| /* |
| * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| * |
| * Further, this software is distributed without any warranty that it is |
| * free of the rightful claim of any third person regarding infringement |
| * or the like. Any license provided herein, whether implied or |
| * otherwise, applies only to this software file. Patent licenses, if |
| * any, provided herein do not apply to combinations of this program with |
| * other software, or any other product whatsoever. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write the Free Software Foundation, Inc., 59 |
| * Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| * |
| * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, |
| * Mountain View, CA 94043, or: |
| * |
| * http://www.sgi.com |
| * |
| * For further information regarding this notice, see: |
| * |
| * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ |
| */ |
| /* |
| * xfs_attr_leaf.c |
| * |
| * GROT: figure out how to recover gracefully when bmap returns ENOSPC. |
| */ |
| |
| #include "xfs.h" |
| |
| #include "xfs_macros.h" |
| #include "xfs_types.h" |
| #include "xfs_inum.h" |
| #include "xfs_log.h" |
| #include "xfs_trans.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dir.h" |
| #include "xfs_dir2.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_alloc.h" |
| #include "xfs_btree.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dir_sf.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_inode.h" |
| #include "xfs_bmap.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_attr.h" |
| #include "xfs_attr_leaf.h" |
| #include "xfs_error.h" |
| #include "xfs_bit.h" |
| |
| /* |
| * xfs_attr_leaf.c |
| * |
| * Routines to implement leaf blocks of attributes as Btrees of hashed names. |
| */ |
| |
| /*======================================================================== |
| * Function prototypes for the kernel. |
| *========================================================================*/ |
| |
| /* |
| * Routines used for growing the Btree. |
| */ |
| STATIC int xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t which_block, |
| xfs_dabuf_t **bpp); |
| STATIC int xfs_attr_leaf_add_work(xfs_dabuf_t *leaf_buffer, xfs_da_args_t *args, |
| int freemap_index); |
| STATIC void xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *leaf_buffer); |
| STATIC void xfs_attr_leaf_rebalance(xfs_da_state_t *state, |
| xfs_da_state_blk_t *blk1, |
| xfs_da_state_blk_t *blk2); |
| STATIC int xfs_attr_leaf_figure_balance(xfs_da_state_t *state, |
| xfs_da_state_blk_t *leaf_blk_1, |
| xfs_da_state_blk_t *leaf_blk_2, |
| int *number_entries_in_blk1, |
| int *number_usedbytes_in_blk1); |
| |
| /* |
| * Routines used for shrinking the Btree. |
| */ |
| STATIC int xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp, |
| xfs_dabuf_t *bp, int level); |
| STATIC int xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp, |
| xfs_dabuf_t *bp); |
| STATIC int xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp, |
| xfs_dablk_t blkno, int blkcnt); |
| |
| /* |
| * Utility routines. |
| */ |
| STATIC void xfs_attr_leaf_moveents(xfs_attr_leafblock_t *src_leaf, |
| int src_start, |
| xfs_attr_leafblock_t *dst_leaf, |
| int dst_start, int move_count, |
| xfs_mount_t *mp); |
| STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); |
| STATIC int xfs_attr_put_listent(xfs_attr_list_context_t *context, |
| attrnames_t *, char *name, int namelen, |
| int valuelen); |
| |
| |
| /*======================================================================== |
| * External routines when dirsize < XFS_LITINO(mp). |
| *========================================================================*/ |
| |
| /* |
| * Create the initial contents of a shortform attribute list. |
| */ |
| int |
| xfs_attr_shortform_create(xfs_da_args_t *args) |
| { |
| xfs_attr_sf_hdr_t *hdr; |
| xfs_inode_t *dp; |
| xfs_ifork_t *ifp; |
| |
| dp = args->dp; |
| ASSERT(dp != NULL); |
| ifp = dp->i_afp; |
| ASSERT(ifp != NULL); |
| ASSERT(ifp->if_bytes == 0); |
| if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) { |
| ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */ |
| dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL; |
| ifp->if_flags |= XFS_IFINLINE; |
| } else { |
| ASSERT(ifp->if_flags & XFS_IFINLINE); |
| } |
| xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); |
| hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data; |
| hdr->count = 0; |
| INT_SET(hdr->totsize, ARCH_CONVERT, sizeof(*hdr)); |
| xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); |
| return(0); |
| } |
| |
| /* |
| * Add a name/value pair to the shortform attribute list. |
| * Overflow from the inode has already been checked for. |
| */ |
| int |
| xfs_attr_shortform_add(xfs_da_args_t *args) |
| { |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| int i, offset, size; |
| xfs_inode_t *dp; |
| xfs_ifork_t *ifp; |
| |
| dp = args->dp; |
| ifp = dp->i_afp; |
| ASSERT(ifp->if_flags & XFS_IFINLINE); |
| sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; |
| sfe = &sf->list[0]; |
| for (i = 0; i < INT_GET(sf->hdr.count, ARCH_CONVERT); |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { |
| if (sfe->namelen != args->namelen) |
| continue; |
| if (memcmp(args->name, sfe->nameval, args->namelen) != 0) |
| continue; |
| if (((args->flags & ATTR_SECURE) != 0) != |
| ((sfe->flags & XFS_ATTR_SECURE) != 0)) |
| continue; |
| if (((args->flags & ATTR_ROOT) != 0) != |
| ((sfe->flags & XFS_ATTR_ROOT) != 0)) |
| continue; |
| return(XFS_ERROR(EEXIST)); |
| } |
| |
| offset = (char *)sfe - (char *)sf; |
| size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen); |
| xfs_idata_realloc(dp, size, XFS_ATTR_FORK); |
| sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; |
| sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset); |
| |
| sfe->namelen = args->namelen; |
| INT_SET(sfe->valuelen, ARCH_CONVERT, args->valuelen); |
| sfe->flags = (args->flags & ATTR_SECURE) ? XFS_ATTR_SECURE : |
| ((args->flags & ATTR_ROOT) ? XFS_ATTR_ROOT : 0); |
| memcpy(sfe->nameval, args->name, args->namelen); |
| memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); |
| INT_MOD(sf->hdr.count, ARCH_CONVERT, 1); |
| INT_MOD(sf->hdr.totsize, ARCH_CONVERT, size); |
| xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); |
| |
| return(0); |
| } |
| |
| /* |
| * Remove a name from the shortform attribute list structure. |
| */ |
| int |
| xfs_attr_shortform_remove(xfs_da_args_t *args) |
| { |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| int base, size=0, end, totsize, i; |
| xfs_inode_t *dp; |
| |
| /* |
| * Remove the attribute. |
| */ |
| dp = args->dp; |
| base = sizeof(xfs_attr_sf_hdr_t); |
| sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; |
| sfe = &sf->list[0]; |
| for (i = 0; i < INT_GET(sf->hdr.count, ARCH_CONVERT); |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe), |
| base += size, i++) { |
| size = XFS_ATTR_SF_ENTSIZE(sfe); |
