| /* |
| * Copyright © 2010 Daniel Vetter |
| * Copyright © 2011-2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/seq_file.h> |
| #include <drm/drmP.h> |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| #include "i915_vgpu.h" |
| #include "i915_trace.h" |
| #include "intel_drv.h" |
| |
| /** |
| * DOC: Global GTT views |
| * |
| * Background and previous state |
| * |
| * Historically objects could exists (be bound) in global GTT space only as |
| * singular instances with a view representing all of the object's backing pages |
| * in a linear fashion. This view will be called a normal view. |
| * |
| * To support multiple views of the same object, where the number of mapped |
| * pages is not equal to the backing store, or where the layout of the pages |
| * is not linear, concept of a GGTT view was added. |
| * |
| * One example of an alternative view is a stereo display driven by a single |
| * image. In this case we would have a framebuffer looking like this |
| * (2x2 pages): |
| * |
| * 12 |
| * 34 |
| * |
| * Above would represent a normal GGTT view as normally mapped for GPU or CPU |
| * rendering. In contrast, fed to the display engine would be an alternative |
| * view which could look something like this: |
| * |
| * 1212 |
| * 3434 |
| * |
| * In this example both the size and layout of pages in the alternative view is |
| * different from the normal view. |
| * |
| * Implementation and usage |
| * |
| * GGTT views are implemented using VMAs and are distinguished via enum |
| * i915_ggtt_view_type and struct i915_ggtt_view. |
| * |
| * A new flavour of core GEM functions which work with GGTT bound objects were |
| * added with the _ggtt_ infix, and sometimes with _view postfix to avoid |
| * renaming in large amounts of code. They take the struct i915_ggtt_view |
| * parameter encapsulating all metadata required to implement a view. |
| * |
| * As a helper for callers which are only interested in the normal view, |
| * globally const i915_ggtt_view_normal singleton instance exists. All old core |
| * GEM API functions, the ones not taking the view parameter, are operating on, |
| * or with the normal GGTT view. |
| * |
| * Code wanting to add or use a new GGTT view needs to: |
| * |
| * 1. Add a new enum with a suitable name. |
| * 2. Extend the metadata in the i915_ggtt_view structure if required. |
| * 3. Add support to i915_get_vma_pages(). |
| * |
| * New views are required to build a scatter-gather table from within the |
| * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and |
| * exists for the lifetime of an VMA. |
| * |
| * Core API is designed to have copy semantics which means that passed in |
| * struct i915_ggtt_view does not need to be persistent (left around after |
| * calling the core API functions). |
| * |
| */ |
| |
| static int |
| i915_get_ggtt_vma_pages(struct i915_vma *vma); |
| |
| const struct i915_ggtt_view i915_ggtt_view_normal; |
| const struct i915_ggtt_view i915_ggtt_view_rotated = { |
| .type = I915_GGTT_VIEW_ROTATED |
| }; |
| |
| static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt) |
| { |
| bool has_aliasing_ppgtt; |
| bool has_full_ppgtt; |
| |
| has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6; |
| has_full_ppgtt = INTEL_INFO(dev)->gen >= 7; |
| |
| if (intel_vgpu_active(dev)) |
| has_full_ppgtt = false; /* emulation is too hard */ |
| |
| /* |
| * We don't allow disabling PPGTT for gen9+ as it's a requirement for |
| * execlists, the sole mechanism available to submit work. |
| */ |
| if (INTEL_INFO(dev)->gen < 9 && |
| (enable_ppgtt == 0 || !has_aliasing_ppgtt)) |
| return 0; |
| |
| if (enable_ppgtt == 1) |
| return 1; |
| |
| if (enable_ppgtt == 2 && has_full_ppgtt) |
| return 2; |
| |
| #ifdef CONFIG_INTEL_IOMMU |
| /* Disable ppgtt on SNB if VT-d is on. */ |
| if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) { |
| DRM_INFO("Disabling PPGTT because VT-d is on\n"); |
| return 0; |
| } |
| #endif |
| |
| /* Early VLV doesn't have this */ |
| if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && |
| dev->pdev->revision < 0xb) { |
| DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); |
| return 0; |
| } |
| |
| if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists) |
| return 2; |
| else |
| return has_aliasing_ppgtt ? 1 : 0; |
| } |
| |
| static int ppgtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 unused) |
| { |
| u32 pte_flags = 0; |
| |
| /* Currently applicable only to VLV */ |
| if (vma->obj->gt_ro) |
| pte_flags |= PTE_READ_ONLY; |
| |
| vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start, |
| cache_level, pte_flags); |
| |
| return 0; |
| } |
| |
| static void ppgtt_unbind_vma(struct i915_vma *vma) |
| { |
| vma->vm->clear_range(vma->vm, |
| vma->node.start, |
| vma->obj->base.size, |
| true); |
| } |
| |
| static gen8_pte_t gen8_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid) |
| { |
| gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0; |
| pte |= addr; |
| |
| switch (level) { |
| case I915_CACHE_NONE: |
| pte |= PPAT_UNCACHED_INDEX; |
| break; |
| case I915_CACHE_WT: |
| pte |= PPAT_DISPLAY_ELLC_INDEX; |
| break; |
| default: |
| pte |= PPAT_CACHED_INDEX; |
| break; |
| } |
| |
| return pte; |
| } |
| |
| static gen8_pde_t gen8_pde_encode(struct drm_device *dev, |
| dma_addr_t addr, |
| enum i915_cache_level level) |
| { |
| gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; |
| pde |= addr; |
| if (level != I915_CACHE_NONE) |
| pde |= PPAT_CACHED_PDE_INDEX; |
| else |
| pde |= PPAT_UNCACHED_INDEX; |
| return pde; |
| } |
| |
| static gen6_pte_t snb_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 unused) |
| { |
| gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_L3_LLC: |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| MISSING_CASE(level); |
| } |
| |
| return pte; |
| } |
| |
| static gen6_pte_t ivb_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 unused) |
| { |
| gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_L3_LLC: |
| pte |= GEN7_PTE_CACHE_L3_LLC; |
| break; |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| MISSING_CASE(level); |
| } |
| |
| return pte; |
| } |
| |
| static gen6_pte_t byt_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 flags) |
| { |
| gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| if (!(flags & PTE_READ_ONLY)) |
| pte |= BYT_PTE_WRITEABLE; |
| |
| if (level != I915_CACHE_NONE) |
| pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; |
| |
| return pte; |
| } |
| |
| static gen6_pte_t hsw_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 unused) |
| { |
| gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= HSW_PTE_ADDR_ENCODE(addr); |
| |
| if (level != I915_CACHE_NONE) |
| pte |= HSW_WB_LLC_AGE3; |
| |
| return pte; |
| } |
| |
| static gen6_pte_t iris_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 unused) |
| { |
| gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= HSW_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_NONE: |
| break; |
| case I915_CACHE_WT: |
| pte |= HSW_WT_ELLC_LLC_AGE3; |
| break; |
| default: |
| pte |= HSW_WB_ELLC_LLC_AGE3; |
| break; |
| } |
| |
| return pte; |
| } |
| |
| #define i915_dma_unmap_single(px, dev) \ |
| __i915_dma_unmap_single((px)->daddr, dev) |
| |
| static void __i915_dma_unmap_single(dma_addr_t daddr, |
| struct drm_device *dev) |
| { |
| struct device *device = &dev->pdev->dev; |
| |
| dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL); |
| } |
| |
| /** |
| * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc. |
| * @px: Page table/dir/etc to get a DMA map for |
| * @dev: drm device |
| * |
| * Page table allocations are unified across all gens. They always require a |
| * single 4k allocation, as well as a DMA mapping. If we keep the structs |
| * symmetric here, the simple macro covers us for every page table type. |
| * |
| * Return: 0 if success. |
| */ |
| #define i915_dma_map_single(px, dev) \ |
| i915_dma_map_page_single((px)->page, (dev), &(px)->daddr) |
| |
| static int i915_dma_map_page_single(struct page *page, |
| struct drm_device *dev, |
| dma_addr_t *daddr) |
| { |
| struct device *device = &dev->pdev->dev; |
| |
| *daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL); |
| if (dma_mapping_error(device, *daddr)) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void unmap_and_free_pt(struct i915_page_table *pt, |
| struct drm_device *dev) |
| { |
| if (WARN_ON(!pt->page)) |
| return; |
| |
| i915_dma_unmap_single(pt, dev); |
| __free_page(pt->page); |
| kfree(pt->used_ptes); |
| kfree(pt); |
| } |
| |
| static void gen8_initialize_pt(struct i915_address_space *vm, |
| struct i915_page_table *pt) |
| { |
| gen8_pte_t *pt_vaddr, scratch_pte; |
| int i; |
| |
| pt_vaddr = kmap_atomic(pt->page); |
| scratch_pte = gen8_pte_encode(vm->scratch.addr, |
| I915_CACHE_LLC, true); |
| |
| for (i = 0; i < GEN8_PTES; i++) |
| pt_vaddr[i] = scratch_pte; |
| |
| if (!HAS_LLC(vm->dev)) |
| drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); |
| kunmap_atomic(pt_vaddr); |
| } |
| |
| static struct i915_page_table *alloc_pt_single(struct drm_device *dev) |
| { |
| struct i915_page_table *pt; |
| const size_t count = INTEL_INFO(dev)->gen >= 8 ? |
| GEN8_PTES : GEN6_PTES; |
| int ret = -ENOMEM; |
| |
| pt = kzalloc(sizeof(*pt), GFP_KERNEL); |
| if (!pt) |
| return ERR_PTR(-ENOMEM); |
| |
| pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes), |
| GFP_KERNEL); |
| |
| if (!pt->used_ptes) |
| goto fail_bitmap; |
| |
| pt->page = alloc_page(GFP_KERNEL); |
| if (!pt->page) |
| goto fail_page; |
| |
| ret = i915_dma_map_single(pt, dev); |
| if (ret) |
| goto fail_dma; |
| |
| return pt; |
| |
| fail_dma: |
| __free_page(pt->page); |
| fail_page: |
| kfree(pt->used_ptes); |
| fail_bitmap: |
