| /* |
| * MTD SPI driver for ST M25Pxx (and similar) serial flash chips |
| * |
| * Author: Mike Lavender, mike@steroidmicros.com |
| * |
| * Copyright (c) 2005, Intec Automation Inc. |
| * |
| * Some parts are based on lart.c by Abraham Van Der Merwe |
| * |
| * Cleaned up and generalized based on mtd_dataflash.c |
| * |
| * This code is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/interrupt.h> |
| #include <linux/mutex.h> |
| #include <linux/math64.h> |
| |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/partitions.h> |
| |
| #include <linux/spi/spi.h> |
| #include <linux/spi/flash.h> |
| |
| |
| #define FLASH_PAGESIZE 256 |
| |
| /* Flash opcodes. */ |
| #define OPCODE_WREN 0x06 /* Write enable */ |
| #define OPCODE_RDSR 0x05 /* Read status register */ |
| #define OPCODE_WRSR 0x01 /* Write status register 1 byte */ |
| #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */ |
| #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */ |
| #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */ |
| #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */ |
| #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */ |
| #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */ |
| #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */ |
| #define OPCODE_RDID 0x9f /* Read JEDEC ID */ |
| |
| /* Status Register bits. */ |
| #define SR_WIP 1 /* Write in progress */ |
| #define SR_WEL 2 /* Write enable latch */ |
| /* meaning of other SR_* bits may differ between vendors */ |
| #define SR_BP0 4 /* Block protect 0 */ |
| #define SR_BP1 8 /* Block protect 1 */ |
| #define SR_BP2 0x10 /* Block protect 2 */ |
| #define SR_SRWD 0x80 /* SR write protect */ |
| |
| /* Define max times to check status register before we give up. */ |
| #define MAX_READY_WAIT_COUNT 100000 |
| #define CMD_SIZE 4 |
| |
| #ifdef CONFIG_M25PXX_USE_FAST_READ |
| #define OPCODE_READ OPCODE_FAST_READ |
| #define FAST_READ_DUMMY_BYTE 1 |
| #else |
| #define OPCODE_READ OPCODE_NORM_READ |
| #define FAST_READ_DUMMY_BYTE 0 |
| #endif |
| |
| #ifdef CONFIG_MTD_PARTITIONS |
| #define mtd_has_partitions() (1) |
| #else |
| #define mtd_has_partitions() (0) |
| #endif |
| |
| /****************************************************************************/ |
| |
| struct m25p { |
| struct spi_device *spi; |
| struct mutex lock; |
| struct mtd_info mtd; |
| unsigned partitioned:1; |
| u8 erase_opcode; |
| u8 command[CMD_SIZE + FAST_READ_DUMMY_BYTE]; |
| }; |
| |
| static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd) |
| { |
| return container_of(mtd, struct m25p, mtd); |
| } |
| |
| /****************************************************************************/ |
| |
| /* |
| * Internal helper functions |
| */ |
| |
| /* |
| * Read the status register, returning its value in the location |
| * Return the status register value. |
| * Returns negative if error occurred. |
| */ |
| static int read_sr(struct m25p *flash) |
| { |
| ssize_t retval; |
| u8 code = OPCODE_RDSR; |
| u8 val; |
| |
| retval = spi_write_then_read(flash->spi, &code, 1, &val, 1); |
| |
| if (retval < 0) { |
| dev_err(&flash->spi->dev, "error %d reading SR\n", |
| (int) retval); |
| return retval; |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Write status register 1 byte |
| * Returns negative if error occurred. |
| */ |
| static int write_sr(struct m25p *flash, u8 val) |
| { |
| flash->command[0] = OPCODE_WRSR; |
| flash->command[1] = val; |
| |
| return spi_write(flash->spi, flash->command, 2); |
| } |
| |
| /* |
| * Set write enable latch with Write Enable command. |
| * Returns negative if error occurred. |
| */ |
| static inline int write_enable(struct m25p *flash) |