| if (sfe->namelen != args->namelen) |
| continue; |
| if (memcmp(sfe->nameval, args->name, args->namelen) != 0) |
| continue; |
| if (((args->flags & ATTR_SECURE) != 0) != |
| ((sfe->flags & XFS_ATTR_SECURE) != 0)) |
| continue; |
| if (((args->flags & ATTR_ROOT) != 0) != |
| ((sfe->flags & XFS_ATTR_ROOT) != 0)) |
| continue; |
| break; |
| } |
| if (i == INT_GET(sf->hdr.count, ARCH_CONVERT)) |
| return(XFS_ERROR(ENOATTR)); |
| |
| end = base + size; |
| totsize = INT_GET(sf->hdr.totsize, ARCH_CONVERT); |
| if (end != totsize) { |
| memmove(&((char *)sf)[base], &((char *)sf)[end], |
| totsize - end); |
| } |
| INT_MOD(sf->hdr.count, ARCH_CONVERT, -1); |
| INT_MOD(sf->hdr.totsize, ARCH_CONVERT, -size); |
| xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); |
| xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); |
| |
| return(0); |
| } |
| |
| /* |
| * Look up a name in a shortform attribute list structure. |
| */ |
| /*ARGSUSED*/ |
| int |
| xfs_attr_shortform_lookup(xfs_da_args_t *args) |
| { |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| int i; |
| xfs_ifork_t *ifp; |
| |
| ifp = args->dp->i_afp; |
| ASSERT(ifp->if_flags & XFS_IFINLINE); |
| sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; |
| sfe = &sf->list[0]; |
| for (i = 0; i < INT_GET(sf->hdr.count, ARCH_CONVERT); |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { |
| if (sfe->namelen != args->namelen) |
| continue; |
| if (memcmp(args->name, sfe->nameval, args->namelen) != 0) |
| continue; |
| if (((args->flags & ATTR_SECURE) != 0) != |
| ((sfe->flags & XFS_ATTR_SECURE) != 0)) |
| continue; |
| if (((args->flags & ATTR_ROOT) != 0) != |
| ((sfe->flags & XFS_ATTR_ROOT) != 0)) |
| continue; |
| return(XFS_ERROR(EEXIST)); |
| } |
| return(XFS_ERROR(ENOATTR)); |
| } |
| |
| /* |
| * Look up a name in a shortform attribute list structure. |
| */ |
| /*ARGSUSED*/ |
| int |
| xfs_attr_shortform_getvalue(xfs_da_args_t *args) |
| { |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| int i; |
| |
| ASSERT(args->dp->i_d.di_aformat == XFS_IFINLINE); |
| sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data; |
| sfe = &sf->list[0]; |
| for (i = 0; i < INT_GET(sf->hdr.count, ARCH_CONVERT); |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { |
| if (sfe->namelen != args->namelen) |
| continue; |
| if (memcmp(args->name, sfe->nameval, args->namelen) != 0) |
| continue; |
| if (((args->flags & ATTR_SECURE) != 0) != |
| ((sfe->flags & XFS_ATTR_SECURE) != 0)) |
| continue; |
| if (((args->flags & ATTR_ROOT) != 0) != |
| ((sfe->flags & XFS_ATTR_ROOT) != 0)) |
| continue; |
| if (args->flags & ATTR_KERNOVAL) { |
| args->valuelen = INT_GET(sfe->valuelen, ARCH_CONVERT); |
| return(XFS_ERROR(EEXIST)); |
| } |
| if (args->valuelen < INT_GET(sfe->valuelen, ARCH_CONVERT)) { |
| args->valuelen = INT_GET(sfe->valuelen, ARCH_CONVERT); |
| return(XFS_ERROR(ERANGE)); |
| } |
| args->valuelen = INT_GET(sfe->valuelen, ARCH_CONVERT); |
| memcpy(args->value, &sfe->nameval[args->namelen], |
| args->valuelen); |
| return(XFS_ERROR(EEXIST)); |
| } |
| return(XFS_ERROR(ENOATTR)); |
| } |
| |
| /* |
| * Convert from using the shortform to the leaf. |
| */ |
| int |
| xfs_attr_shortform_to_leaf(xfs_da_args_t *args) |
| { |
| xfs_inode_t *dp; |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| xfs_da_args_t nargs; |
| char *tmpbuffer; |
| int error, i, size; |
| xfs_dablk_t blkno; |
| xfs_dabuf_t *bp; |
| xfs_ifork_t *ifp; |
| |
| dp = args->dp; |
| ifp = dp->i_afp; |
| sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; |
| size = INT_GET(sf->hdr.totsize, ARCH_CONVERT); |
| tmpbuffer = kmem_alloc(size, KM_SLEEP); |
| ASSERT(tmpbuffer != NULL); |
| memcpy(tmpbuffer, ifp->if_u1.if_data, size); |
| sf = (xfs_attr_shortform_t *)tmpbuffer; |
| |
| xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); |
| bp = NULL; |
| error = xfs_da_grow_inode(args, &blkno); |
| if (error) { |
| /* |
| * If we hit an IO error middle of the transaction inside |
| * grow_inode(), we may have inconsistent data. Bail out. |
| */ |
| if (error == EIO) |
| goto out; |
| xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */ |
| memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */ |
| goto out; |
| } |
| |
| ASSERT(blkno == 0); |
| error = xfs_attr_leaf_create(args, blkno, &bp); |
| if (error) { |
| error = xfs_da_shrink_inode(args, 0, bp); |
| bp = NULL; |
| if (error) |
| goto out; |
| xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */ |
| memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */ |
| goto out; |
| } |
| |
| memset((char *)&nargs, 0, sizeof(nargs)); |
| nargs.dp = dp; |
| nargs.firstblock = args->firstblock; |
| nargs.flist = args->flist; |
| nargs.total = args->total; |
| nargs.whichfork = XFS_ATTR_FORK; |
| nargs.trans = args->trans; |
| nargs.oknoent = 1; |
| |
| sfe = &sf->list[0]; |
| for (i = 0; i < INT_GET(sf->hdr.count, ARCH_CONVERT); i++) { |
| nargs.name = (char *)sfe->nameval; |
| nargs.namelen = sfe->namelen; |
| nargs.value = (char *)&sfe->nameval[nargs.namelen]; |
| nargs.valuelen = INT_GET(sfe->valuelen, ARCH_CONVERT); |
| nargs.hashval = xfs_da_hashname((char *)sfe->nameval, |
| sfe->namelen); |
| nargs.flags = (sfe->flags & XFS_ATTR_SECURE) ? ATTR_SECURE : |
| ((sfe->flags & XFS_ATTR_ROOT) ? ATTR_ROOT : 0); |
| error = xfs_attr_leaf_lookup_int(bp, &nargs); /* set a->index */ |
| ASSERT(error == ENOATTR); |
| error = xfs_attr_leaf_add(bp, &nargs); |
| ASSERT(error != ENOSPC); |
| if (error) |
| goto out; |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe); |
| } |
| error = 0; |
| |
| out: |
| if(bp) |
| xfs_da_buf_done(bp); |
| kmem_free(tmpbuffer, size); |
| return(error); |
| } |
| |
| STATIC int |
| xfs_attr_shortform_compare(const void *a, const void *b) |
| { |
| xfs_attr_sf_sort_t *sa, *sb; |
| |
| sa = (xfs_attr_sf_sort_t *)a; |
| sb = (xfs_attr_sf_sort_t *)b; |
| if (INT_GET(sa->hash, ARCH_CONVERT) |
| < INT_GET(sb->hash, ARCH_CONVERT)) { |
| return(-1); |
| } else if (INT_GET(sa->hash, ARCH_CONVERT) |
| > INT_GET(sb->hash, ARCH_CONVERT)) { |
| return(1); |
| } else { |
| return(sa->entno - sb->entno); |
| } |
| } |
| |
| /* |
| * Copy out entries of shortform attribute lists for attr_list(). |
| * Shortform atrtribute lists are not stored in hashval sorted order. |
| * If the output buffer is not large enough to hold them all, then we |
| * we have to calculate each entries' hashvalue and sort them before |
| * we can begin returning them to the user. |
| */ |
| /*ARGSUSED*/ |
| int |
| xfs_attr_shortform_list(xfs_attr_list_context_t *context) |
| { |
| attrlist_cursor_kern_t *cursor; |
| xfs_attr_sf_sort_t *sbuf, *sbp; |
| xfs_attr_shortform_t *sf; |
| xfs_attr_sf_entry_t *sfe; |
| xfs_inode_t *dp; |
| int sbsize, nsbuf, count, i; |
| |
| ASSERT(context != NULL); |
| dp = context->dp; |
| ASSERT(dp != NULL); |
| ASSERT(dp->i_afp != NULL); |
| sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; |
| ASSERT(sf != NULL); |