| kfree(pt); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static void unmap_and_free_pd(struct i915_page_directory *pd, |
| struct drm_device *dev) |
| { |
| if (pd->page) { |
| i915_dma_unmap_single(pd, dev); |
| __free_page(pd->page); |
| kfree(pd->used_pdes); |
| kfree(pd); |
| } |
| } |
| |
| static struct i915_page_directory *alloc_pd_single(struct drm_device *dev) |
| { |
| struct i915_page_directory *pd; |
| int ret = -ENOMEM; |
| |
| pd = kzalloc(sizeof(*pd), GFP_KERNEL); |
| if (!pd) |
| return ERR_PTR(-ENOMEM); |
| |
| pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES), |
| sizeof(*pd->used_pdes), GFP_KERNEL); |
| if (!pd->used_pdes) |
| goto free_pd; |
| |
| pd->page = alloc_page(GFP_KERNEL); |
| if (!pd->page) |
| goto free_bitmap; |
| |
| ret = i915_dma_map_single(pd, dev); |
| if (ret) |
| goto free_page; |
| |
| return pd; |
| |
| free_page: |
| __free_page(pd->page); |
| free_bitmap: |
| kfree(pd->used_pdes); |
| free_pd: |
| kfree(pd); |
| |
| return ERR_PTR(ret); |
| } |
| |
| /* Broadwell Page Directory Pointer Descriptors */ |
| static int gen8_write_pdp(struct intel_engine_cs *ring, |
| unsigned entry, |
| dma_addr_t addr) |
| { |
| int ret; |
| |
| BUG_ON(entry >= 4); |
| |
| ret = intel_ring_begin(ring, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry)); |
| intel_ring_emit(ring, upper_32_bits(addr)); |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry)); |
| intel_ring_emit(ring, lower_32_bits(addr)); |
| intel_ring_advance(ring); |
| |
| return 0; |
| } |
| |
| static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct intel_engine_cs *ring) |
| { |
| int i, ret; |
| |
| for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) { |
| struct i915_page_directory *pd = ppgtt->pdp.page_directory[i]; |
| dma_addr_t pd_daddr = pd ? pd->daddr : ppgtt->scratch_pd->daddr; |
| /* The page directory might be NULL, but we need to clear out |
| * whatever the previous context might have used. */ |
| ret = gen8_write_pdp(ring, i, pd_daddr); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void gen8_ppgtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen8_pte_t *pt_vaddr, scratch_pte; |
| unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK; |
| unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK; |
| unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| unsigned last_pte, i; |
| |
| scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr, |
| I915_CACHE_LLC, use_scratch); |
| |
| while (num_entries) { |
| struct i915_page_directory *pd; |
| struct i915_page_table *pt; |
| struct page *page_table; |
| |
| if (WARN_ON(!ppgtt->pdp.page_directory[pdpe])) |
| continue; |
| |
| pd = ppgtt->pdp.page_directory[pdpe]; |
| |
| if (WARN_ON(!pd->page_table[pde])) |
| continue; |
| |
| pt = pd->page_table[pde]; |
| |
| if (WARN_ON(!pt->page)) |
| continue; |
| |
| page_table = pt->page; |
| |
| last_pte = pte + num_entries; |
| if (last_pte > GEN8_PTES) |
| last_pte = GEN8_PTES; |
| |
| pt_vaddr = kmap_atomic(page_table); |
| |
| for (i = pte; i < last_pte; i++) { |
| pt_vaddr[i] = scratch_pte; |
| num_entries--; |
| } |
| |
| if (!HAS_LLC(ppgtt->base.dev)) |
| drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); |
| kunmap_atomic(pt_vaddr); |
| |
| pte = 0; |
| if (++pde == I915_PDES) { |
| pdpe++; |
| pde = 0; |
| } |
| } |
| } |
| |
| static void gen8_ppgtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| uint64_t start, |
| enum i915_cache_level cache_level, u32 unused) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen8_pte_t *pt_vaddr; |
| unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK; |
| unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK; |
| unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK; |
| struct sg_page_iter sg_iter; |
| |
| pt_vaddr = NULL; |
| |
| for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { |
| if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES)) |
| break; |
| |
| if (pt_vaddr == NULL) { |
| struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe]; |
| struct i915_page_table *pt = pd->page_table[pde]; |
| struct page *page_table = pt->page; |
| |
| pt_vaddr = kmap_atomic(page_table); |
| } |
| |
| pt_vaddr[pte] = |
| gen8_pte_encode(sg_page_iter_dma_address(&sg_iter), |
| cache_level, true); |
| if (++pte == GEN8_PTES) { |
| if (!HAS_LLC(ppgtt->base.dev)) |
| drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); |
| kunmap_atomic(pt_vaddr); |
| pt_vaddr = NULL; |
| if (++pde == I915_PDES) { |
| pdpe++; |
| pde = 0; |
| } |
| pte = 0; |
| } |
| } |
| if (pt_vaddr) { |
| if (!HAS_LLC(ppgtt->base.dev)) |
| drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); |
| kunmap_atomic(pt_vaddr); |
| } |
| } |
| |
| static void __gen8_do_map_pt(gen8_pde_t * const pde, |
| struct i915_page_table *pt, |
| struct drm_device *dev) |
| { |
| gen8_pde_t entry = |
| gen8_pde_encode(dev, pt->daddr, I915_CACHE_LLC); |
| *pde = entry; |
| } |
| |
| static void gen8_initialize_pd(struct i915_address_space *vm, |
| struct i915_page_directory *pd) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen8_pde_t *page_directory; |
| struct i915_page_table *pt; |
| int i; |
| |
| page_directory = kmap_atomic(pd->page); |
| pt = ppgtt->scratch_pt; |
| for (i = 0; i < I915_PDES; i++) |
| /* Map the PDE to the page table */ |
| __gen8_do_map_pt(page_directory + i, pt, vm->dev); |
| |
| if (!HAS_LLC(vm->dev)) |
| drm_clflush_virt_range(page_directory, PAGE_SIZE); |
| kunmap_atomic(page_directory); |
| } |
| |
| static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev) |
| { |
| int i; |
| |
| if (!pd->page) |
| return; |
| |
| for_each_set_bit(i, pd->used_pdes, I915_PDES) { |
| if (WARN_ON(!pd->page_table[i])) |
| continue; |
| |
| unmap_and_free_pt(pd->page_table[i], dev); |
| pd->page_table[i] = NULL; |
| } |
| } |
| |
| static void gen8_ppgtt_cleanup(struct i915_address_space *vm) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| int i; |
| |
| for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) { |
| if (WARN_ON(!ppgtt->pdp.page_directory[i])) |
| continue; |
| |
| gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev); |
| unmap_and_free_pd(ppgtt->pdp.page_directory[i], ppgtt->base.dev); |
| } |
| |
| unmap_and_free_pd(ppgtt->scratch_pd, ppgtt->base.dev); |
| unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev); |
| } |
| |
| /** |
| * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range. |
| * @ppgtt: Master ppgtt structure. |
| * @pd: Page directory for this address range. |
| * @start: Starting virtual address to begin allocations. |
| * @length Size of the allocations. |
| * @new_pts: Bitmap set by function with new allocations. Likely used by the |
| * caller to free on error. |
| * |
| * Allocate the required number of page tables. Extremely similar to |
| * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by |
| * the page directory boundary (instead of the page directory pointer). That |
| * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is |
| * possible, and likely that the caller will need to use multiple calls of this |
| * function to achieve the appropriate allocation. |
| * |
| * Return: 0 if success; negative error code otherwise. |
| */ |
| static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt, |
| struct i915_page_directory *pd, |
| uint64_t start, |
| uint64_t length, |
| unsigned long *new_pts) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct i915_page_table *pt; |
| uint64_t temp; |
| uint32_t pde; |
| |
| gen8_for_each_pde(pt, pd, start, length, temp, pde) { |
| /* Don't reallocate page tables */ |
| if (pt) { |
| /* Scratch is never allocated this way */ |
| WARN_ON(pt == ppgtt->scratch_pt); |
| continue; |
| } |
| |
| pt = alloc_pt_single(dev); |
| if (IS_ERR(pt)) |
| goto unwind_out; |
| |
| gen8_initialize_pt(&ppgtt->base, pt); |
| pd->page_table[pde] = pt; |
| set_bit(pde, new_pts); |
| } |
| |
| return 0; |
| |
| unwind_out: |
| for_each_set_bit(pde, new_pts, I915_PDES) |
| unmap_and_free_pt(pd->page_table[pde], dev); |
| |
| return -ENOMEM; |
| } |
| |
| /** |
| * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range. |
| * @ppgtt: Master ppgtt structure. |
| * @pdp: Page directory pointer for this address range. |
| * @start: Starting virtual address to begin allocations. |
| * @length Size of the allocations. |
| * @new_pds Bitmap set by function with new allocations. Likely used by the |
| * caller to free on error. |
| * |
| * Allocate the required number of page directories starting at the pde index of |
| * @start, and ending at the pde index @start + @length. This function will skip |
| * over already allocated page directories within the range, and only allocate |
| * new ones, setting the appropriate pointer within the pdp as well as the |
| * correct position in the bitmap @new_pds. |
| * |
| * The function will only allocate the pages within the range for a give page |
| * directory pointer. In other words, if @start + @length straddles a virtually |
| * addressed PDP boundary (512GB for 4k pages), there will be more allocations |
| * required by the caller, This is not currently possible, and the BUG in the |
| * code will prevent it. |
| * |
| * Return: 0 if success; negative error code otherwise. |
| */ |
| static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt, |
| struct i915_page_directory_pointer *pdp, |
| uint64_t start, |
| uint64_t length, |
| unsigned long *new_pds) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct i915_page_directory *pd; |
| uint64_t temp; |
| uint32_t pdpe; |
| |
| WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES)); |
| |
| /* FIXME: upper bound must not overflow 32 bits */ |
| WARN_ON((start + length) > (1ULL << 32)); |
| |
| gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) { |
| if (pd) |
| continue; |
| |
| pd = alloc_pd_single(dev); |