| { |
| u8 code = OPCODE_WREN; |
| |
| return spi_write_then_read(flash->spi, &code, 1, NULL, 0); |
| } |
| |
| |
| /* |
| * Service routine to read status register until ready, or timeout occurs. |
| * Returns non-zero if error. |
| */ |
| static int wait_till_ready(struct m25p *flash) |
| { |
| int count; |
| int sr; |
| |
| /* one chip guarantees max 5 msec wait here after page writes, |
| * but potentially three seconds (!) after page erase. |
| */ |
| for (count = 0; count < MAX_READY_WAIT_COUNT; count++) { |
| if ((sr = read_sr(flash)) < 0) |
| break; |
| else if (!(sr & SR_WIP)) |
| return 0; |
| |
| /* REVISIT sometimes sleeping would be best */ |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Erase the whole flash memory |
| * |
| * Returns 0 if successful, non-zero otherwise. |
| */ |
| static int erase_chip(struct m25p *flash) |
| { |
| DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n", |
| dev_name(&flash->spi->dev), __func__, |
| (long long)(flash->mtd.size >> 10)); |
| |
| /* Wait until finished previous write command. */ |
| if (wait_till_ready(flash)) |
| return 1; |
| |
| /* Send write enable, then erase commands. */ |
| write_enable(flash); |
| |
| /* Set up command buffer. */ |
| flash->command[0] = OPCODE_CHIP_ERASE; |
| |
| spi_write(flash->spi, flash->command, 1); |
| |
| return 0; |
| } |
| |
| /* |
| * Erase one sector of flash memory at offset ``offset'' which is any |
| * address within the sector which should be erased. |
| * |
| * Returns 0 if successful, non-zero otherwise. |
| */ |
| static int erase_sector(struct m25p *flash, u32 offset) |
| { |
| DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n", |
| dev_name(&flash->spi->dev), __func__, |
| flash->mtd.erasesize / 1024, offset); |
| |
| /* Wait until finished previous write command. */ |
| if (wait_till_ready(flash)) |
| return 1; |
| |
| /* Send write enable, then erase commands. */ |
| write_enable(flash); |
| |
| /* Set up command buffer. */ |
| flash->command[0] = flash->erase_opcode; |
| flash->command[1] = offset >> 16; |
| flash->command[2] = offset >> 8; |
| flash->command[3] = offset; |
| |
| spi_write(flash->spi, flash->command, CMD_SIZE); |
| |
| return 0; |
| } |
| |
| /****************************************************************************/ |
| |
| /* |
| * MTD implementation |
| */ |
| |
| /* |
| * Erase an address range on the flash chip. The address range may extend |
| * one or more erase sectors. Return an error is there is a problem erasing. |
| */ |
| static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| struct m25p *flash = mtd_to_m25p(mtd); |
| u32 addr,len; |
| uint32_t rem; |
| |
| DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n", |
| dev_name(&flash->spi->dev), __func__, "at", |
| (long long)instr->addr, (long long)instr->len); |
| |
| /* sanity checks */ |
| if (instr->addr + instr->len > flash->mtd.size) |
| return -EINVAL; |
| div_u64_rem(instr->len, mtd->erasesize, &rem); |
| if (rem) |
| return -EINVAL; |
| |
| addr = instr->addr; |
| len = instr->len; |
| |
| mutex_lock(&flash->lock); |
| |
| /* whole-chip erase? */ |
| if (len == flash->mtd.size && erase_chip(flash)) { |
| instr->state = MTD_ERASE_FAILED; |
| mutex_unlock(&flash->lock); |
| return -EIO; |
| |
| /* REVISIT in some cases we could speed up erasing large regions |
| * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up |
| * to use "small sector erase", but that's not always optimal. |
| */ |
| |
| /* "sector"-at-a-time erase */ |
| } else { |
| while (len) { |
| if (erase_sector(flash, addr)) { |
| instr->state = MTD_ERASE_FAILED; |
| mutex_unlock(&flash->lock); |
| return -EIO; |
| } |
| |
| addr += mtd->erasesize; |