| if (!sf->hdr.count) |
| return(0); |
| cursor = context->cursor; |
| ASSERT(cursor != NULL); |
| |
| xfs_attr_trace_l_c("sf start", context); |
| |
| /* |
| * If the buffer is large enough, do not bother with sorting. |
| * Note the generous fudge factor of 16 overhead bytes per entry. |
| */ |
| if ((dp->i_afp->if_bytes + INT_GET(sf->hdr.count, ARCH_CONVERT) * 16) |
| < context->bufsize) { |
| for (i = 0, sfe = &sf->list[0]; |
| i < INT_GET(sf->hdr.count, ARCH_CONVERT); i++) { |
| attrnames_t *namesp; |
| |
| if (((context->flags & ATTR_SECURE) != 0) != |
| ((sfe->flags & XFS_ATTR_SECURE) != 0) && |
| !(context->flags & ATTR_KERNORMALS)) { |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe); |
| continue; |
| } |
| if (((context->flags & ATTR_ROOT) != 0) != |
| ((sfe->flags & XFS_ATTR_ROOT) != 0) && |
| !(context->flags & ATTR_KERNROOTLS)) { |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe); |
| continue; |
| } |
| namesp = (sfe->flags & XFS_ATTR_SECURE) ? &attr_secure: |
| ((sfe->flags & XFS_ATTR_ROOT) ? &attr_trusted : |
| &attr_user); |
| if (context->flags & ATTR_KERNOVAL) { |
| ASSERT(context->flags & ATTR_KERNAMELS); |
| context->count += namesp->attr_namelen + |
| INT_GET(sfe->namelen, ARCH_CONVERT) + 1; |
| } |
| else { |
| if (xfs_attr_put_listent(context, namesp, |
| (char *)sfe->nameval, |
| (int)sfe->namelen, |
| (int)INT_GET(sfe->valuelen, |
| ARCH_CONVERT))) |
| break; |
| } |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe); |
| } |
| xfs_attr_trace_l_c("sf big-gulp", context); |
| return(0); |
| } |
| |
| /* |
| * It didn't all fit, so we have to sort everything on hashval. |
| */ |
| sbsize = INT_GET(sf->hdr.count, ARCH_CONVERT) * sizeof(*sbuf); |
| sbp = sbuf = kmem_alloc(sbsize, KM_SLEEP); |
| |
| /* |
| * Scan the attribute list for the rest of the entries, storing |
| * the relevant info from only those that match into a buffer. |
| */ |
| nsbuf = 0; |
| for (i = 0, sfe = &sf->list[0]; |
| i < INT_GET(sf->hdr.count, ARCH_CONVERT); i++) { |
| if (unlikely( |
| ((char *)sfe < (char *)sf) || |
| ((char *)sfe >= ((char *)sf + dp->i_afp->if_bytes)))) { |
| XFS_CORRUPTION_ERROR("xfs_attr_shortform_list", |
| XFS_ERRLEVEL_LOW, |
| context->dp->i_mount, sfe); |
| xfs_attr_trace_l_c("sf corrupted", context); |
| kmem_free(sbuf, sbsize); |
| return XFS_ERROR(EFSCORRUPTED); |
| } |
| if (((context->flags & ATTR_SECURE) != 0) != |
| ((sfe->flags & XFS_ATTR_SECURE) != 0) && |
| !(context->flags & ATTR_KERNORMALS)) { |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe); |
| continue; |
| } |
| if (((context->flags & ATTR_ROOT) != 0) != |
| ((sfe->flags & XFS_ATTR_ROOT) != 0) && |
| !(context->flags & ATTR_KERNROOTLS)) { |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe); |
| continue; |
| } |
| sbp->entno = i; |
| INT_SET(sbp->hash, ARCH_CONVERT, |
| xfs_da_hashname((char *)sfe->nameval, sfe->namelen)); |
| sbp->name = (char *)sfe->nameval; |
| sbp->namelen = sfe->namelen; |
| /* These are bytes, and both on-disk, don't endian-flip */ |
| sbp->valuelen = sfe->valuelen; |
| sbp->flags = sfe->flags; |
| sfe = XFS_ATTR_SF_NEXTENTRY(sfe); |
| sbp++; |
| nsbuf++; |
| } |
| |
| /* |
| * Sort the entries on hash then entno. |
| */ |
| qsort(sbuf, nsbuf, sizeof(*sbuf), xfs_attr_shortform_compare); |
| |
| /* |
| * Re-find our place IN THE SORTED LIST. |
| */ |
| count = 0; |
| cursor->initted = 1; |
| cursor->blkno = 0; |
| for (sbp = sbuf, i = 0; i < nsbuf; i++, sbp++) { |
| if (INT_GET(sbp->hash, ARCH_CONVERT) == cursor->hashval) { |
| if (cursor->offset == count) { |
| break; |
| } |
| count++; |
| } else if (INT_GET(sbp->hash, ARCH_CONVERT) > cursor->hashval) { |
| break; |
| } |
| } |
| if (i == nsbuf) { |
| kmem_free(sbuf, sbsize); |
| xfs_attr_trace_l_c("blk end", context); |
| return(0); |
| } |
| |
| /* |
| * Loop putting entries into the user buffer. |
| */ |
| for ( ; i < nsbuf; i++, sbp++) { |
| attrnames_t *namesp; |
| |
| namesp = (sbp->flags & XFS_ATTR_SECURE) ? &attr_secure : |
| ((sbp->flags & XFS_ATTR_ROOT) ? &attr_trusted : |
| &attr_user); |
| |
| if (cursor->hashval != INT_GET(sbp->hash, ARCH_CONVERT)) { |
| cursor->hashval = INT_GET(sbp->hash, ARCH_CONVERT); |
| cursor->offset = 0; |
| } |
| if (context->flags & ATTR_KERNOVAL) { |
| ASSERT(context->flags & ATTR_KERNAMELS); |
| context->count += namesp->attr_namelen + |
| sbp->namelen + 1; |
| } else { |
| if (xfs_attr_put_listent(context, namesp, |
| sbp->name, sbp->namelen, |
| INT_GET(sbp->valuelen, ARCH_CONVERT))) |
| break; |
| } |
| cursor->offset++; |
| } |
| |
| kmem_free(sbuf, sbsize); |
| xfs_attr_trace_l_c("sf E-O-F", context); |
| return(0); |
| } |
| |
| /* |
| * Check a leaf attribute block to see if all the entries would fit into |
| * a shortform attribute list. |
| */ |
| int |
| xfs_attr_shortform_allfit(xfs_dabuf_t *bp, xfs_inode_t *dp) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_local_t *name_loc; |
| int bytes, i; |
| |
| leaf = bp->data; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| |
| entry = &leaf->entries[0]; |
| bytes = sizeof(struct xfs_attr_sf_hdr); |
| for (i = 0; i < INT_GET(leaf->hdr.count, ARCH_CONVERT); entry++, i++) { |
| if (entry->flags & XFS_ATTR_INCOMPLETE) |
| continue; /* don't copy partial entries */ |
| if (!(entry->flags & XFS_ATTR_LOCAL)) |
| return(0); |
| name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, i); |
| if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) |
| return(0); |
| if (INT_GET(name_loc->valuelen, ARCH_CONVERT) >= XFS_ATTR_SF_ENTSIZE_MAX) |
| return(0); |
| bytes += sizeof(struct xfs_attr_sf_entry)-1 |
| + name_loc->namelen |
| + INT_GET(name_loc->valuelen, ARCH_CONVERT); |
| } |
| return( bytes < XFS_IFORK_ASIZE(dp) ); |
| } |
| |
| /* |
| * Convert a leaf attribute list to shortform attribute list |
| */ |
| int |
| xfs_attr_leaf_to_shortform(xfs_dabuf_t *bp, xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_local_t *name_loc; |
| xfs_da_args_t nargs; |
| xfs_inode_t *dp; |
| char *tmpbuffer; |
| int error, i; |
| |
| dp = args->dp; |
| tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP); |
| ASSERT(tmpbuffer != NULL); |
| |
| ASSERT(bp != NULL); |
| memcpy(tmpbuffer, bp->data, XFS_LBSIZE(dp->i_mount)); |
| leaf = (xfs_attr_leafblock_t *)tmpbuffer; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| memset(bp->data, 0, XFS_LBSIZE(dp->i_mount)); |
| |
| /* |
| * Clean out the prior contents of the attribute list. |
| */ |
| error = xfs_da_shrink_inode(args, 0, bp); |
| if (error) |
| goto out; |
| error = xfs_attr_shortform_create(args); |
| if (error) |
| goto out; |
| |
| /* |
| * Copy the attributes |
| */ |
| memset((char *)&nargs, 0, sizeof(nargs)); |
| nargs.dp = dp; |
| nargs.firstblock = args->firstblock; |
| nargs.flist = args->flist; |
| nargs.total = args->total; |
| nargs.whichfork = XFS_ATTR_FORK; |
| nargs.trans = args->trans; |
| nargs.oknoent = 1; |
| entry = &leaf->entries[0]; |
| for (i = 0; i < INT_GET(leaf->hdr.count, ARCH_CONVERT); entry++, i++) { |