| if (IS_ERR(pd)) |
| goto unwind_out; |
| |
| gen8_initialize_pd(&ppgtt->base, pd); |
| pdp->page_directory[pdpe] = pd; |
| set_bit(pdpe, new_pds); |
| } |
| |
| return 0; |
| |
| unwind_out: |
| for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES) |
| unmap_and_free_pd(pdp->page_directory[pdpe], dev); |
| |
| return -ENOMEM; |
| } |
| |
| static void |
| free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts) |
| { |
| int i; |
| |
| for (i = 0; i < GEN8_LEGACY_PDPES; i++) |
| kfree(new_pts[i]); |
| kfree(new_pts); |
| kfree(new_pds); |
| } |
| |
| /* Fills in the page directory bitmap, and the array of page tables bitmap. Both |
| * of these are based on the number of PDPEs in the system. |
| */ |
| static |
| int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds, |
| unsigned long ***new_pts) |
| { |
| int i; |
| unsigned long *pds; |
| unsigned long **pts; |
| |
| pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL); |
| if (!pds) |
| return -ENOMEM; |
| |
| pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL); |
| if (!pts) { |
| kfree(pds); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < GEN8_LEGACY_PDPES; i++) { |
| pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES), |
| sizeof(unsigned long), GFP_KERNEL); |
| if (!pts[i]) |
| goto err_out; |
| } |
| |
| *new_pds = pds; |
| *new_pts = pts; |
| |
| return 0; |
| |
| err_out: |
| free_gen8_temp_bitmaps(pds, pts); |
| return -ENOMEM; |
| } |
| |
| static int gen8_alloc_va_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| unsigned long *new_page_dirs, **new_page_tables; |
| struct i915_page_directory *pd; |
| const uint64_t orig_start = start; |
| const uint64_t orig_length = length; |
| uint64_t temp; |
| uint32_t pdpe; |
| int ret; |
| |
| /* Wrap is never okay since we can only represent 48b, and we don't |
| * actually use the other side of the canonical address space. |
| */ |
| if (WARN_ON(start + length < start)) |
| return -ERANGE; |
| |
| ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables); |
| if (ret) |
| return ret; |
| |
| /* Do the allocations first so we can easily bail out */ |
| ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length, |
| new_page_dirs); |
| if (ret) { |
| free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); |
| return ret; |
| } |
| |
| /* For every page directory referenced, allocate page tables */ |
| gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) { |
| ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length, |
| new_page_tables[pdpe]); |
| if (ret) |
| goto err_out; |
| } |
| |
| start = orig_start; |
| length = orig_length; |
| |
| /* Allocations have completed successfully, so set the bitmaps, and do |
| * the mappings. */ |
| gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) { |
| gen8_pde_t *const page_directory = kmap_atomic(pd->page); |
| struct i915_page_table *pt; |
| uint64_t pd_len = gen8_clamp_pd(start, length); |
| uint64_t pd_start = start; |
| uint32_t pde; |
| |
| /* Every pd should be allocated, we just did that above. */ |
| WARN_ON(!pd); |
| |
| gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) { |
| /* Same reasoning as pd */ |
| WARN_ON(!pt); |
| WARN_ON(!pd_len); |
| WARN_ON(!gen8_pte_count(pd_start, pd_len)); |
| |
| /* Set our used ptes within the page table */ |
| bitmap_set(pt->used_ptes, |
| gen8_pte_index(pd_start), |
| gen8_pte_count(pd_start, pd_len)); |
| |
| /* Our pde is now pointing to the pagetable, pt */ |
| set_bit(pde, pd->used_pdes); |
| |
| /* Map the PDE to the page table */ |
| __gen8_do_map_pt(page_directory + pde, pt, vm->dev); |
| |
| /* NB: We haven't yet mapped ptes to pages. At this |
| * point we're still relying on insert_entries() */ |
| } |
| |
| if (!HAS_LLC(vm->dev)) |
| drm_clflush_virt_range(page_directory, PAGE_SIZE); |
| |
| kunmap_atomic(page_directory); |
| |
| set_bit(pdpe, ppgtt->pdp.used_pdpes); |
| } |
| |
| free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); |
| return 0; |
| |
| err_out: |
| while (pdpe--) { |
| for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES) |
| unmap_and_free_pt(ppgtt->pdp.page_directory[pdpe]->page_table[temp], vm->dev); |
| } |
| |
| for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES) |
| unmap_and_free_pd(ppgtt->pdp.page_directory[pdpe], vm->dev); |
| |
| free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); |
| return ret; |
| } |
| |
| /* |
| * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers |
| * with a net effect resembling a 2-level page table in normal x86 terms. Each |
| * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address |
| * space. |
| * |
| */ |
| static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt) |
| { |
| ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev); |
| if (IS_ERR(ppgtt->scratch_pt)) |
| return PTR_ERR(ppgtt->scratch_pt); |
| |
| ppgtt->scratch_pd = alloc_pd_single(ppgtt->base.dev); |
| if (IS_ERR(ppgtt->scratch_pd)) |
| return PTR_ERR(ppgtt->scratch_pd); |
| |
| gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt); |
| gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd); |
| |
| ppgtt->base.start = 0; |
| ppgtt->base.total = 1ULL << 32; |
| ppgtt->base.cleanup = gen8_ppgtt_cleanup; |
| ppgtt->base.allocate_va_range = gen8_alloc_va_range; |
| ppgtt->base.insert_entries = gen8_ppgtt_insert_entries; |
| ppgtt->base.clear_range = gen8_ppgtt_clear_range; |
| ppgtt->base.unbind_vma = ppgtt_unbind_vma; |
| ppgtt->base.bind_vma = ppgtt_bind_vma; |
| |
| ppgtt->switch_mm = gen8_mm_switch; |
| |
| return 0; |
| } |
| |
| static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) |
| { |
| struct i915_address_space *vm = &ppgtt->base; |
| struct i915_page_table *unused; |
| gen6_pte_t scratch_pte; |
| uint32_t pd_entry; |
| uint32_t pte, pde, temp; |
| uint32_t start = ppgtt->base.start, length = ppgtt->base.total; |
| |
| scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0); |
| |
| gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) { |
| u32 expected; |
| gen6_pte_t *pt_vaddr; |
| dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr; |
| pd_entry = readl(ppgtt->pd_addr + pde); |
| expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID); |
| |
| if (pd_entry != expected) |
| seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", |
| pde, |
| pd_entry, |
| expected); |
| seq_printf(m, "\tPDE: %x\n", pd_entry); |
| |
| pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page); |
| for (pte = 0; pte < GEN6_PTES; pte+=4) { |
| unsigned long va = |
| (pde * PAGE_SIZE * GEN6_PTES) + |
| (pte * PAGE_SIZE); |
| int i; |
| bool found = false; |
| for (i = 0; i < 4; i++) |
| if (pt_vaddr[pte + i] != scratch_pte) |
| found = true; |
| if (!found) |
| continue; |
| |
| seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte); |
| for (i = 0; i < 4; i++) { |
| if (pt_vaddr[pte + i] != scratch_pte) |
| seq_printf(m, " %08x", pt_vaddr[pte + i]); |
| else |
| seq_puts(m, " SCRATCH "); |
| } |
| seq_puts(m, "\n"); |
| } |
| kunmap_atomic(pt_vaddr); |
| } |
| } |
| |
| /* Write pde (index) from the page directory @pd to the page table @pt */ |
| static void gen6_write_pde(struct i915_page_directory *pd, |
| const int pde, struct i915_page_table *pt) |
| { |
| /* Caller needs to make sure the write completes if necessary */ |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(pd, struct i915_hw_ppgtt, pd); |
| u32 pd_entry; |
| |
| pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr); |
| pd_entry |= GEN6_PDE_VALID; |
| |
| writel(pd_entry, ppgtt->pd_addr + pde); |
| } |
| |
| /* Write all the page tables found in the ppgtt structure to incrementing page |
| * directories. */ |
| static void gen6_write_page_range(struct drm_i915_private *dev_priv, |
| struct i915_page_directory *pd, |
| uint32_t start, uint32_t length) |
| { |
| struct i915_page_table *pt; |
| uint32_t pde, temp; |
| |
| gen6_for_each_pde(pt, pd, start, length, temp, pde) |
| gen6_write_pde(pd, pde, pt); |
| |
| /* Make sure write is complete before other code can use this page |
| * table. Also require for WC mapped PTEs */ |
| readl(dev_priv->gtt.gsm); |
| } |
| |
| static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt) |
| { |
| BUG_ON(ppgtt->pd.pd_offset & 0x3f); |
| |
| return (ppgtt->pd.pd_offset / 64) << 16; |
| } |
| |
| static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct intel_engine_cs *ring) |
| { |
| int ret; |
| |
| /* NB: TLBs must be flushed and invalidated before a switch */ |
| ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); |
| if (ret) |
| return ret; |
| |
| ret = intel_ring_begin(ring, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); |
| intel_ring_emit(ring, RING_PP_DIR_DCLV(ring)); |
| intel_ring_emit(ring, PP_DIR_DCLV_2G); |
| intel_ring_emit(ring, RING_PP_DIR_BASE(ring)); |
| intel_ring_emit(ring, get_pd_offset(ppgtt)); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_advance(ring); |
| |
| return 0; |
| } |
| |
| static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct intel_engine_cs *ring) |
| { |
| struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev); |
| |
| I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); |
| I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt)); |
| return 0; |
| } |
| |
| static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct intel_engine_cs *ring) |
| { |
| int ret; |
| |
| /* NB: TLBs must be flushed and invalidated before a switch */ |
| ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); |
| if (ret) |
| return ret; |
| |
| ret = intel_ring_begin(ring, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); |
| intel_ring_emit(ring, RING_PP_DIR_DCLV(ring)); |
| intel_ring_emit(ring, PP_DIR_DCLV_2G); |
| intel_ring_emit(ring, RING_PP_DIR_BASE(ring)); |