| len -= mtd->erasesize; |
| } |
| } |
| |
| mutex_unlock(&flash->lock); |
| |
| instr->state = MTD_ERASE_DONE; |
| mtd_erase_callback(instr); |
| |
| return 0; |
| } |
| |
| /* |
| * Read an address range from the flash chip. The address range |
| * may be any size provided it is within the physical boundaries. |
| */ |
| static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct m25p *flash = mtd_to_m25p(mtd); |
| struct spi_transfer t[2]; |
| struct spi_message m; |
| |
| DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n", |
| dev_name(&flash->spi->dev), __func__, "from", |
| (u32)from, len); |
| |
| /* sanity checks */ |
| if (!len) |
| return 0; |
| |
| if (from + len > flash->mtd.size) |
| return -EINVAL; |
| |
| spi_message_init(&m); |
| memset(t, 0, (sizeof t)); |
| |
| /* NOTE: |
| * OPCODE_FAST_READ (if available) is faster. |
| * Should add 1 byte DUMMY_BYTE. |
| */ |
| t[0].tx_buf = flash->command; |
| t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE; |
| spi_message_add_tail(&t[0], &m); |
| |
| t[1].rx_buf = buf; |
| t[1].len = len; |
| spi_message_add_tail(&t[1], &m); |
| |
| /* Byte count starts at zero. */ |
| if (retlen) |
| *retlen = 0; |
| |
| mutex_lock(&flash->lock); |
| |
| /* Wait till previous write/erase is done. */ |
| if (wait_till_ready(flash)) { |
| /* REVISIT status return?? */ |
| mutex_unlock(&flash->lock); |
| return 1; |
| } |
| |
| /* FIXME switch to OPCODE_FAST_READ. It's required for higher |
| * clocks; and at this writing, every chip this driver handles |
| * supports that opcode. |
| */ |
| |
| /* Set up the write data buffer. */ |
| flash->command[0] = OPCODE_READ; |
| flash->command[1] = from >> 16; |
| flash->command[2] = from >> 8; |
| flash->command[3] = from; |
| |
| spi_sync(flash->spi, &m); |
| |
| *retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE; |
| |
| mutex_unlock(&flash->lock); |
| |
| return 0; |
| } |
| |
| /* |
| * Write an address range to the flash chip. Data must be written in |
| * FLASH_PAGESIZE chunks. The address range may be any size provided |
| * it is within the physical boundaries. |
| */ |
| static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct m25p *flash = mtd_to_m25p(mtd); |
| u32 page_offset, page_size; |
| struct spi_transfer t[2]; |
| struct spi_message m; |
| |
| DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n", |
| dev_name(&flash->spi->dev), __func__, "to", |
| (u32)to, len); |
| |
| if (retlen) |
| *retlen = 0; |
| |
| /* sanity checks */ |
| if (!len) |
| return(0); |
| |
| if (to + len > flash->mtd.size) |
| return -EINVAL; |
| |
| spi_message_init(&m); |
| memset(t, 0, (sizeof t)); |
| |
| t[0].tx_buf = flash->command; |
| t[0].len = CMD_SIZE; |
| spi_message_add_tail(&t[0], &m); |
| |
| t[1].tx_buf = buf; |
| spi_message_add_tail(&t[1], &m); |
| |
| mutex_lock(&flash->lock); |
| |
| /* Wait until finished previous write command. */ |
| if (wait_till_ready(flash)) { |
| mutex_unlock(&flash->lock); |
| return 1; |
| } |
| |
| write_enable(flash); |
| |
| /* Set up the opcode in the write buffer. */ |
| flash->command[0] = OPCODE_PP; |
| flash->command[1] = to >> 16; |
| flash->command[2] = to >> 8; |
| flash->command[3] = to; |
| |
| /* what page do we start with? */ |
| page_offset = to % FLASH_PAGESIZE; |
| |
| /* do all the bytes fit onto one page? */ |
| if (page_offset + len <= FLASH_PAGESIZE) { |
| t[1].len = len; |
| |
| spi_sync(flash->spi, &m); |
| |
| *retlen = m.actual_length - CMD_SIZE; |
| } else { |
| u32 i; |
| |
| /* the size of data remaining on the first page */ |
| page_size = FLASH_PAGESIZE - page_offset; |
| |
| t[1].len = page_size; |
| spi_sync(flash->spi, &m); |
| |