| if (entry->flags & XFS_ATTR_INCOMPLETE) |
| continue; /* don't copy partial entries */ |
| if (!entry->nameidx) |
| continue; |
| ASSERT(entry->flags & XFS_ATTR_LOCAL); |
| name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, i); |
| nargs.name = (char *)name_loc->nameval; |
| nargs.namelen = name_loc->namelen; |
| nargs.value = (char *)&name_loc->nameval[nargs.namelen]; |
| nargs.valuelen = INT_GET(name_loc->valuelen, ARCH_CONVERT); |
| nargs.hashval = INT_GET(entry->hashval, ARCH_CONVERT); |
| nargs.flags = (entry->flags & XFS_ATTR_SECURE) ? ATTR_SECURE : |
| ((entry->flags & XFS_ATTR_ROOT) ? ATTR_ROOT : 0); |
| xfs_attr_shortform_add(&nargs); |
| } |
| error = 0; |
| |
| out: |
| kmem_free(tmpbuffer, XFS_LBSIZE(dp->i_mount)); |
| return(error); |
| } |
| |
| /* |
| * Convert from using a single leaf to a root node and a leaf. |
| */ |
| int |
| xfs_attr_leaf_to_node(xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_da_intnode_t *node; |
| xfs_inode_t *dp; |
| xfs_dabuf_t *bp1, *bp2; |
| xfs_dablk_t blkno; |
| int error; |
| |
| dp = args->dp; |
| bp1 = bp2 = NULL; |
| error = xfs_da_grow_inode(args, &blkno); |
| if (error) |
| goto out; |
| error = xfs_da_read_buf(args->trans, args->dp, 0, -1, &bp1, |
| XFS_ATTR_FORK); |
| if (error) |
| goto out; |
| ASSERT(bp1 != NULL); |
| bp2 = NULL; |
| error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp2, |
| XFS_ATTR_FORK); |
| if (error) |
| goto out; |
| ASSERT(bp2 != NULL); |
| memcpy(bp2->data, bp1->data, XFS_LBSIZE(dp->i_mount)); |
| xfs_da_buf_done(bp1); |
| bp1 = NULL; |
| xfs_da_log_buf(args->trans, bp2, 0, XFS_LBSIZE(dp->i_mount) - 1); |
| |
| /* |
| * Set up the new root node. |
| */ |
| error = xfs_da_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); |
| if (error) |
| goto out; |
| node = bp1->data; |
| leaf = bp2->data; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| /* both on-disk, don't endian-flip twice */ |
| node->btree[0].hashval = |
| leaf->entries[INT_GET(leaf->hdr.count, ARCH_CONVERT)-1 ].hashval; |
| INT_SET(node->btree[0].before, ARCH_CONVERT, blkno); |
| INT_SET(node->hdr.count, ARCH_CONVERT, 1); |
| xfs_da_log_buf(args->trans, bp1, 0, XFS_LBSIZE(dp->i_mount) - 1); |
| error = 0; |
| out: |
| if (bp1) |
| xfs_da_buf_done(bp1); |
| if (bp2) |
| xfs_da_buf_done(bp2); |
| return(error); |
| } |
| |
| |
| /*======================================================================== |
| * Routines used for growing the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Create the initial contents of a leaf attribute list |
| * or a leaf in a node attribute list. |
| */ |
| STATIC int |
| xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t blkno, xfs_dabuf_t **bpp) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_hdr_t *hdr; |
| xfs_inode_t *dp; |
| xfs_dabuf_t *bp; |
| int error; |
| |
| dp = args->dp; |
| ASSERT(dp != NULL); |
| error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp, |
| XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| leaf = bp->data; |
| memset((char *)leaf, 0, XFS_LBSIZE(dp->i_mount)); |
| hdr = &leaf->hdr; |
| INT_SET(hdr->info.magic, ARCH_CONVERT, XFS_ATTR_LEAF_MAGIC); |
| INT_SET(hdr->firstused, ARCH_CONVERT, XFS_LBSIZE(dp->i_mount)); |
| if (!hdr->firstused) { |
| INT_SET(hdr->firstused, ARCH_CONVERT, |
| XFS_LBSIZE(dp->i_mount) - XFS_ATTR_LEAF_NAME_ALIGN); |
| } |
| |
| INT_SET(hdr->freemap[0].base, ARCH_CONVERT, |
| sizeof(xfs_attr_leaf_hdr_t)); |
| INT_SET(hdr->freemap[0].size, ARCH_CONVERT, |
| INT_GET(hdr->firstused, ARCH_CONVERT) |
| - INT_GET(hdr->freemap[0].base, |
| ARCH_CONVERT)); |
| |
| xfs_da_log_buf(args->trans, bp, 0, XFS_LBSIZE(dp->i_mount) - 1); |
| |
| *bpp = bp; |
| return(0); |
| } |
| |
| /* |
| * Split the leaf node, rebalance, then add the new entry. |
| */ |
| int |
| xfs_attr_leaf_split(xfs_da_state_t *state, xfs_da_state_blk_t *oldblk, |
| xfs_da_state_blk_t *newblk) |
| { |
| xfs_dablk_t blkno; |
| int error; |
| |
| /* |
| * Allocate space for a new leaf node. |
| */ |
| ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); |
| error = xfs_da_grow_inode(state->args, &blkno); |
| if (error) |
| return(error); |
| error = xfs_attr_leaf_create(state->args, blkno, &newblk->bp); |
| if (error) |
| return(error); |
| newblk->blkno = blkno; |
| newblk->magic = XFS_ATTR_LEAF_MAGIC; |
| |
| /* |
| * Rebalance the entries across the two leaves. |
| * NOTE: rebalance() currently depends on the 2nd block being empty. |
| */ |
| xfs_attr_leaf_rebalance(state, oldblk, newblk); |
| error = xfs_da_blk_link(state, oldblk, newblk); |
| if (error) |
| return(error); |
| |
| /* |
| * Save info on "old" attribute for "atomic rename" ops, leaf_add() |
| * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the |
| * "new" attrs info. Will need the "old" info to remove it later. |
| * |
| * Insert the "new" entry in the correct block. |
| */ |
| if (state->inleaf) |
| error = xfs_attr_leaf_add(oldblk->bp, state->args); |
| else |
| error = xfs_attr_leaf_add(newblk->bp, state->args); |
| |
| /* |
| * Update last hashval in each block since we added the name. |
| */ |
| oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); |
| newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); |
| return(error); |
| } |
| |
| /* |
| * Add a name to the leaf attribute list structure. |
| */ |
| int |
| xfs_attr_leaf_add(xfs_dabuf_t *bp, xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_hdr_t *hdr; |
| xfs_attr_leaf_map_t *map; |
| int tablesize, entsize, sum, tmp, i; |
| |
| leaf = bp->data; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| ASSERT((args->index >= 0) |
| && (args->index <= INT_GET(leaf->hdr.count, ARCH_CONVERT))); |
| hdr = &leaf->hdr; |
| entsize = xfs_attr_leaf_newentsize(args, |
| args->trans->t_mountp->m_sb.sb_blocksize, NULL); |
| |
| /* |
| * Search through freemap for first-fit on new name length. |
| * (may need to figure in size of entry struct too) |
| */ |
| tablesize = (INT_GET(hdr->count, ARCH_CONVERT) + 1) |
| * sizeof(xfs_attr_leaf_entry_t) |
| + sizeof(xfs_attr_leaf_hdr_t); |
| map = &hdr->freemap[XFS_ATTR_LEAF_MAPSIZE-1]; |
| for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE-1; i >= 0; map--, i--) { |
| if (tablesize > INT_GET(hdr->firstused, ARCH_CONVERT)) { |
| sum += INT_GET(map->size, ARCH_CONVERT); |
| continue; |
| } |
| if (!map->size) |
| continue; /* no space in this map */ |
| tmp = entsize; |
| if (INT_GET(map->base, ARCH_CONVERT) |
| < INT_GET(hdr->firstused, ARCH_CONVERT)) |
| tmp += sizeof(xfs_attr_leaf_entry_t); |
| if (INT_GET(map->size, ARCH_CONVERT) >= tmp) { |
| tmp = xfs_attr_leaf_add_work(bp, args, i); |
| return(tmp); |
| } |
| sum += INT_GET(map->size, ARCH_CONVERT); |
| } |
| |
| /* |
| * If there are no holes in the address space of the block, |
| * and we don't have enough freespace, then compaction will do us |
| * no good and we should just give up. |
| */ |
| if (!hdr->holes && (sum < entsize)) |
| return(XFS_ERROR(ENOSPC)); |