| intel_ring_emit(ring, get_pd_offset(ppgtt)); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_advance(ring); |
| |
| /* XXX: RCS is the only one to auto invalidate the TLBs? */ |
| if (ring->id != RCS) { |
| ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct intel_engine_cs *ring) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| |
| I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); |
| I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt)); |
| |
| POSTING_READ(RING_PP_DIR_DCLV(ring)); |
| |
| return 0; |
| } |
| |
| static void gen8_ppgtt_enable(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| int j; |
| |
| for_each_ring(ring, dev_priv, j) { |
| I915_WRITE(RING_MODE_GEN7(ring), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| } |
| } |
| |
| static void gen7_ppgtt_enable(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| uint32_t ecochk, ecobits; |
| int i; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| if (IS_HASWELL(dev)) { |
| ecochk |= ECOCHK_PPGTT_WB_HSW; |
| } else { |
| ecochk |= ECOCHK_PPGTT_LLC_IVB; |
| ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; |
| } |
| I915_WRITE(GAM_ECOCHK, ecochk); |
| |
| for_each_ring(ring, dev_priv, i) { |
| /* GFX_MODE is per-ring on gen7+ */ |
| I915_WRITE(RING_MODE_GEN7(ring), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| } |
| } |
| |
| static void gen6_ppgtt_enable(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t ecochk, gab_ctl, ecobits; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | |
| ECOBITS_PPGTT_CACHE64B); |
| |
| gab_ctl = I915_READ(GAB_CTL); |
| I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); |
| |
| I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| } |
| |
| /* PPGTT support for Sandybdrige/Gen6 and later */ |
| static void gen6_ppgtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen6_pte_t *pt_vaddr, scratch_pte; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| unsigned act_pt = first_entry / GEN6_PTES; |
| unsigned first_pte = first_entry % GEN6_PTES; |
| unsigned last_pte, i; |
| |
| scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0); |
| |
| while (num_entries) { |
| last_pte = first_pte + num_entries; |
| if (last_pte > GEN6_PTES) |
| last_pte = GEN6_PTES; |
| |
| pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page); |
| |
| for (i = first_pte; i < last_pte; i++) |
| pt_vaddr[i] = scratch_pte; |
| |
| kunmap_atomic(pt_vaddr); |
| |
| num_entries -= last_pte - first_pte; |
| first_pte = 0; |
| act_pt++; |
| } |
| } |
| |
| static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| uint64_t start, |
| enum i915_cache_level cache_level, u32 flags) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen6_pte_t *pt_vaddr; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned act_pt = first_entry / GEN6_PTES; |
| unsigned act_pte = first_entry % GEN6_PTES; |
| struct sg_page_iter sg_iter; |
| |
| pt_vaddr = NULL; |
| for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { |
| if (pt_vaddr == NULL) |
| pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page); |
| |
| pt_vaddr[act_pte] = |
| vm->pte_encode(sg_page_iter_dma_address(&sg_iter), |
| cache_level, true, flags); |
| |
| if (++act_pte == GEN6_PTES) { |
| kunmap_atomic(pt_vaddr); |
| pt_vaddr = NULL; |
| act_pt++; |
| act_pte = 0; |
| } |
| } |
| if (pt_vaddr) |
| kunmap_atomic(pt_vaddr); |
| } |
| |
| /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we |
| * are switching between contexts with the same LRCA, we also must do a force |
| * restore. |
| */ |
| static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) |
| { |
| /* If current vm != vm, */ |
| ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask; |
| } |
| |
| static void gen6_initialize_pt(struct i915_address_space *vm, |
| struct i915_page_table *pt) |
| { |
| gen6_pte_t *pt_vaddr, scratch_pte; |
| int i; |
| |
| WARN_ON(vm->scratch.addr == 0); |
| |
| scratch_pte = vm->pte_encode(vm->scratch.addr, |
| I915_CACHE_LLC, true, 0); |
| |
| pt_vaddr = kmap_atomic(pt->page); |
| |
| for (i = 0; i < GEN6_PTES; i++) |
| pt_vaddr[i] = scratch_pte; |
| |
| kunmap_atomic(pt_vaddr); |
| } |
| |
| static int gen6_alloc_va_range(struct i915_address_space *vm, |
| uint64_t start, uint64_t length) |
| { |
| DECLARE_BITMAP(new_page_tables, I915_PDES); |
| struct drm_device *dev = vm->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| struct i915_page_table *pt; |
| const uint32_t start_save = start, length_save = length; |
| uint32_t pde, temp; |
| int ret; |
| |
| WARN_ON(upper_32_bits(start)); |
| |
| bitmap_zero(new_page_tables, I915_PDES); |
| |
| /* The allocation is done in two stages so that we can bail out with |
| * minimal amount of pain. The first stage finds new page tables that |
| * need allocation. The second stage marks use ptes within the page |
| * tables. |
| */ |
| gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) { |
| if (pt != ppgtt->scratch_pt) { |
| WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES)); |
| continue; |
| } |
| |
| /* We've already allocated a page table */ |
| WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES)); |
| |
| pt = alloc_pt_single(dev); |
| if (IS_ERR(pt)) { |
| ret = PTR_ERR(pt); |
| goto unwind_out; |
| } |
| |
| gen6_initialize_pt(vm, pt); |
| |
| ppgtt->pd.page_table[pde] = pt; |
| set_bit(pde, new_page_tables); |
| trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT); |
| } |
| |
| start = start_save; |
| length = length_save; |
| |
| gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) { |
| DECLARE_BITMAP(tmp_bitmap, GEN6_PTES); |
| |
| bitmap_zero(tmp_bitmap, GEN6_PTES); |
| bitmap_set(tmp_bitmap, gen6_pte_index(start), |
| gen6_pte_count(start, length)); |
| |
| if (test_and_clear_bit(pde, new_page_tables)) |
| gen6_write_pde(&ppgtt->pd, pde, pt); |
| |
| trace_i915_page_table_entry_map(vm, pde, pt, |
| gen6_pte_index(start), |
| gen6_pte_count(start, length), |
| GEN6_PTES); |
| bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes, |
| GEN6_PTES); |
| } |
| |
| WARN_ON(!bitmap_empty(new_page_tables, I915_PDES)); |
| |
| /* Make sure write is complete before other code can use this page |
| * table. Also require for WC mapped PTEs */ |
| readl(dev_priv->gtt.gsm); |
| |
| mark_tlbs_dirty(ppgtt); |
| return 0; |
| |
| unwind_out: |
| for_each_set_bit(pde, new_page_tables, I915_PDES) { |
| struct i915_page_table *pt = ppgtt->pd.page_table[pde]; |
| |
| ppgtt->pd.page_table[pde] = ppgtt->scratch_pt; |
| unmap_and_free_pt(pt, vm->dev); |
| } |
| |
| mark_tlbs_dirty(ppgtt); |
| return ret; |
| } |
| |
| static void gen6_ppgtt_cleanup(struct i915_address_space *vm) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| struct i915_page_table *pt; |
| uint32_t pde; |
| |
| |
| drm_mm_remove_node(&ppgtt->node); |
| |
| gen6_for_all_pdes(pt, ppgtt, pde) { |
| if (pt != ppgtt->scratch_pt) |
| unmap_and_free_pt(pt, ppgtt->base.dev); |
| } |
| |
| unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev); |
| unmap_and_free_pd(&ppgtt->pd, ppgtt->base.dev); |
| } |
| |
| static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| bool retried = false; |
| int ret; |
| |
| /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The |
| * allocator works in address space sizes, so it's multiplied by page |
| * size. We allocate at the top of the GTT to avoid fragmentation. |
| */ |
| BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm)); |
| ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev); |
| if (IS_ERR(ppgtt->scratch_pt)) |
| return PTR_ERR(ppgtt->scratch_pt); |
| |
| gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt); |
| |
| alloc: |
| ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm, |
| &ppgtt->node, GEN6_PD_SIZE, |
| GEN6_PD_ALIGN, 0, |
| 0, dev_priv->gtt.base.total, |
| DRM_MM_TOPDOWN); |
| if (ret == -ENOSPC && !retried) { |
| ret = i915_gem_evict_something(dev, &dev_priv->gtt.base, |
| GEN6_PD_SIZE, GEN6_PD_ALIGN, |
| I915_CACHE_NONE, |
| 0, dev_priv->gtt.base.total, |
| 0); |
| if (ret) |
| goto err_out; |
| |
| retried = true; |
| goto alloc; |
| } |
| |
| if (ret) |
| goto err_out; |
| |
| |
| if (ppgtt->node.start < dev_priv->gtt.mappable_end) |
| DRM_DEBUG("Forced to use aperture for PDEs\n"); |
| |
| return 0; |
| |
| err_out: |
| unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev); |
| return ret; |
| } |
| |
| static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt) |
| { |
| return gen6_ppgtt_allocate_page_directories(ppgtt); |
| } |
| |
| static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt, |
| uint64_t start, uint64_t length) |
| { |
| struct i915_page_table *unused; |
| uint32_t pde, temp; |
| |
| gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) |
| ppgtt->pd.page_table[pde] = ppgtt->scratch_pt; |
| } |
| |
| static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode; |
| if (IS_GEN6(dev)) { |
| ppgtt->switch_mm = gen6_mm_switch; |
| } else if (IS_HASWELL(dev)) { |
| ppgtt->switch_mm = hsw_mm_switch; |
| } else if (IS_GEN7(dev)) { |
| ppgtt->switch_mm = gen7_mm_switch; |
| } else |
| BUG(); |
| |
| if (intel_vgpu_active(dev)) |
| ppgtt->switch_mm = vgpu_mm_switch; |
| |
| ret = gen6_ppgtt_alloc(ppgtt); |
| if (ret) |
| return ret; |
| |
| ppgtt->base.allocate_va_range = gen6_alloc_va_range; |
| ppgtt->base.clear_range = gen6_ppgtt_clear_range; |
| ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; |
| ppgtt->base.unbind_vma = ppgtt_unbind_vma; |
| ppgtt->base.bind_vma = ppgtt_bind_vma; |
| ppgtt->base.cleanup = gen6_ppgtt_cleanup; |
| ppgtt->base.start = 0; |
| ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE; |
| ppgtt->debug_dump = gen6_dump_ppgtt; |
| |
| ppgtt->pd.pd_offset = |
| ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t); |
| |
| ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm + |
| ppgtt->pd.pd_offset / sizeof(gen6_pte_t); |
| |
| gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total); |
| |
| gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total); |
| |
| DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n", |
| ppgtt->node.size >> 20, |
| ppgtt->node.start / PAGE_SIZE); |
| |
| DRM_DEBUG("Adding PPGTT at offset %x\n", |
| ppgtt->pd.pd_offset << 10); |
| |
| return 0; |
| } |
| |
| static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| ppgtt->base.dev = dev; |
| ppgtt->base.scratch = dev_priv->gtt.base.scratch; |
| |
| if (INTEL_INFO(dev)->gen < 8) |
| return gen6_ppgtt_init(ppgtt); |
| else |
| return gen8_ppgtt_init(ppgtt); |
| } |
| int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret = 0; |
| |
| ret = __hw_ppgtt_init(dev, ppgtt); |
| if (ret == 0) { |
| kref_init(&ppgtt->ref); |
| drm_mm_init(&ppgtt->base.mm, ppgtt->base.start, |
| ppgtt->base.total); |
| i915_init_vm(dev_priv, &ppgtt->base); |
| } |
| |
| return ret; |
| } |
| |
| int i915_ppgtt_init_hw(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; |
| int i, ret = 0; |
| |
| /* In the case of execlists, PPGTT is enabled by the context descriptor |
| * and the PDPs are contained within the context itself. We don't |
| * need to do anything here. */ |
| if (i915.enable_execlists) |
| return 0; |
| |
| if (!USES_PPGTT(dev)) |
| return 0; |
| |
| if (IS_GEN6(dev)) |
| gen6_ppgtt_enable(dev); |
| else if (IS_GEN7(dev)) |
| gen7_ppgtt_enable(dev); |
| else if (INTEL_INFO(dev)->gen >= 8) |
| gen8_ppgtt_enable(dev); |
| else |
| MISSING_CASE(INTEL_INFO(dev)->gen); |
| |
| if (ppgtt) { |
| for_each_ring(ring, dev_priv, i) { |
| ret = ppgtt->switch_mm(ppgtt, ring); |
| if (ret != 0) |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| struct i915_hw_ppgtt * |
| i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv) |
| { |
| struct i915_hw_ppgtt *ppgtt; |
| int ret; |
| |
| ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); |
| if (!ppgtt) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = i915_ppgtt_init(dev, ppgtt); |
| if (ret) { |
| kfree(ppgtt); |
| return ERR_PTR(ret); |
| } |
| |
| ppgtt->file_priv = fpriv; |
| |
| trace_i915_ppgtt_create(&ppgtt->base); |
| |
| return ppgtt; |
| } |
| |
| void i915_ppgtt_release(struct kref *kref) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(kref, struct i915_hw_ppgtt, ref); |
| |
| trace_i915_ppgtt_release(&ppgtt->base); |
| |
| /* vmas should already be unbound */ |
| WARN_ON(!list_empty(&ppgtt->base.active_list)); |
| WARN_ON(!list_empty(&ppgtt->base.inactive_list)); |
| |
| list_del(&ppgtt->base.global_link); |
| drm_mm_takedown(&ppgtt->base.mm); |
| |
| ppgtt->base.cleanup(&ppgtt->base); |
| kfree(ppgtt); |
| } |
| |
| extern int intel_iommu_gfx_mapped; |
| /* Certain Gen5 chipsets require require idling the GPU before |
| * unmapping anything from the GTT when VT-d is enabled. |
| */ |
| static bool needs_idle_maps(struct drm_device *dev) |
| { |
| #ifdef CONFIG_INTEL_IOMMU |
| /* Query intel_iommu to see if we need the workaround. Presumably that |
| * was loaded first. |
| */ |
| if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped) |
| return true; |
| #endif |
| return false; |
| } |
| |
| static bool do_idling(struct drm_i915_private *dev_priv) |
| { |
| bool ret = dev_priv->mm.interruptible; |
| |
| if (unlikely(dev_priv->gtt.do_idle_maps)) { |
| dev_priv->mm.interruptible = false; |
| if (i915_gpu_idle(dev_priv->dev)) { |
| DRM_ERROR("Couldn't idle GPU\n"); |
| /* Wait a bit, in hopes it avoids the hang */ |
| udelay(10); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible) |
| { |
| if (unlikely(dev_priv->gtt.do_idle_maps)) |
| dev_priv->mm.interruptible = interruptible; |
| } |
| |
| void i915_check_and_clear_faults(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| int i; |
| |
| if (INTEL_INFO(dev)->gen < 6) |
| return; |
| |
| for_each_ring(ring, dev_priv, i) { |
| u32 fault_reg; |
| fault_reg = I915_READ(RING_FAULT_REG(ring)); |
| if (fault_reg & RING_FAULT_VALID) { |
| DRM_DEBUG_DRIVER("Unexpected fault\n" |
| "\tAddr: 0x%08lx\n" |
| "\tAddress space: %s\n" |
| "\tSource ID: %d\n" |
| "\tType: %d\n", |
| fault_reg & PAGE_MASK, |
| fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", |
| RING_FAULT_SRCID(fault_reg), |
| RING_FAULT_FAULT_TYPE(fault_reg)); |
| I915_WRITE(RING_FAULT_REG(ring), |
| fault_reg & ~RING_FAULT_VALID); |
| } |
| } |
| POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS])); |
| } |
| |
| static void i915_ggtt_flush(struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_INFO(dev_priv->dev)->gen < 6) { |
| intel_gtt_chipset_flush(); |
| } else { |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| } |
| } |
| |
| void i915_gem_suspend_gtt_mappings(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| /* Don't bother messing with faults pre GEN6 as we have little |
| * documentation supporting that it's a good idea. |
| */ |
| if (INTEL_INFO(dev)->gen < 6) |
| return; |
| |
| i915_check_and_clear_faults(dev); |
| |
| dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, |
| dev_priv->gtt.base.start, |
| dev_priv->gtt.base.total, |
| true); |
| |
| i915_ggtt_flush(dev_priv); |
| } |
| |
| int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj) |
| { |
| if (obj->has_dma_mapping) |
| return 0; |
| |
| if (!dma_map_sg(&obj->base.dev->pdev->dev, |
| obj->pages->sgl, obj->pages->nents, |
| PCI_DMA_BIDIRECTIONAL)) |
| return -ENOSPC; |
| |
| return 0; |
| } |
| |
| static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) |
| { |
| #ifdef writeq |
| writeq(pte, addr); |
| #else |
| iowrite32((u32)pte, addr); |
| iowrite32(pte >> 32, addr + 4); |
| #endif |
| } |
| |
| static void gen8_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *st, |
| uint64_t start, |
| enum i915_cache_level level, u32 unused) |
| { |
| struct drm_i915_private *dev_priv = vm->dev->dev_private; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| gen8_pte_t __iomem *gtt_entries = |
| (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; |
| int i = 0; |
| struct sg_page_iter sg_iter; |
| dma_addr_t addr = 0; /* shut up gcc */ |
| |
| for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { |
| addr = sg_dma_address(sg_iter.sg) + |
| (sg_iter.sg_pgoffset << PAGE_SHIFT); |
| gen8_set_pte(>t_entries[i], |
| gen8_pte_encode(addr, level, true)); |
| i++; |
| } |
| |
| /* |
| * XXX: This serves as a posting read to make sure that the PTE has |
| * actually been updated. There is some concern that even though |
| * registers and PTEs are within the same BAR that they are potentially |
| * of NUMA access patterns. Therefore, even with the way we assume |
| * hardware should work, we must keep this posting read for paranoia. |
| */ |
| if (i != 0) |
| WARN_ON(readq(>t_entries[i-1]) |
| != gen8_pte_encode(addr, level, true)); |
| |
| /* This next bit makes the above posting read even more important. We |
| * want to flush the TLBs only after we're certain all the PTE updates |
| * have finished. |
| */ |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| } |
| |
| /* |
| * Binds an object into the global gtt with the specified cache level. The object |
| * will be accessible to the GPU via commands whose operands reference offsets |
| * within the global GTT as well as accessible by the GPU through the GMADR |
| * mapped BAR (dev_priv->mm.gtt->gtt). |
| */ |
| static void gen6_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *st, |
| uint64_t start, |
| enum i915_cache_level level, u32 flags) |
| { |
| struct drm_i915_private *dev_priv = vm->dev->dev_private; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| gen6_pte_t __iomem *gtt_entries = |
| (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; |
| int i = 0; |
| struct sg_page_iter sg_iter; |
| dma_addr_t addr = 0; |
| |
| for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { |
| addr = sg_page_iter_dma_address(&sg_iter); |
| iowrite32(vm->pte_encode(addr, level, true, flags), >t_entries[i]); |
| i++; |
| } |
| |
| /* XXX: This serves as a posting read to make sure that the PTE has |
| * actually been updated. There is some concern that even though |
| * registers and PTEs are within the same BAR that they are potentially |
| * of NUMA access patterns. Therefore, even with the way we assume |
| * hardware should work, we must keep this posting read for paranoia. |
| */ |
| if (i != 0) { |
| unsigned long gtt = readl(>t_entries[i-1]); |
| WARN_ON(gtt != vm->pte_encode(addr, level, true, flags)); |
| } |
| |
| /* This next bit makes the above posting read even more important. We |
| * want to flush the TLBs only after we're certain all the PTE updates |
| * have finished. |
| */ |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| } |
| |
| static void gen8_ggtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| struct drm_i915_private *dev_priv = vm->dev->dev_private; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| gen8_pte_t scratch_pte, __iomem *gtt_base = |
| (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; |
| const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; |
| int i; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| scratch_pte = gen8_pte_encode(vm->scratch.addr, |
| I915_CACHE_LLC, |
| use_scratch); |
| for (i = 0; i < num_entries; i++) |
| gen8_set_pte(>t_base[i], scratch_pte); |
| readl(gtt_base); |
| } |
| |
| static void gen6_ggtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| struct drm_i915_private *dev_priv = vm->dev->dev_private; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| gen6_pte_t scratch_pte, __iomem *gtt_base = |
| (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; |
| const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; |
| int i; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0); |
| |