| *retlen = m.actual_length - CMD_SIZE; |
| |
| /* write everything in PAGESIZE chunks */ |
| for (i = page_size; i < len; i += page_size) { |
| page_size = len - i; |
| if (page_size > FLASH_PAGESIZE) |
| page_size = FLASH_PAGESIZE; |
| |
| /* write the next page to flash */ |
| flash->command[1] = (to + i) >> 16; |
| flash->command[2] = (to + i) >> 8; |
| flash->command[3] = (to + i); |
| |
| t[1].tx_buf = buf + i; |
| t[1].len = page_size; |
| |
| wait_till_ready(flash); |
| |
| write_enable(flash); |
| |
| spi_sync(flash->spi, &m); |
| |
| if (retlen) |
| *retlen += m.actual_length - CMD_SIZE; |
| } |
| } |
| |
| mutex_unlock(&flash->lock); |
| |
| return 0; |
| } |
| |
| |
| /****************************************************************************/ |
| |
| /* |
| * SPI device driver setup and teardown |
| */ |
| |
| struct flash_info { |
| char *name; |
| |
| /* JEDEC id zero means "no ID" (most older chips); otherwise it has |
| * a high byte of zero plus three data bytes: the manufacturer id, |
| * then a two byte device id. |
| */ |
| u32 jedec_id; |
| u16 ext_id; |
| |
| /* The size listed here is what works with OPCODE_SE, which isn't |
| * necessarily called a "sector" by the vendor. |
| */ |
| unsigned sector_size; |
| u16 n_sectors; |
| |
| u16 flags; |
| #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */ |
| }; |
| |
| |
| /* NOTE: double check command sets and memory organization when you add |
| * more flash chips. This current list focusses on newer chips, which |
| * have been converging on command sets which including JEDEC ID. |
| */ |
| static struct flash_info __devinitdata m25p_data [] = { |
| |
| /* Atmel -- some are (confusingly) marketed as "DataFlash" */ |
| { "at25fs010", 0x1f6601, 0, 32 * 1024, 4, SECT_4K, }, |
| { "at25fs040", 0x1f6604, 0, 64 * 1024, 8, SECT_4K, }, |
| |
| { "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K, }, |
| { "at25df641", 0x1f4800, 0, 64 * 1024, 128, SECT_4K, }, |
| |
| { "at26f004", 0x1f0400, 0, 64 * 1024, 8, SECT_4K, }, |
| { "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K, }, |
| { "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K, }, |
| { "at26df321", 0x1f4701, 0, 64 * 1024, 64, SECT_4K, }, |
| |
| /* Spansion -- single (large) sector size only, at least |
| * for the chips listed here (without boot sectors). |
| */ |
| { "s25sl004a", 0x010212, 0, 64 * 1024, 8, }, |
| { "s25sl008a", 0x010213, 0, 64 * 1024, 16, }, |
| { "s25sl016a", 0x010214, 0, 64 * 1024, 32, }, |
| { "s25sl032a", 0x010215, 0, 64 * 1024, 64, }, |
| { "s25sl064a", 0x010216, 0, 64 * 1024, 128, }, |
| { "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, }, |
| { "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, }, |
| |
| /* SST -- large erase sizes are "overlays", "sectors" are 4K */ |
| { "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K, }, |
| { "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K, }, |
| { "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K, }, |
| { "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K, }, |
| |
| /* ST Microelectronics -- newer production may have feature updates */ |
| { "m25p05", 0x202010, 0, 32 * 1024, 2, }, |
| { "m25p10", 0x202011, 0, 32 * 1024, 4, }, |
| { "m25p20", 0x202012, 0, 64 * 1024, 4, }, |
| { "m25p40", 0x202013, 0, 64 * 1024, 8, }, |
| { "m25p80", 0, 0, 64 * 1024, 16, }, |
| { "m25p16", 0x202015, 0, 64 * 1024, 32, }, |
| { "m25p32", 0x202016, 0, 64 * 1024, 64, }, |
| { "m25p64", 0x202017, 0, 64 * 1024, 128, }, |
| { "m25p128", 0x202018, 0, 256 * 1024, 64, }, |
| |
| { "m45pe80", 0x204014, 0, 64 * 1024, 16, }, |
| { "m45pe16", 0x204015, 0, 64 * 1024, 32, }, |
| |
| { "m25pe80", 0x208014, 0, 64 * 1024, 16, }, |