| |
| /* |
| * Compact the entries to coalesce free space. |
| * This may change the hdr->count via dropping INCOMPLETE entries. |
| */ |
| xfs_attr_leaf_compact(args->trans, bp); |
| |
| /* |
| * After compaction, the block is guaranteed to have only one |
| * free region, in freemap[0]. If it is not big enough, give up. |
| */ |
| if (INT_GET(hdr->freemap[0].size, ARCH_CONVERT) |
| < (entsize + sizeof(xfs_attr_leaf_entry_t))) |
| return(XFS_ERROR(ENOSPC)); |
| |
| return(xfs_attr_leaf_add_work(bp, args, 0)); |
| } |
| |
| /* |
| * Add a name to a leaf attribute list structure. |
| */ |
| STATIC int |
| xfs_attr_leaf_add_work(xfs_dabuf_t *bp, xfs_da_args_t *args, int mapindex) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_hdr_t *hdr; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_local_t *name_loc; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| xfs_attr_leaf_map_t *map; |
| xfs_mount_t *mp; |
| int tmp, i; |
| |
| leaf = bp->data; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| hdr = &leaf->hdr; |
| ASSERT((mapindex >= 0) && (mapindex < XFS_ATTR_LEAF_MAPSIZE)); |
| ASSERT((args->index >= 0) |
| && (args->index <= INT_GET(hdr->count, ARCH_CONVERT))); |
| |
| /* |
| * Force open some space in the entry array and fill it in. |
| */ |
| entry = &leaf->entries[args->index]; |
| if (args->index < INT_GET(hdr->count, ARCH_CONVERT)) { |
| tmp = INT_GET(hdr->count, ARCH_CONVERT) - args->index; |
| tmp *= sizeof(xfs_attr_leaf_entry_t); |
| memmove((char *)(entry+1), (char *)entry, tmp); |
| xfs_da_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); |
| } |
| INT_MOD(hdr->count, ARCH_CONVERT, 1); |
| |
| /* |
| * Allocate space for the new string (at the end of the run). |
| */ |
| map = &hdr->freemap[mapindex]; |
| mp = args->trans->t_mountp; |
| ASSERT(INT_GET(map->base, ARCH_CONVERT) < XFS_LBSIZE(mp)); |
| ASSERT((INT_GET(map->base, ARCH_CONVERT) & 0x3) == 0); |
| ASSERT(INT_GET(map->size, ARCH_CONVERT) |
| >= xfs_attr_leaf_newentsize(args, |
| mp->m_sb.sb_blocksize, NULL)); |
| ASSERT(INT_GET(map->size, ARCH_CONVERT) < XFS_LBSIZE(mp)); |
| ASSERT((INT_GET(map->size, ARCH_CONVERT) & 0x3) == 0); |
| INT_MOD(map->size, ARCH_CONVERT, |
| -xfs_attr_leaf_newentsize(args, mp->m_sb.sb_blocksize, &tmp)); |
| INT_SET(entry->nameidx, ARCH_CONVERT, |
| INT_GET(map->base, ARCH_CONVERT) |
| + INT_GET(map->size, ARCH_CONVERT)); |
| INT_SET(entry->hashval, ARCH_CONVERT, args->hashval); |
| entry->flags = tmp ? XFS_ATTR_LOCAL : 0; |
| entry->flags |= (args->flags & ATTR_SECURE) ? XFS_ATTR_SECURE : |
| ((args->flags & ATTR_ROOT) ? XFS_ATTR_ROOT : 0); |
| if (args->rename) { |
| entry->flags |= XFS_ATTR_INCOMPLETE; |
| if ((args->blkno2 == args->blkno) && |
| (args->index2 <= args->index)) { |
| args->index2++; |
| } |
| } |
| xfs_da_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); |
| ASSERT((args->index == 0) || (INT_GET(entry->hashval, ARCH_CONVERT) |
| >= INT_GET((entry-1)->hashval, |
| ARCH_CONVERT))); |
| ASSERT((args->index == INT_GET(hdr->count, ARCH_CONVERT)-1) || |
| (INT_GET(entry->hashval, ARCH_CONVERT) |
| <= (INT_GET((entry+1)->hashval, ARCH_CONVERT)))); |
| |
| /* |
| * Copy the attribute name and value into the new space. |
| * |
| * For "remote" attribute values, simply note that we need to |
| * allocate space for the "remote" value. We can't actually |
| * allocate the extents in this transaction, and we can't decide |
| * which blocks they should be as we might allocate more blocks |
| * as part of this transaction (a split operation for example). |
| */ |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, args->index); |
| name_loc->namelen = args->namelen; |
| INT_SET(name_loc->valuelen, ARCH_CONVERT, args->valuelen); |
| memcpy((char *)name_loc->nameval, args->name, args->namelen); |
| memcpy((char *)&name_loc->nameval[args->namelen], args->value, |
| INT_GET(name_loc->valuelen, ARCH_CONVERT)); |
| } else { |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index); |
| name_rmt->namelen = args->namelen; |
| memcpy((char *)name_rmt->name, args->name, args->namelen); |
| entry->flags |= XFS_ATTR_INCOMPLETE; |
| /* just in case */ |
| name_rmt->valuelen = 0; |
| name_rmt->valueblk = 0; |
| args->rmtblkno = 1; |
| args->rmtblkcnt = XFS_B_TO_FSB(mp, args->valuelen); |
| } |
| xfs_da_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, XFS_ATTR_LEAF_NAME(leaf, args->index), |
| xfs_attr_leaf_entsize(leaf, args->index))); |
| |
| /* |
| * Update the control info for this leaf node |
| */ |
| if (INT_GET(entry->nameidx, ARCH_CONVERT) |
| < INT_GET(hdr->firstused, ARCH_CONVERT)) { |
| /* both on-disk, don't endian-flip twice */ |
| hdr->firstused = entry->nameidx; |
| } |
| ASSERT(INT_GET(hdr->firstused, ARCH_CONVERT) |
| >= ((INT_GET(hdr->count, ARCH_CONVERT) |
| * sizeof(*entry))+sizeof(*hdr))); |
| tmp = (INT_GET(hdr->count, ARCH_CONVERT)-1) |
| * sizeof(xfs_attr_leaf_entry_t) |
| + sizeof(xfs_attr_leaf_hdr_t); |
| map = &hdr->freemap[0]; |
| for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) { |
| if (INT_GET(map->base, ARCH_CONVERT) == tmp) { |
| INT_MOD(map->base, ARCH_CONVERT, |
| sizeof(xfs_attr_leaf_entry_t)); |
| INT_MOD(map->size, ARCH_CONVERT, |
| -sizeof(xfs_attr_leaf_entry_t)); |
| } |
| } |
| INT_MOD(hdr->usedbytes, ARCH_CONVERT, |
| xfs_attr_leaf_entsize(leaf, args->index)); |
| xfs_da_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr))); |
| return(0); |
| } |
| |
| /* |
| * Garbage collect a leaf attribute list block by copying it to a new buffer. |
| */ |
| STATIC void |
| xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *bp) |
| { |
| xfs_attr_leafblock_t *leaf_s, *leaf_d; |
| xfs_attr_leaf_hdr_t *hdr_s, *hdr_d; |
| xfs_mount_t *mp; |
| char *tmpbuffer; |
| |
| mp = trans->t_mountp; |
| tmpbuffer = kmem_alloc(XFS_LBSIZE(mp), KM_SLEEP); |
| ASSERT(tmpbuffer != NULL); |
| memcpy(tmpbuffer, bp->data, XFS_LBSIZE(mp)); |
| memset(bp->data, 0, XFS_LBSIZE(mp)); |
| |
| /* |
| * Copy basic information |
| */ |
| leaf_s = (xfs_attr_leafblock_t *)tmpbuffer; |
| leaf_d = bp->data; |
| hdr_s = &leaf_s->hdr; |
| hdr_d = &leaf_d->hdr; |
| hdr_d->info = hdr_s->info; /* struct copy */ |
| INT_SET(hdr_d->firstused, ARCH_CONVERT, XFS_LBSIZE(mp)); |
| /* handle truncation gracefully */ |
| if (!hdr_d->firstused) { |
| INT_SET(hdr_d->firstused, ARCH_CONVERT, |
| XFS_LBSIZE(mp) - XFS_ATTR_LEAF_NAME_ALIGN); |
| } |
| hdr_d->usedbytes = 0; |
| hdr_d->count = 0; |
| hdr_d->holes = 0; |
| INT_SET(hdr_d->freemap[0].base, ARCH_CONVERT, |
| sizeof(xfs_attr_leaf_hdr_t)); |
| INT_SET(hdr_d->freemap[0].size, ARCH_CONVERT, |
| INT_GET(hdr_d->firstused, ARCH_CONVERT) |
| - INT_GET(hdr_d->freemap[0].base, ARCH_CONVERT)); |
| |
| /* |
| * Copy all entry's in the same (sorted) order, |
| * but allocate name/value pairs packed and in sequence. |
| */ |
| xfs_attr_leaf_moveents(leaf_s, 0, leaf_d, 0, |
| (int)INT_GET(hdr_s->count, ARCH_CONVERT), mp); |
| |
| xfs_da_log_buf(trans, bp, 0, XFS_LBSIZE(mp) - 1); |