| for (i = 0; i < num_entries; i++) |
| iowrite32(scratch_pte, >t_base[i]); |
| readl(gtt_base); |
| } |
| |
| static void i915_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| uint64_t start, |
| enum i915_cache_level cache_level, u32 unused) |
| { |
| unsigned int flags = (cache_level == I915_CACHE_NONE) ? |
| AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; |
| |
| intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags); |
| |
| } |
| |
| static void i915_ggtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool unused) |
| { |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| intel_gtt_clear_range(first_entry, num_entries); |
| } |
| |
| static int ggtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| struct drm_device *dev = vma->vm->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj = vma->obj; |
| struct sg_table *pages = obj->pages; |
| u32 pte_flags = 0; |
| int ret; |
| |
| ret = i915_get_ggtt_vma_pages(vma); |
| if (ret) |
| return ret; |
| pages = vma->ggtt_view.pages; |
| |
| /* Currently applicable only to VLV */ |
| if (obj->gt_ro) |
| pte_flags |= PTE_READ_ONLY; |
| |
| |
| if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) { |
| vma->vm->insert_entries(vma->vm, pages, |
| vma->node.start, |
| cache_level, pte_flags); |
| } |
| |
| if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) { |
| struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt; |
| appgtt->base.insert_entries(&appgtt->base, pages, |
| vma->node.start, |
| cache_level, pte_flags); |
| } |
| |
| return 0; |
| } |
| |
| static void ggtt_unbind_vma(struct i915_vma *vma) |
| { |
| struct drm_device *dev = vma->vm->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj = vma->obj; |
| const uint64_t size = min_t(uint64_t, |
| obj->base.size, |
| vma->node.size); |
| |
| if (vma->bound & GLOBAL_BIND) { |
| vma->vm->clear_range(vma->vm, |
| vma->node.start, |
| size, |
| true); |
| } |
| |
| if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) { |
| struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt; |
| |
| appgtt->base.clear_range(&appgtt->base, |
| vma->node.start, |
| size, |
| true); |
| } |
| } |
| |
| void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| bool interruptible; |
| |
| interruptible = do_idling(dev_priv); |
| |
| if (!obj->has_dma_mapping) |
| dma_unmap_sg(&dev->pdev->dev, |
| obj->pages->sgl, obj->pages->nents, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| undo_idling(dev_priv, interruptible); |
| } |
| |
| static void i915_gtt_color_adjust(struct drm_mm_node *node, |
| unsigned long color, |
| u64 *start, |
| u64 *end) |
| { |
| if (node->color != color) |
| *start += 4096; |
| |
| if (!list_empty(&node->node_list)) { |
| node = list_entry(node->node_list.next, |
| struct drm_mm_node, |
| node_list); |
| if (node->allocated && node->color != color) |
| *end -= 4096; |
| } |
| } |
| |
| static int i915_gem_setup_global_gtt(struct drm_device *dev, |
| unsigned long start, |
| unsigned long mappable_end, |
| unsigned long end) |
| { |
| /* Let GEM Manage all of the aperture. |
| * |
| * However, leave one page at the end still bound to the scratch page. |
| * There are a number of places where the hardware apparently prefetches |
| * past the end of the object, and we've seen multiple hangs with the |
| * GPU head pointer stuck in a batchbuffer bound at the last page of the |
| * aperture. One page should be enough to keep any prefetching inside |
| * of the aperture. |
| */ |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_address_space *ggtt_vm = &dev_priv->gtt.base; |
| struct drm_mm_node *entry; |
| struct drm_i915_gem_object *obj; |
| unsigned long hole_start, hole_end; |
| int ret; |
| |
| BUG_ON(mappable_end > end); |
| |
| /* Subtract the guard page ... */ |
| drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE); |
| |
| dev_priv->gtt.base.start = start; |
| dev_priv->gtt.base.total = end - start; |
| |
| if (intel_vgpu_active(dev)) { |
| ret = intel_vgt_balloon(dev); |
| if (ret) |
| return ret; |
| } |
| |
| if (!HAS_LLC(dev)) |
| dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust; |
| |
| /* Mark any preallocated objects as occupied */ |
| list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { |
| struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm); |
| |
| DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n", |
| i915_gem_obj_ggtt_offset(obj), obj->base.size); |
| |
| WARN_ON(i915_gem_obj_ggtt_bound(obj)); |
| ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node); |
| if (ret) { |
| DRM_DEBUG_KMS("Reservation failed: %i\n", ret); |
| return ret; |
| } |
| vma->bound |= GLOBAL_BIND; |
| } |
| |
| /* Clear any non-preallocated blocks */ |
| drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) { |
| DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", |
| hole_start, hole_end); |
| ggtt_vm->clear_range(ggtt_vm, hole_start, |
| hole_end - hole_start, true); |
| } |
| |
| /* And finally clear the reserved guard page */ |
| ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true); |
| |
| if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) { |
| struct i915_hw_ppgtt *ppgtt; |
| |
| ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); |
| if (!ppgtt) |
| return -ENOMEM; |
| |
| ret = __hw_ppgtt_init(dev, ppgtt); |
| if (ret) { |
| ppgtt->base.cleanup(&ppgtt->base); |
| kfree(ppgtt); |
| return ret; |
| } |
| |
| if (ppgtt->base.allocate_va_range) |
| ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0, |
| ppgtt->base.total); |
| if (ret) { |
| ppgtt->base.cleanup(&ppgtt->base); |
| kfree(ppgtt); |
| return ret; |
| } |
| |
| ppgtt->base.clear_range(&ppgtt->base, |
| ppgtt->base.start, |
| ppgtt->base.total, |
| true); |
| |
| dev_priv->mm.aliasing_ppgtt = ppgtt; |
| } |
| |
| return 0; |
| } |
| |
| void i915_gem_init_global_gtt(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned long gtt_size, mappable_size; |
| |
| gtt_size = dev_priv->gtt.base.total; |
| mappable_size = dev_priv->gtt.mappable_end; |
| |
| i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size); |
| } |
| |
| void i915_global_gtt_cleanup(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_address_space *vm = &dev_priv->gtt.base; |
| |
| if (dev_priv->mm.aliasing_ppgtt) { |
| struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; |
| |
| ppgtt->base.cleanup(&ppgtt->base); |
| } |
| |
| if (drm_mm_initialized(&vm->mm)) { |
| if (intel_vgpu_active(dev)) |
| intel_vgt_deballoon(); |
| |
| drm_mm_takedown(&vm->mm); |
| list_del(&vm->global_link); |
| } |
| |
| vm->cleanup(vm); |
| } |
| |
| static int setup_scratch_page(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct page *page; |
| dma_addr_t dma_addr; |
| |
| page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); |
| if (page == NULL) |
| return -ENOMEM; |
| set_pages_uc(page, 1); |
| |
| #ifdef CONFIG_INTEL_IOMMU |
| dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE, |
| PCI_DMA_BIDIRECTIONAL); |
| if (pci_dma_mapping_error(dev->pdev, dma_addr)) |
| return -EINVAL; |
| #else |
| dma_addr = page_to_phys(page); |
| #endif |
| dev_priv->gtt.base.scratch.page = page; |
| dev_priv->gtt.base.scratch.addr = dma_addr; |
| |
| return 0; |
| } |
| |
| static void teardown_scratch_page(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct page *page = dev_priv->gtt.base.scratch.page; |
| |
| set_pages_wb(page, 1); |
| pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr, |
| PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| __free_page(page); |
| } |
| |
| static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) |
| { |
| snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; |
| snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; |
| return snb_gmch_ctl << 20; |
| } |
| |
| static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) |
| { |
| bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; |
| bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; |
| if (bdw_gmch_ctl) |
| bdw_gmch_ctl = 1 << bdw_gmch_ctl; |
| |
| #ifdef CONFIG_X86_32 |
| /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */ |
| if (bdw_gmch_ctl > 4) |
| bdw_gmch_ctl = 4; |
| #endif |
| |
| return bdw_gmch_ctl << 20; |
| } |
| |
| static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) |
| { |
| gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; |
| gmch_ctrl &= SNB_GMCH_GGMS_MASK; |
| |
| if (gmch_ctrl) |
| return 1 << (20 + gmch_ctrl); |
| |
| return 0; |
| } |
| |
| static size_t gen6_get_stolen_size(u16 snb_gmch_ctl) |
| { |
| snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; |
| snb_gmch_ctl &= SNB_GMCH_GMS_MASK; |
| return snb_gmch_ctl << 25; /* 32 MB units */ |
| } |
| |
| static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) |
| { |
| bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; |
| bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; |
| return bdw_gmch_ctl << 25; /* 32 MB units */ |
| } |
| |
| static size_t chv_get_stolen_size(u16 gmch_ctrl) |
| { |
| gmch_ctrl >>= SNB_GMCH_GMS_SHIFT; |
| gmch_ctrl &= SNB_GMCH_GMS_MASK; |
| |
| /* |
| * 0x0 to 0x10: 32MB increments starting at 0MB |
| * 0x11 to 0x16: 4MB increments starting at 8MB |
| * 0x17 to 0x1d: 4MB increments start at 36MB |
| */ |
| if (gmch_ctrl < 0x11) |
| return gmch_ctrl << 25; |
| else if (gmch_ctrl < 0x17) |
| return (gmch_ctrl - 0x11 + 2) << 22; |
| else |
| return (gmch_ctrl - 0x17 + 9) << 22; |
| } |
| |
| static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl) |
| { |
| gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; |
| gen9_gmch_ctl &= BDW_GMCH_GMS_MASK; |
| |
| if (gen9_gmch_ctl < 0xf0) |
| return gen9_gmch_ctl << 25; /* 32 MB units */ |
| else |
| /* 4MB increments starting at 0xf0 for 4MB */ |
| return (gen9_gmch_ctl - 0xf0 + 1) << 22; |
| } |
| |