| { "m25pe16", 0x208015, 0, 64 * 1024, 32, SECT_4K, }, |
| |
| /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ |
| { "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, }, |
| { "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, }, |
| { "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, }, |
| { "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, }, |
| { "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, }, |
| { "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, }, |
| { "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, }, |
| }; |
| |
| static struct flash_info *__devinit jedec_probe(struct spi_device *spi) |
| { |
| int tmp; |
| u8 code = OPCODE_RDID; |
| u8 id[5]; |
| u32 jedec; |
| u16 ext_jedec; |
| struct flash_info *info; |
| |
| /* JEDEC also defines an optional "extended device information" |
| * string for after vendor-specific data, after the three bytes |
| * we use here. Supporting some chips might require using it. |
| */ |
| tmp = spi_write_then_read(spi, &code, 1, id, 5); |
| if (tmp < 0) { |
| DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n", |
| dev_name(&spi->dev), tmp); |
| return NULL; |
| } |
| jedec = id[0]; |
| jedec = jedec << 8; |
| jedec |= id[1]; |
| jedec = jedec << 8; |
| jedec |= id[2]; |
| |
| ext_jedec = id[3] << 8 | id[4]; |
| |
| for (tmp = 0, info = m25p_data; |
| tmp < ARRAY_SIZE(m25p_data); |
| tmp++, info++) { |
| if (info->jedec_id == jedec) { |
| if (info->ext_id != 0 && info->ext_id != ext_jedec) |
| continue; |
| return info; |
| } |
| } |
| dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); |
| return NULL; |
| } |
| |
| |
| /* |
| * board specific setup should have ensured the SPI clock used here |
| * matches what the READ command supports, at least until this driver |
| * understands FAST_READ (for clocks over 25 MHz). |
| */ |
| static int __devinit m25p_probe(struct spi_device *spi) |
| { |
| struct flash_platform_data *data; |
| struct m25p *flash; |
| struct flash_info *info; |
| unsigned i; |
| |
| /* Platform data helps sort out which chip type we have, as |
| * well as how this board partitions it. If we don't have |
| * a chip ID, try the JEDEC id commands; they'll work for most |
| * newer chips, even if we don't recognize the particular chip. |
| */ |
| data = spi->dev.platform_data; |
| if (data && data->type) { |
| for (i = 0, info = m25p_data; |
| i < ARRAY_SIZE(m25p_data); |
| i++, info++) { |
| if (strcmp(data->type, info->name) == 0) |
| break; |
| } |
| |
| /* unrecognized chip? */ |
| if (i == ARRAY_SIZE(m25p_data)) { |
| DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n", |
| dev_name(&spi->dev), data->type); |
| info = NULL; |
| |
| /* recognized; is that chip really what's there? */ |
| } else if (info->jedec_id) { |
| struct flash_info *chip = jedec_probe(spi); |
| |
| if (!chip || chip != info) { |
| dev_warn(&spi->dev, "found %s, expected %s\n", |
| chip ? chip->name : "UNKNOWN", |
| info->name); |
| info = NULL; |
| } |
| } |
| } else |
| info = jedec_probe(spi); |
| |
| if (!info) |
| return -ENODEV; |
| |
| flash = kzalloc(sizeof *flash, GFP_KERNEL); |
| if (!flash) |
| return -ENOMEM; |
| |
| flash->spi = spi; |
| mutex_init(&flash->lock); |
| dev_set_drvdata(&spi->dev, flash); |
| |
| /* |
| * Atmel serial flash tend to power up |
| * with the software protection bits set |
| */ |
| |
| if (info->jedec_id >> 16 == 0x1f) { |
| write_enable(flash); |
| write_sr(flash, 0); |
| } |
| |
| if (data && data->name) |
| flash->mtd.name = data->name; |
| else |
| flash->mtd.name = dev_name(&spi->dev); |
| |
| flash->mtd.type = MTD_NORFLASH; |
| flash->mtd.writesize = 1; |