| |
| kmem_free(tmpbuffer, XFS_LBSIZE(mp)); |
| } |
| |
| /* |
| * Redistribute the attribute list entries between two leaf nodes, |
| * taking into account the size of the new entry. |
| * |
| * NOTE: if new block is empty, then it will get the upper half of the |
| * old block. At present, all (one) callers pass in an empty second block. |
| * |
| * This code adjusts the args->index/blkno and args->index2/blkno2 fields |
| * to match what it is doing in splitting the attribute leaf block. Those |
| * values are used in "atomic rename" operations on attributes. Note that |
| * the "new" and "old" values can end up in different blocks. |
| */ |
| STATIC void |
| xfs_attr_leaf_rebalance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1, |
| xfs_da_state_blk_t *blk2) |
| { |
| xfs_da_args_t *args; |
| xfs_da_state_blk_t *tmp_blk; |
| xfs_attr_leafblock_t *leaf1, *leaf2; |
| xfs_attr_leaf_hdr_t *hdr1, *hdr2; |
| int count, totallen, max, space, swap; |
| |
| /* |
| * Set up environment. |
| */ |
| ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); |
| leaf1 = blk1->bp->data; |
| leaf2 = blk2->bp->data; |
| ASSERT(INT_GET(leaf1->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(INT_GET(leaf2->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| args = state->args; |
| |
| /* |
| * Check ordering of blocks, reverse if it makes things simpler. |
| * |
| * NOTE: Given that all (current) callers pass in an empty |
| * second block, this code should never set "swap". |
| */ |
| swap = 0; |
| if (xfs_attr_leaf_order(blk1->bp, blk2->bp)) { |
| tmp_blk = blk1; |
| blk1 = blk2; |
| blk2 = tmp_blk; |
| leaf1 = blk1->bp->data; |
| leaf2 = blk2->bp->data; |
| swap = 1; |
| } |
| hdr1 = &leaf1->hdr; |
| hdr2 = &leaf2->hdr; |
| |
| /* |
| * Examine entries until we reduce the absolute difference in |
| * byte usage between the two blocks to a minimum. Then get |
| * the direction to copy and the number of elements to move. |
| * |
| * "inleaf" is true if the new entry should be inserted into blk1. |
| * If "swap" is also true, then reverse the sense of "inleaf". |
| */ |
| state->inleaf = xfs_attr_leaf_figure_balance(state, blk1, blk2, |
| &count, &totallen); |
| if (swap) |
| state->inleaf = !state->inleaf; |
| |
| /* |
| * Move any entries required from leaf to leaf: |
| */ |
| if (count < INT_GET(hdr1->count, ARCH_CONVERT)) { |
| /* |
| * Figure the total bytes to be added to the destination leaf. |
| */ |
| /* number entries being moved */ |
| count = INT_GET(hdr1->count, ARCH_CONVERT) - count; |
| space = INT_GET(hdr1->usedbytes, ARCH_CONVERT) - totallen; |
| space += count * sizeof(xfs_attr_leaf_entry_t); |
| |
| /* |
| * leaf2 is the destination, compact it if it looks tight. |
| */ |
| max = INT_GET(hdr2->firstused, ARCH_CONVERT) |
| - sizeof(xfs_attr_leaf_hdr_t); |
| max -= INT_GET(hdr2->count, ARCH_CONVERT) |
| * sizeof(xfs_attr_leaf_entry_t); |
| if (space > max) { |
| xfs_attr_leaf_compact(args->trans, blk2->bp); |
| } |
| |
| /* |
| * Move high entries from leaf1 to low end of leaf2. |
| */ |
| xfs_attr_leaf_moveents(leaf1, |
| INT_GET(hdr1->count, ARCH_CONVERT)-count, |
| leaf2, 0, count, state->mp); |
| |
| xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1); |
| xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1); |
| } else if (count > INT_GET(hdr1->count, ARCH_CONVERT)) { |
| /* |
| * I assert that since all callers pass in an empty |
| * second buffer, this code should never execute. |
| */ |
| |
| /* |
| * Figure the total bytes to be added to the destination leaf. |
| */ |
| /* number entries being moved */ |
| count -= INT_GET(hdr1->count, ARCH_CONVERT); |
| space = totallen - INT_GET(hdr1->usedbytes, ARCH_CONVERT); |
| space += count * sizeof(xfs_attr_leaf_entry_t); |
| |
| /* |
| * leaf1 is the destination, compact it if it looks tight. |
| */ |
| max = INT_GET(hdr1->firstused, ARCH_CONVERT) |
| - sizeof(xfs_attr_leaf_hdr_t); |
| max -= INT_GET(hdr1->count, ARCH_CONVERT) |
| * sizeof(xfs_attr_leaf_entry_t); |
| if (space > max) { |
| xfs_attr_leaf_compact(args->trans, blk1->bp); |
| } |
| |
| /* |
| * Move low entries from leaf2 to high end of leaf1. |
| */ |
| xfs_attr_leaf_moveents(leaf2, 0, leaf1, |
| (int)INT_GET(hdr1->count, ARCH_CONVERT), count, |
| state->mp); |
| |
| xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1); |
| xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1); |
| } |
| |
| /* |
| * Copy out last hashval in each block for B-tree code. |
| */ |
| blk1->hashval = |
| INT_GET(leaf1->entries[INT_GET(leaf1->hdr.count, |
| ARCH_CONVERT)-1].hashval, ARCH_CONVERT); |
| blk2->hashval = |
| INT_GET(leaf2->entries[INT_GET(leaf2->hdr.count, |
| ARCH_CONVERT)-1].hashval, ARCH_CONVERT); |
| |
| /* |
| * Adjust the expected index for insertion. |
| * NOTE: this code depends on the (current) situation that the |
| * second block was originally empty. |
| * |
| * If the insertion point moved to the 2nd block, we must adjust |
| * the index. We must also track the entry just following the |
| * new entry for use in an "atomic rename" operation, that entry |
| * is always the "old" entry and the "new" entry is what we are |
| * inserting. The index/blkno fields refer to the "old" entry, |
| * while the index2/blkno2 fields refer to the "new" entry. |
| */ |
| if (blk1->index > INT_GET(leaf1->hdr.count, ARCH_CONVERT)) { |
| ASSERT(state->inleaf == 0); |
| blk2->index = blk1->index |
| - INT_GET(leaf1->hdr.count, ARCH_CONVERT); |
| args->index = args->index2 = blk2->index; |
| args->blkno = args->blkno2 = blk2->blkno; |
| } else if (blk1->index == INT_GET(leaf1->hdr.count, ARCH_CONVERT)) { |
| if (state->inleaf) { |
| args->index = blk1->index; |
| args->blkno = blk1->blkno; |
| args->index2 = 0; |
| args->blkno2 = blk2->blkno; |
| } else { |
| blk2->index = blk1->index |
| - INT_GET(leaf1->hdr.count, ARCH_CONVERT); |
| args->index = args->index2 = blk2->index; |
| args->blkno = args->blkno2 = blk2->blkno; |
| } |
| } else { |
| ASSERT(state->inleaf == 1); |
| args->index = args->index2 = blk1->index; |
| args->blkno = args->blkno2 = blk1->blkno; |
| } |
| } |
| |
| /* |
| * Examine entries until we reduce the absolute difference in |
| * byte usage between the two blocks to a minimum. |
| * GROT: Is this really necessary? With other than a 512 byte blocksize, |
| * GROT: there will always be enough room in either block for a new entry. |
| * GROT: Do a double-split for this case? |
| */ |
| STATIC int |
| xfs_attr_leaf_figure_balance(xfs_da_state_t *state, |
| xfs_da_state_blk_t *blk1, |
| xfs_da_state_blk_t *blk2, |
| int *countarg, int *usedbytesarg) |
| { |
| xfs_attr_leafblock_t *leaf1, *leaf2; |
| xfs_attr_leaf_hdr_t *hdr1, *hdr2; |
| xfs_attr_leaf_entry_t *entry; |
| int count, max, index, totallen, half; |
| int lastdelta, foundit, tmp; |
| |
| /* |
| * Set up environment. |
| */ |
| leaf1 = blk1->bp->data; |
| leaf2 = blk2->bp->data; |
| hdr1 = &leaf1->hdr; |
| hdr2 = &leaf2->hdr; |
| foundit = 0; |