| static int ggtt_probe_common(struct drm_device *dev, |
| size_t gtt_size) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| phys_addr_t gtt_phys_addr; |
| int ret; |
| |
| /* For Modern GENs the PTEs and register space are split in the BAR */ |
| gtt_phys_addr = pci_resource_start(dev->pdev, 0) + |
| (pci_resource_len(dev->pdev, 0) / 2); |
| |
| /* |
| * On BXT writes larger than 64 bit to the GTT pagetable range will be |
| * dropped. For WC mappings in general we have 64 byte burst writes |
| * when the WC buffer is flushed, so we can't use it, but have to |
| * resort to an uncached mapping. The WC issue is easily caught by the |
| * readback check when writing GTT PTE entries. |
| */ |
| if (IS_BROXTON(dev)) |
| dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size); |
| else |
| dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size); |
| if (!dev_priv->gtt.gsm) { |
| DRM_ERROR("Failed to map the gtt page table\n"); |
| return -ENOMEM; |
| } |
| |
| ret = setup_scratch_page(dev); |
| if (ret) { |
| DRM_ERROR("Scratch setup failed\n"); |
| /* iounmap will also get called at remove, but meh */ |
| iounmap(dev_priv->gtt.gsm); |
| } |
| |
| return ret; |
| } |
| |
| /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability |
| * bits. When using advanced contexts each context stores its own PAT, but |
| * writing this data shouldn't be harmful even in those cases. */ |
| static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv) |
| { |
| uint64_t pat; |
| |
| pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ |
| GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ |
| GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ |
| GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ |
| GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | |
| GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | |
| GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | |
| GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); |
| |
| if (!USES_PPGTT(dev_priv->dev)) |
| /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, |
| * so RTL will always use the value corresponding to |
| * pat_sel = 000". |
| * So let's disable cache for GGTT to avoid screen corruptions. |
| * MOCS still can be used though. |
| * - System agent ggtt writes (i.e. cpu gtt mmaps) already work |
| * before this patch, i.e. the same uncached + snooping access |
| * like on gen6/7 seems to be in effect. |
| * - So this just fixes blitter/render access. Again it looks |
| * like it's not just uncached access, but uncached + snooping. |
| * So we can still hold onto all our assumptions wrt cpu |
| * clflushing on LLC machines. |
| */ |
| pat = GEN8_PPAT(0, GEN8_PPAT_UC); |
| |
| /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b |
| * write would work. */ |
| I915_WRITE(GEN8_PRIVATE_PAT, pat); |
| I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32); |
| } |
| |
| static void chv_setup_private_ppat(struct drm_i915_private *dev_priv) |
| { |
| uint64_t pat; |
| |
| /* |
| * Map WB on BDW to snooped on CHV. |
| * |
| * Only the snoop bit has meaning for CHV, the rest is |
| * ignored. |
| * |
| * The hardware will never snoop for certain types of accesses: |
| * - CPU GTT (GMADR->GGTT->no snoop->memory) |
| * - PPGTT page tables |
| * - some other special cycles |
| * |
| * As with BDW, we also need to consider the following for GT accesses: |
| * "For GGTT, there is NO pat_sel[2:0] from the entry, |
| * so RTL will always use the value corresponding to |
| * pat_sel = 000". |
| * Which means we must set the snoop bit in PAT entry 0 |
| * in order to keep the global status page working. |
| */ |
| pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(1, 0) | |
| GEN8_PPAT(2, 0) | |
| GEN8_PPAT(3, 0) | |
| GEN8_PPAT(4, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(5, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(6, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(7, CHV_PPAT_SNOOP); |
| |
| I915_WRITE(GEN8_PRIVATE_PAT, pat); |
| I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32); |
| } |
| |
| static int gen8_gmch_probe(struct drm_device *dev, |
| size_t *gtt_total, |
| size_t *stolen, |
| phys_addr_t *mappable_base, |
| unsigned long *mappable_end) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned int gtt_size; |
| u16 snb_gmch_ctl; |
| int ret; |
| |
| /* TODO: We're not aware of mappable constraints on gen8 yet */ |
| *mappable_base = pci_resource_start(dev->pdev, 2); |
| *mappable_end = pci_resource_len(dev->pdev, 2); |
| |
| if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39))) |
| pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39)); |
| |
| pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| |
| if (INTEL_INFO(dev)->gen >= 9) { |
| *stolen = gen9_get_stolen_size(snb_gmch_ctl); |
| gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl); |
| } else if (IS_CHERRYVIEW(dev)) { |
| *stolen = chv_get_stolen_size(snb_gmch_ctl); |
| gtt_size = chv_get_total_gtt_size(snb_gmch_ctl); |
| } else { |
| *stolen = gen8_get_stolen_size(snb_gmch_ctl); |
| gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl); |
| } |
| |
| *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT; |
| |
| if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) |
| chv_setup_private_ppat(dev_priv); |
| else |
| bdw_setup_private_ppat(dev_priv); |
| |
| ret = ggtt_probe_common(dev, gtt_size); |
| |
| dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range; |
| dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries; |
| dev_priv->gtt.base.bind_vma = ggtt_bind_vma; |
| dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma; |
| |
| return ret; |
| } |
| |
| static int gen6_gmch_probe(struct drm_device *dev, |
| size_t *gtt_total, |
| size_t *stolen, |
| phys_addr_t *mappable_base, |
| unsigned long *mappable_end) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned int gtt_size; |
| u16 snb_gmch_ctl; |
| int ret; |
| |
| *mappable_base = pci_resource_start(dev->pdev, 2); |
| *mappable_end = pci_resource_len(dev->pdev, 2); |
| |
| /* 64/512MB is the current min/max we actually know of, but this is just |
| * a coarse sanity check. |
| */ |
| if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) { |
| DRM_ERROR("Unknown GMADR size (%lx)\n", |
| dev_priv->gtt.mappable_end); |
| return -ENXIO; |
| } |
| |
| if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40))) |
| pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40)); |
| pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| |
| *stolen = gen6_get_stolen_size(snb_gmch_ctl); |
| |
| gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl); |
| *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT; |
| |
| ret = ggtt_probe_common(dev, gtt_size); |
| |
| dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range; |
| dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries; |
| dev_priv->gtt.base.bind_vma = ggtt_bind_vma; |
| dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma; |
| |
| return ret; |
| } |
| |
| static void gen6_gmch_remove(struct i915_address_space *vm) |
| { |
| |
| struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base); |
| |
| iounmap(gtt->gsm); |
| teardown_scratch_page(vm->dev); |
| } |
| |
| static int i915_gmch_probe(struct drm_device *dev, |
| size_t *gtt_total, |
| size_t *stolen, |
| phys_addr_t *mappable_base, |
| unsigned long *mappable_end) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL); |
| if (!ret) { |
| DRM_ERROR("failed to set up gmch\n"); |
| return -EIO; |
| } |
| |
| intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end); |
| |
| dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev); |
| dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries; |
| dev_priv->gtt.base.clear_range = i915_ggtt_clear_range; |
| dev_priv->gtt.base.bind_vma = ggtt_bind_vma; |
| dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma; |
| |
| if (unlikely(dev_priv->gtt.do_idle_maps)) |
| DRM_INFO("applying Ironlake quirks for intel_iommu\n"); |
| |
| return 0; |
| } |
| |
| static void i915_gmch_remove(struct i915_address_space *vm) |
| { |
| intel_gmch_remove(); |
| } |
| |
| int i915_gem_gtt_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_gtt *gtt = &dev_priv->gtt; |
| int ret; |
| |
| if (INTEL_INFO(dev)->gen <= 5) { |
| gtt->gtt_probe = i915_gmch_probe; |
| gtt->base.cleanup = i915_gmch_remove; |
| } else if (INTEL_INFO(dev)->gen < 8) { |
| gtt->gtt_probe = gen6_gmch_probe; |
| gtt->base.cleanup = gen6_gmch_remove; |
| if (IS_HASWELL(dev) && dev_priv->ellc_size) |
| gtt->base.pte_encode = iris_pte_encode; |
| else if (IS_HASWELL(dev)) |
| gtt->base.pte_encode = hsw_pte_encode; |
| else if (IS_VALLEYVIEW(dev)) |
| gtt->base.pte_encode = byt_pte_encode; |
| else if (INTEL_INFO(dev)->gen >= 7) |
| gtt->base.pte_encode = ivb_pte_encode; |
| else |
| gtt->base.pte_encode = snb_pte_encode; |
| } else { |
| dev_priv->gtt.gtt_probe = gen8_gmch_probe; |
| dev_priv->gtt.base.cleanup = gen6_gmch_remove; |
| } |
| |
| ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size, |
| >t->mappable_base, >t->mappable_end); |
| if (ret) |
| return ret; |
| |
| gtt->base.dev = dev; |
| |
| /* GMADR is the PCI mmio aperture into the global GTT. */ |
| DRM_INFO("Memory usable by graphics device = %zdM\n", |
| gtt->base.total >> 20); |
| DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20); |
| DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20); |
| #ifdef CONFIG_INTEL_IOMMU |
| if (intel_iommu_gfx_mapped) |
| DRM_INFO("VT-d active for gfx access\n"); |
| #endif |
| /* |
| * i915.enable_ppgtt is read-only, so do an early pass to validate the |
| * user's requested state against the hardware/driver capabilities. We |
| * do this now so that we can print out any log messages once rather |