| flash->mtd.flags = MTD_CAP_NORFLASH; |
| flash->mtd.size = info->sector_size * info->n_sectors; |
| flash->mtd.erase = m25p80_erase; |
| flash->mtd.read = m25p80_read; |
| flash->mtd.write = m25p80_write; |
| |
| /* prefer "small sector" erase if possible */ |
| if (info->flags & SECT_4K) { |
| flash->erase_opcode = OPCODE_BE_4K; |
| flash->mtd.erasesize = 4096; |
| } else { |
| flash->erase_opcode = OPCODE_SE; |
| flash->mtd.erasesize = info->sector_size; |
| } |
| |
| dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name, |
| (long long)flash->mtd.size >> 10); |
| |
| DEBUG(MTD_DEBUG_LEVEL2, |
| "mtd .name = %s, .size = 0x%llx (%lldMiB) " |
| ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", |
| flash->mtd.name, |
| (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20), |
| flash->mtd.erasesize, flash->mtd.erasesize / 1024, |
| flash->mtd.numeraseregions); |
| |
| if (flash->mtd.numeraseregions) |
| for (i = 0; i < flash->mtd.numeraseregions; i++) |
| DEBUG(MTD_DEBUG_LEVEL2, |
| "mtd.eraseregions[%d] = { .offset = 0x%llx, " |
| ".erasesize = 0x%.8x (%uKiB), " |
| ".numblocks = %d }\n", |
| i, (long long)flash->mtd.eraseregions[i].offset, |
| flash->mtd.eraseregions[i].erasesize, |
| flash->mtd.eraseregions[i].erasesize / 1024, |
| flash->mtd.eraseregions[i].numblocks); |
| |
| |
| /* partitions should match sector boundaries; and it may be good to |
| * use readonly partitions for writeprotected sectors (BP2..BP0). |
| */ |
| if (mtd_has_partitions()) { |
| struct mtd_partition *parts = NULL; |
| int nr_parts = 0; |
| |
| #ifdef CONFIG_MTD_CMDLINE_PARTS |
| static const char *part_probes[] = { "cmdlinepart", NULL, }; |
| |
| nr_parts = parse_mtd_partitions(&flash->mtd, |
| part_probes, &parts, 0); |
| #endif |
| |
| if (nr_parts <= 0 && data && data->parts) { |
| parts = data->parts; |
| nr_parts = data->nr_parts; |
| } |
| |
| if (nr_parts > 0) { |
| for (i = 0; i < nr_parts; i++) { |
| DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = " |
| "{.name = %s, .offset = 0x%llx, " |
| ".size = 0x%llx (%lldKiB) }\n", |
| i, parts[i].name, |
| (long long)parts[i].offset, |
| (long long)parts[i].size, |
| (long long)(parts[i].size >> 10)); |
| } |
| flash->partitioned = 1; |
| return add_mtd_partitions(&flash->mtd, parts, nr_parts); |
| } |
| } else if (data->nr_parts) |
| dev_warn(&spi->dev, "ignoring %d default partitions on %s\n", |
| data->nr_parts, data->name); |
| |
| return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0; |
| } |
| |
| |
| static int __devexit m25p_remove(struct spi_device *spi) |
| { |
| struct m25p *flash = dev_get_drvdata(&spi->dev); |
| int status; |
| |
| /* Clean up MTD stuff. */ |
| if (mtd_has_partitions() && flash->partitioned) |
| status = del_mtd_partitions(&flash->mtd); |
| else |
| status = del_mtd_device(&flash->mtd); |
| if (status == 0) |
| kfree(flash); |
| return 0; |
| } |
| |
| |
| static struct spi_driver m25p80_driver = { |
| .driver = { |
| .name = "m25p80", |
| .bus = &spi_bus_type, |
| .owner = THIS_MODULE, |
| }, |
| .probe = m25p_probe, |
| .remove = __devexit_p(m25p_remove), |
| |
| /* REVISIT: many of these chips have deep power-down modes, which |
| * should clearly be entered on suspend() to minimize power use. |
| * And also when they're otherwise idle... |
| */ |
| }; |
| |
| |
| static int m25p80_init(void) |
| { |
| return spi_register_driver(&m25p80_driver); |
| } |
| |
| |
| static void m25p80_exit(void) |
| { |
| spi_unregister_driver(&m25p80_driver); |
| } |
| |
| |
| module_init(m25p80_init); |
| module_exit(m25p80_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Mike Lavender"); |
| MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips"); |