| totallen = 0; |
| |
| /* |
| * Examine entries until we reduce the absolute difference in |
| * byte usage between the two blocks to a minimum. |
| */ |
| max = INT_GET(hdr1->count, ARCH_CONVERT) |
| + INT_GET(hdr2->count, ARCH_CONVERT); |
| half = (max+1) * sizeof(*entry); |
| half += INT_GET(hdr1->usedbytes, ARCH_CONVERT) |
| + INT_GET(hdr2->usedbytes, ARCH_CONVERT) |
| + xfs_attr_leaf_newentsize(state->args, |
| state->blocksize, NULL); |
| half /= 2; |
| lastdelta = state->blocksize; |
| entry = &leaf1->entries[0]; |
| for (count = index = 0; count < max; entry++, index++, count++) { |
| |
| #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) |
| /* |
| * The new entry is in the first block, account for it. |
| */ |
| if (count == blk1->index) { |
| tmp = totallen + sizeof(*entry) + |
| xfs_attr_leaf_newentsize(state->args, |
| state->blocksize, |
| NULL); |
| if (XFS_ATTR_ABS(half - tmp) > lastdelta) |
| break; |
| lastdelta = XFS_ATTR_ABS(half - tmp); |
| totallen = tmp; |
| foundit = 1; |
| } |
| |
| /* |
| * Wrap around into the second block if necessary. |
| */ |
| if (count == INT_GET(hdr1->count, ARCH_CONVERT)) { |
| leaf1 = leaf2; |
| entry = &leaf1->entries[0]; |
| index = 0; |
| } |
| |
| /* |
| * Figure out if next leaf entry would be too much. |
| */ |
| tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, |
| index); |
| if (XFS_ATTR_ABS(half - tmp) > lastdelta) |
| break; |
| lastdelta = XFS_ATTR_ABS(half - tmp); |
| totallen = tmp; |
| #undef XFS_ATTR_ABS |
| } |
| |
| /* |
| * Calculate the number of usedbytes that will end up in lower block. |
| * If new entry not in lower block, fix up the count. |
| */ |
| totallen -= count * sizeof(*entry); |
| if (foundit) { |
| totallen -= sizeof(*entry) + |
| xfs_attr_leaf_newentsize(state->args, |
| state->blocksize, |
| NULL); |
| } |
| |
| *countarg = count; |
| *usedbytesarg = totallen; |
| return(foundit); |
| } |
| |
| /*======================================================================== |
| * Routines used for shrinking the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Check a leaf block and its neighbors to see if the block should be |
| * collapsed into one or the other neighbor. Always keep the block |
| * with the smaller block number. |
| * If the current block is over 50% full, don't try to join it, return 0. |
| * If the block is empty, fill in the state structure and return 2. |
| * If it can be collapsed, fill in the state structure and return 1. |
| * If nothing can be done, return 0. |
| * |
| * GROT: allow for INCOMPLETE entries in calculation. |
| */ |
| int |
| xfs_attr_leaf_toosmall(xfs_da_state_t *state, int *action) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_da_state_blk_t *blk; |
| xfs_da_blkinfo_t *info; |
| int count, bytes, forward, error, retval, i; |
| xfs_dablk_t blkno; |
| xfs_dabuf_t *bp; |
| |
| /* |
| * Check for the degenerate case of the block being over 50% full. |
| * If so, it's not worth even looking to see if we might be able |
| * to coalesce with a sibling. |
| */ |
| blk = &state->path.blk[ state->path.active-1 ]; |
| info = blk->bp->data; |
| ASSERT(INT_GET(info->magic, ARCH_CONVERT) == XFS_ATTR_LEAF_MAGIC); |
| leaf = (xfs_attr_leafblock_t *)info; |
| count = INT_GET(leaf->hdr.count, ARCH_CONVERT); |
| bytes = sizeof(xfs_attr_leaf_hdr_t) + |
| count * sizeof(xfs_attr_leaf_entry_t) + |
| INT_GET(leaf->hdr.usedbytes, ARCH_CONVERT); |
| if (bytes > (state->blocksize >> 1)) { |
| *action = 0; /* blk over 50%, don't try to join */ |
| return(0); |
| } |
| |
| /* |
| * Check for the degenerate case of the block being empty. |
| * If the block is empty, we'll simply delete it, no need to |
| * coalesce it with a sibling block. We choose (aribtrarily) |
| * to merge with the forward block unless it is NULL. |
| */ |
| if (count == 0) { |
| /* |
| * Make altpath point to the block we want to keep and |
| * path point to the block we want to drop (this one). |
| */ |
| forward = info->forw; |
| memcpy(&state->altpath, &state->path, sizeof(state->path)); |
| error = xfs_da_path_shift(state, &state->altpath, forward, |
| 0, &retval); |
| if (error) |
| return(error); |
| if (retval) { |
| *action = 0; |
| } else { |
| *action = 2; |
| } |
| return(0); |
| } |
| |
| /* |
| * Examine each sibling block to see if we can coalesce with |
| * at least 25% free space to spare. We need to figure out |
| * whether to merge with the forward or the backward block. |
| * We prefer coalescing with the lower numbered sibling so as |
| * to shrink an attribute list over time. |
| */ |
| /* start with smaller blk num */ |
| forward = (INT_GET(info->forw, ARCH_CONVERT) |
| < INT_GET(info->back, ARCH_CONVERT)); |
| for (i = 0; i < 2; forward = !forward, i++) { |
| if (forward) |
| blkno = INT_GET(info->forw, ARCH_CONVERT); |
| else |
| blkno = INT_GET(info->back, ARCH_CONVERT); |
| if (blkno == 0) |
| continue; |
| error = xfs_da_read_buf(state->args->trans, state->args->dp, |
| blkno, -1, &bp, XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| ASSERT(bp != NULL); |
| |
| leaf = (xfs_attr_leafblock_t *)info; |
| count = INT_GET(leaf->hdr.count, ARCH_CONVERT); |
| bytes = state->blocksize - (state->blocksize>>2); |
| bytes -= INT_GET(leaf->hdr.usedbytes, ARCH_CONVERT); |
| leaf = bp->data; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| count += INT_GET(leaf->hdr.count, ARCH_CONVERT); |
| bytes -= INT_GET(leaf->hdr.usedbytes, ARCH_CONVERT); |
| bytes -= count * sizeof(xfs_attr_leaf_entry_t); |
| bytes -= sizeof(xfs_attr_leaf_hdr_t); |
| xfs_da_brelse(state->args->trans, bp); |
| if (bytes >= 0) |
| break; /* fits with at least 25% to spare */ |
| } |
| if (i >= 2) { |
| *action = 0; |
| return(0); |
| } |
| |
| /* |
| * Make altpath point to the block we want to keep (the lower |
| * numbered block) and path point to the block we want to drop. |
| */ |
| memcpy(&state->altpath, &state->path, sizeof(state->path)); |
| if (blkno < blk->blkno) { |
| error = xfs_da_path_shift(state, &state->altpath, forward, |
| 0, &retval); |
| } else { |
| error = xfs_da_path_shift(state, &state->path, forward, |
| 0, &retval); |
| } |
| if (error) |
| return(error); |
| if (retval) { |
| *action = 0; |
| } else { |
| *action = 1; |
| } |
| return(0); |
| } |
| |
| /* |
| * Remove a name from the leaf attribute list structure. |
| * |
| * Return 1 if leaf is less than 37% full, 0 if >= 37% full. |
| * If two leaves are 37% full, when combined they will leave 25% free. |
| */ |
| int |
| xfs_attr_leaf_remove(xfs_dabuf_t *bp, xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_hdr_t *hdr; |
| xfs_attr_leaf_map_t *map; |
| xfs_attr_leaf_entry_t *entry; |
| int before, after, smallest, entsize; |
| int tablesize, tmp, i; |
| xfs_mount_t *mp; |
| |
| leaf = bp->data; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| hdr = &leaf->hdr; |
| mp = args->trans->t_mountp; |
| ASSERT((INT_GET(hdr->count, ARCH_CONVERT) > 0) |
