |
| |
| if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) { |
| temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD); |
| if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe)) |
| pipe_config->has_audio = true; |
| } |
| |
| if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp && |
| pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) { |
| /* |
| * This is a big fat ugly hack. |
| * |
| * Some machines in UEFI boot mode provide us a VBT that has 18 |
| * bpp and 1.62 GHz link bandwidth for eDP, which for reasons |
| * unknown we fail to light up. Yet the same BIOS boots up with |
| * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as |
| * max, not what it tells us to use. |
| * |
| * Note: This will still be broken if the eDP panel is not lit |
| * up by the BIOS, and thus we can't get the mode at module |
| * load. |
| */ |
| DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", |
| pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp); |
| dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp; |
| } |
| |
| intel_ddi_clock_get(encoder, pipe_config); |
| } |
| |
| static void intel_ddi_destroy(struct drm_encoder *encoder) |
| { |
| /* HDMI has nothing special to destroy, so we can go with this. */ |
| intel_dp_encoder_destroy(encoder); |
| } |
| |
| static bool intel_ddi_compute_config(struct intel_encoder *encoder, |
| struct intel_crtc_state *pipe_config) |
| { |
| int type = encoder->type; |
| int port = intel_ddi_get_encoder_port(encoder); |
| |
| WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n"); |
| |
| if (port == PORT_A) |
| pipe_config->cpu_transcoder = TRANSCODER_EDP; |
| |
| if (type == INTEL_OUTPUT_HDMI) |
| return intel_hdmi_compute_config(encoder, pipe_config); |
| else |
| return intel_dp_compute_config(encoder, pipe_config); |
| } |
| |
| static const struct drm_encoder_funcs intel_ddi_funcs = { |
| .destroy = intel_ddi_destroy, |
| }; |
| |
| static struct intel_connector * |
| intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port) |
| { |
| struct intel_connector *connector; |
| enum port port = intel_dig_port->port; |
| |
| connector = kzalloc(sizeof(*connector), GFP_KERNEL); |
| if (!connector) |
| return NULL; |
| |
| intel_dig_port->dp.output_reg = DDI_BUF_CTL(port); |
| if (!intel_dp_init_connector(intel_dig_port, connector)) { |
| kfree(connector); |
| return NULL; |
| } |
| |
| return connector; |
| } |
| |
| static struct intel_connector * |
| intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port) |
| { |
| struct intel_connector *connector; |
| enum port port = intel_dig_port->port; |
| |
| connector = kzalloc(sizeof(*connector), GFP_KERNEL); |
| if (!connector) |
| return NULL; |
| |
| intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port); |
| intel_hdmi_init_connector(intel_dig_port, connector); |
| |
| return connector; |
| } |
| |
| void intel_ddi_init(struct drm_device *dev, enum port port) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *intel_dig_port; |
| struct intel_encoder *intel_encoder; |
| struct drm_encoder *encoder; |
| bool init_hdmi, init_dp; |
| |
| init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi || |
| dev_priv->vbt.ddi_port_info[port].supports_hdmi); |
| init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp; |
| if (!init_dp && !init_hdmi) { |
| DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n", |
| port_name(port)); |
| init_hdmi = true; |
| init_dp = true; |
| } |
| |
| intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); |
| if (!intel_dig_port) |
| return; |
| |
| intel_encoder = &intel_dig_port->base; |
| encoder = &intel_encoder->base; |
| |
| drm_encoder_init(dev, encoder, &intel_ddi_funcs, |
| DRM_MODE_ENCODER_TMDS); |
| |
| intel_encoder->compute_config = intel_ddi_compute_config; |
| intel_encoder->enable = intel_enable_ddi; |
| intel_encoder->pre_enable = intel_ddi_pre_enable; |
| intel_encoder->disable = intel_disable_ddi; |
| intel_encoder->post_disable = intel_ddi_post_disable; |
| intel_encoder->get_hw_state = intel_ddi_get_hw_state; |
| intel_encoder->get_config = intel_ddi_get_config; |
| |
| intel_dig_port->port = port; |
| intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) & |
| (DDI_BUF_PORT_REVERSAL | |
| DDI_A_4_LANES); |
| |
| intel_encoder->type = INTEL_OUTPUT_UNKNOWN; |
| intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); |
| intel_encoder->cloneable = 0; |
| intel_encoder->hot_plug = intel_ddi_hot_plug; |
| |
| if (init_dp) { |
| if (!intel_ddi_init_dp_connector(intel_dig_port)) |
| goto err; |
| |
| intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; |
| dev_priv->hpd_irq_port[port] = intel_dig_port; |
| } |
| |
| /* In theory we don't need the encoder->type check, but leave it just in |
| * case we have some really bad VBTs... */ |
| if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) { |
| if (!intel_ddi_init_hdmi_connector(intel_dig_port)) |
| goto err; |
| } |
| |
| return; |
| |
| err: |
| drm_encoder_cleanup(encoder); |
| kfree(intel_dig_port); |
| } |