| * than every time we check intel_enable_ppgtt(). |
| */ |
| i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt); |
| DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt); |
| |
| return 0; |
| } |
| |
| void i915_gem_restore_gtt_mappings(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj; |
| struct i915_address_space *vm; |
| |
| i915_check_and_clear_faults(dev); |
| |
| /* First fill our portion of the GTT with scratch pages */ |
| dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, |
| dev_priv->gtt.base.start, |
| dev_priv->gtt.base.total, |
| true); |
| |
| list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { |
| struct i915_vma *vma = i915_gem_obj_to_vma(obj, |
| &dev_priv->gtt.base); |
| if (!vma) |
| continue; |
| |
| i915_gem_clflush_object(obj, obj->pin_display); |
| WARN_ON(i915_vma_bind(vma, obj->cache_level, PIN_UPDATE)); |
| } |
| |
| |
| if (INTEL_INFO(dev)->gen >= 8) { |
| if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) |
| chv_setup_private_ppat(dev_priv); |
| else |
| bdw_setup_private_ppat(dev_priv); |
| |
| return; |
| } |
| |
| if (USES_PPGTT(dev)) { |
| list_for_each_entry(vm, &dev_priv->vm_list, global_link) { |
| /* TODO: Perhaps it shouldn't be gen6 specific */ |
| |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, |
| base); |
| |
| if (i915_is_ggtt(vm)) |
| ppgtt = dev_priv->mm.aliasing_ppgtt; |
| |
| gen6_write_page_range(dev_priv, &ppgtt->pd, |
| 0, ppgtt->base.total); |
| } |
| } |
| |
| i915_ggtt_flush(dev_priv); |
| } |
| |
| static struct i915_vma * |
| __i915_gem_vma_create(struct drm_i915_gem_object *obj, |
| struct i915_address_space *vm, |
| const struct i915_ggtt_view *ggtt_view) |
| { |
| struct i915_vma *vma; |
| |
| if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view)) |
| return ERR_PTR(-EINVAL); |
| |
| vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL); |
| if (vma == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&vma->vma_link); |
| INIT_LIST_HEAD(&vma->mm_list); |
| INIT_LIST_HEAD(&vma->exec_list); |
| vma->vm = vm; |
| vma->obj = obj; |
| |
| if (i915_is_ggtt(vm)) |
| vma->ggtt_view = *ggtt_view; |
| |
| list_add_tail(&vma->vma_link, &obj->vma_list); |
| if (!i915_is_ggtt(vm)) |
| i915_ppgtt_get(i915_vm_to_ppgtt(vm)); |
| |
| return vma; |
| } |
| |
| struct i915_vma * |
| i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, |
| struct i915_address_space *vm) |
| { |
| struct i915_vma *vma; |
| |
| vma = i915_gem_obj_to_vma(obj, vm); |
| if (!vma) |
| vma = __i915_gem_vma_create(obj, vm, |
| i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL); |
| |
| return vma; |
| } |
| |
| struct i915_vma * |
| i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj, |
| const struct i915_ggtt_view *view) |
| { |
| struct i915_address_space *ggtt = i915_obj_to_ggtt(obj); |
| struct i915_vma *vma; |
| |
| if (WARN_ON(!view)) |
| return ERR_PTR(-EINVAL); |
| |
| vma = i915_gem_obj_to_ggtt_view(obj, view); |
| |
| if (IS_ERR(vma)) |
| return vma; |
| |
| if (!vma) |
| vma = __i915_gem_vma_create(obj, ggtt, view); |
| |
| return vma; |
| |
| } |
| |
| static void |
| rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height, |
| struct sg_table *st) |
| { |
| unsigned int column, row; |
| unsigned int src_idx; |
| struct scatterlist *sg = st->sgl; |
| |
| st->nents = 0; |
| |
| for (column = 0; column < width; column++) { |
| src_idx = width * (height - 1) + column; |
| for (row = 0; row < height; row++) { |
| st->nents++; |
| /* We don't need the pages, but need to initialize |
| * the entries so the sg list can be happily traversed. |
| * The only thing we need are DMA addresses. |
| */ |
| sg_set_page(sg, NULL, PAGE_SIZE, 0); |
| sg_dma_address(sg) = in[src_idx]; |
| sg_dma_len(sg) = PAGE_SIZE; |
| sg = sg_next(sg); |
| src_idx -= width; |
| } |
| } |
| } |
| |
| static struct sg_table * |
| intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct intel_rotation_info *rot_info = &ggtt_view->rotation_info; |
| unsigned long size, pages, rot_pages; |
| struct sg_page_iter sg_iter; |
| unsigned long i; |
| dma_addr_t *page_addr_list; |
| struct sg_table *st; |
| unsigned int tile_pitch, tile_height; |
| unsigned int width_pages, height_pages; |
| int ret = -ENOMEM; |
| |
| pages = obj->base.size / PAGE_SIZE; |
| |
| /* Calculate tiling geometry. */ |
| tile_height = intel_tile_height(dev, rot_info->pixel_format, |
| rot_info->fb_modifier); |
| tile_pitch = PAGE_SIZE / tile_height; |
| width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch); |
| height_pages = DIV_ROUND_UP(rot_info->height, tile_height); |
| rot_pages = width_pages * height_pages; |
| size = rot_pages * PAGE_SIZE; |
| |
| /* Allocate a temporary list of source pages for random access. */ |
| page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t)); |
| if (!page_addr_list) |
| return ERR_PTR(ret); |
| |
| /* Allocate target SG list. */ |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (!st) |
| goto err_st_alloc; |
| |
| ret = sg_alloc_table(st, rot_pages, GFP_KERNEL); |
| if (ret) |
| goto err_sg_alloc; |
| |
| /* Populate source page list from the object. */ |
| i = 0; |
| for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) { |
| page_addr_list[i] = sg_page_iter_dma_address(&sg_iter); |
| i++; |
| } |
| |
| /* Rotate the pages. */ |
| rotate_pages(page_addr_list, width_pages, height_pages, st); |
| |
| DRM_DEBUG_KMS( |
| "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n", |
| size, rot_info->pitch, rot_info->height, |
| rot_info->pixel_format, width_pages, height_pages, |
| rot_pages); |
| |
| drm_free_large(page_addr_list); |
| |
| return st; |
| |
| err_sg_alloc: |
| kfree(st); |
| err_st_alloc: |
| drm_free_large(page_addr_list); |
| |
| DRM_DEBUG_KMS( |
| "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n", |
| size, ret, rot_info->pitch, rot_info->height, |
| rot_info->pixel_format, width_pages, height_pages, |
| rot_pages); |
| return ERR_PTR(ret); |
| } |
| |
| static struct sg_table * |
| intel_partial_pages(const struct i915_ggtt_view *view, |
| struct drm_i915_gem_object *obj) |
| { |
| struct sg_table *st; |
| struct scatterlist *sg; |
| struct sg_page_iter obj_sg_iter; |
| int ret = -ENOMEM; |
| |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (!st) |
| goto err_st_alloc; |
| |
| ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL); |
| if (ret) |
| goto err_sg_alloc; |
| |
| sg = st->sgl; |
| st->nents = 0; |
| for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents, |
| view->params.partial.offset) |
| { |
| if (st->nents >= view->params.partial.size) |
| break; |
| |
| sg_set_page(sg, NULL, PAGE_SIZE, 0); |
| sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter); |
| sg_dma_len(sg) = PAGE_SIZE; |
| |
| sg = sg_next(sg); |
| st->nents++; |
| } |
| |
| return st; |
| |
| err_sg_alloc: |
| kfree(st); |
| err_st_alloc: |
| return ERR_PTR(ret); |
| } |
| |
| static int |
| i915_get_ggtt_vma_pages(struct i915_vma *vma) |
| { |
| int ret = 0; |
| |
| if (vma->ggtt_view.pages) |
| return 0; |
| |
| if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) |
| vma->ggtt_view.pages = vma->obj->pages; |
| else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED) |
| vma->ggtt_view.pages = |
| intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj); |
| else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL) |
| vma->ggtt_view.pages = |
| intel_partial_pages(&vma->ggtt_view, vma->obj); |
| else |
| WARN_ONCE(1, "GGTT view %u not implemented!\n", |
| vma->ggtt_view.type); |
| |
| if (!vma->ggtt_view.pages) { |
| DRM_ERROR("Failed to get pages for GGTT view type %u!\n", |
| vma->ggtt_view.type); |
| ret = -EINVAL; |
| } else if (IS_ERR(vma->ggtt_view.pages)) { |
| ret = PTR_ERR(vma->ggtt_view.pages); |
| vma->ggtt_view.pages = NULL; |
| DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", |
| vma->ggtt_view.type, ret); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. |
| * @vma: VMA to map |
| * @cache_level: mapping cache level |
| * @flags: flags like global or local mapping |
| * |
| * DMA addresses are taken from the scatter-gather table of this object (or of |
| * this VMA in case of non-default GGTT views) and PTE entries set up. |
| * Note that DMA addresses are also the only part of the SG table we care about. |
| */ |
| int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| int ret; |
| u32 bind_flags; |
| |
| if (WARN_ON(flags == 0)) |
| return -EINVAL; |
| |
| bind_flags = 0; |
| if (flags & PIN_GLOBAL) |
| bind_flags |= GLOBAL_BIND; |
| if (flags & PIN_USER) |
| bind_flags |= LOCAL_BIND; |
| |
| if (flags & PIN_UPDATE) |
| bind_flags |= vma->bound; |
| else |
| bind_flags &= ~vma->bound; |
| |
| if (bind_flags == 0) |
| return 0; |
| |
| if (vma->bound == 0 && vma->vm->allocate_va_range) { |
| trace_i915_va_alloc(vma->vm, |
| vma->node.start, |
| vma->node.size, |
| VM_TO_TRACE_NAME(vma->vm)); |
| |
| ret = vma->vm->allocate_va_range(vma->vm, |
| vma->node.start, |
| vma->node.size); |
| if (ret) |
| return ret; |
| } |
| |
| ret = vma->vm->bind_vma(vma, cache_level, bind_flags); |
| if (ret) |
| return ret; |
| |
| vma->bound |= bind_flags; |
| |
| return 0; |
| } |
| |
| /** |
| * i915_ggtt_view_size - Get the size of a GGTT view. |
| * @obj: Object the view is of. |
| * @view: The view in question. |
| * |
| * @return The size of the GGTT view in bytes. |
| */ |
| size_t |
| i915_ggtt_view_size(struct drm_i915_gem_object *obj, |
| const struct i915_ggtt_view *view) |
| { |
| if (view->type == I915_GGTT_VIEW_NORMAL || |
| view->type == I915_GGTT_VIEW_ROTATED) { |
| return obj->base.size; |
| } else if (view->type == I915_GGTT_VIEW_PARTIAL) { |
| return view->params.partial.size << PAGE_SHIFT; |
| } else { |
| WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type); |
| return obj->base.size; |
| } |
| } |