| && (INT_GET(hdr->count, ARCH_CONVERT) < (XFS_LBSIZE(mp)/8))); |
| ASSERT((args->index >= 0) |
| && (args->index < INT_GET(hdr->count, ARCH_CONVERT))); |
| ASSERT(INT_GET(hdr->firstused, ARCH_CONVERT) |
| >= ((INT_GET(hdr->count, ARCH_CONVERT) |
| * sizeof(*entry))+sizeof(*hdr))); |
| entry = &leaf->entries[args->index]; |
| ASSERT(INT_GET(entry->nameidx, ARCH_CONVERT) |
| >= INT_GET(hdr->firstused, ARCH_CONVERT)); |
| ASSERT(INT_GET(entry->nameidx, ARCH_CONVERT) < XFS_LBSIZE(mp)); |
| |
| /* |
| * Scan through free region table: |
| * check for adjacency of free'd entry with an existing one, |
| * find smallest free region in case we need to replace it, |
| * adjust any map that borders the entry table, |
| */ |
| tablesize = INT_GET(hdr->count, ARCH_CONVERT) |
| * sizeof(xfs_attr_leaf_entry_t) |
| + sizeof(xfs_attr_leaf_hdr_t); |
| map = &hdr->freemap[0]; |
| tmp = INT_GET(map->size, ARCH_CONVERT); |
| before = after = -1; |
| smallest = XFS_ATTR_LEAF_MAPSIZE - 1; |
| entsize = xfs_attr_leaf_entsize(leaf, args->index); |
| for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) { |
| ASSERT(INT_GET(map->base, ARCH_CONVERT) < XFS_LBSIZE(mp)); |
| ASSERT(INT_GET(map->size, ARCH_CONVERT) < XFS_LBSIZE(mp)); |
| if (INT_GET(map->base, ARCH_CONVERT) == tablesize) { |
| INT_MOD(map->base, ARCH_CONVERT, |
| -sizeof(xfs_attr_leaf_entry_t)); |
| INT_MOD(map->size, ARCH_CONVERT, |
| sizeof(xfs_attr_leaf_entry_t)); |
| } |
| |
| if ((INT_GET(map->base, ARCH_CONVERT) |
| + INT_GET(map->size, ARCH_CONVERT)) |
| == INT_GET(entry->nameidx, ARCH_CONVERT)) { |
| before = i; |
| } else if (INT_GET(map->base, ARCH_CONVERT) |
| == (INT_GET(entry->nameidx, ARCH_CONVERT) + entsize)) { |
| after = i; |
| } else if (INT_GET(map->size, ARCH_CONVERT) < tmp) { |
| tmp = INT_GET(map->size, ARCH_CONVERT); |
| smallest = i; |
| } |
| } |
| |
| /* |
| * Coalesce adjacent freemap regions, |
| * or replace the smallest region. |
| */ |
| if ((before >= 0) || (after >= 0)) { |
| if ((before >= 0) && (after >= 0)) { |
| map = &hdr->freemap[before]; |
| INT_MOD(map->size, ARCH_CONVERT, entsize); |
| INT_MOD(map->size, ARCH_CONVERT, |
| INT_GET(hdr->freemap[after].size, |
| ARCH_CONVERT)); |
| hdr->freemap[after].base = 0; |
| hdr->freemap[after].size = 0; |
| } else if (before >= 0) { |
| map = &hdr->freemap[before]; |
| INT_MOD(map->size, ARCH_CONVERT, entsize); |
| } else { |
| map = &hdr->freemap[after]; |
| /* both on-disk, don't endian flip twice */ |
| map->base = entry->nameidx; |
| INT_MOD(map->size, ARCH_CONVERT, entsize); |
| } |
| } else { |
| /* |
| * Replace smallest region (if it is smaller than free'd entry) |
| */ |
| map = &hdr->freemap[smallest]; |
| if (INT_GET(map->size, ARCH_CONVERT) < entsize) { |
| INT_SET(map->base, ARCH_CONVERT, |
| INT_GET(entry->nameidx, ARCH_CONVERT)); |
| INT_SET(map->size, ARCH_CONVERT, entsize); |
| } |
| } |
| |
| /* |
| * Did we remove the first entry? |
| */ |
| if (INT_GET(entry->nameidx, ARCH_CONVERT) |
| == INT_GET(hdr->firstused, ARCH_CONVERT)) |
| smallest = 1; |
| else |
| smallest = 0; |
| |
| /* |
| * Compress the remaining entries and zero out the removed stuff. |
| */ |
| memset(XFS_ATTR_LEAF_NAME(leaf, args->index), 0, entsize); |
| INT_MOD(hdr->usedbytes, ARCH_CONVERT, -entsize); |
| xfs_da_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, XFS_ATTR_LEAF_NAME(leaf, args->index), |
| entsize)); |
| |
| tmp = (INT_GET(hdr->count, ARCH_CONVERT) - args->index) |
| * sizeof(xfs_attr_leaf_entry_t); |
| memmove((char *)entry, (char *)(entry+1), tmp); |
| INT_MOD(hdr->count, ARCH_CONVERT, -1); |
| xfs_da_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); |
| entry = &leaf->entries[INT_GET(hdr->count, ARCH_CONVERT)]; |
| memset((char *)entry, 0, sizeof(xfs_attr_leaf_entry_t)); |
| |
| /* |
| * If we removed the first entry, re-find the first used byte |
| * in the name area. Note that if the entry was the "firstused", |
| * then we don't have a "hole" in our block resulting from |
| * removing the name. |
| */ |
| if (smallest) { |
| tmp = XFS_LBSIZE(mp); |
| entry = &leaf->entries[0]; |
| for (i = INT_GET(hdr->count, ARCH_CONVERT)-1; |
| i >= 0; entry++, i--) { |
| ASSERT(INT_GET(entry->nameidx, ARCH_CONVERT) |
| >= INT_GET(hdr->firstused, ARCH_CONVERT)); |
| ASSERT(INT_GET(entry->nameidx, ARCH_CONVERT) |
| < XFS_LBSIZE(mp)); |
| if (INT_GET(entry->nameidx, ARCH_CONVERT) < tmp) |
| tmp = INT_GET(entry->nameidx, ARCH_CONVERT); |
| } |
| INT_SET(hdr->firstused, ARCH_CONVERT, tmp); |
| if (!hdr->firstused) { |
| INT_SET(hdr->firstused, ARCH_CONVERT, |
| tmp - XFS_ATTR_LEAF_NAME_ALIGN); |
| } |
| } else { |
| hdr->holes = 1; /* mark as needing compaction */ |
| } |
| xfs_da_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr))); |
| |
| /* |
| * Check if leaf is less than 50% full, caller may want to |
| * "join" the leaf with a sibling if so. |
| */ |
| tmp = sizeof(xfs_attr_leaf_hdr_t); |
| tmp += INT_GET(leaf->hdr.count, ARCH_CONVERT) |
| * sizeof(xfs_attr_leaf_entry_t); |
| tmp += INT_GET(leaf->hdr.usedbytes, ARCH_CONVERT); |
| return(tmp < mp->m_attr_magicpct); /* leaf is < 37% full */ |
| } |
| |
| /* |
| * Move all the attribute list entries from drop_leaf into save_leaf. |
| */ |
| void |
| xfs_attr_leaf_unbalance(xfs_da_state_t *state, xfs_da_state_blk_t *drop_blk, |
| xfs_da_state_blk_t *save_blk) |
| { |
| xfs_attr_leafblock_t *drop_leaf, *save_leaf, *tmp_leaf; |
| xfs_attr_leaf_hdr_t *drop_hdr, *save_hdr, *tmp_hdr; |
| xfs_mount_t *mp; |
| char *tmpbuffer; |
| |
| /* |
| * Set up environment. |
| */ |
| mp = state->mp; |
| ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(save_blk->magic == XFS_ATTR_LEAF_MAGIC); |
| drop_leaf = drop_blk->bp->data; |
| save_leaf = save_blk->bp->data; |
| ASSERT(INT_GET(drop_leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(INT_GET(save_leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| drop_hdr = &drop_leaf->hdr; |
| save_hdr = &save_leaf->hdr; |
| |
| /* |
| * Save last hashval from dying block for later Btree fixup. |
| */ |
| drop_blk->hashval = |
| INT_GET(drop_leaf->entries[INT_GET(drop_leaf->hdr.count, |
| ARCH_CONVERT)-1].hashval, |
| ARCH_CONVERT); |
| |
| /* |
| * Check if we need a temp buffer, or can we do it in place. |
| * Note that we don't check "leaf" for holes because we will |
| * always be dropping it, toosmall() decided that for us already. |
| */ |
| if (save_hdr->holes == 0) { |
| /* |
| * dest leaf has no holes, so we add there. May need |
| * to make some room in the entry array. |
| */ |
| if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) { |
| xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf, 0, |
| (int)INT_GET(drop_hdr->count, ARCH_CONVERT), mp); |
| } else { |
| xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf, |
| INT_GET(save_hdr->count, ARCH_CONVERT), |
| (int)INT_GET(drop_hdr->count, ARCH_CONVERT), |
| mp); |
| } |
| } else { |
| /* |
| * Destination has holes, so we make a temporary copy |
| * of the leaf and add them both to that. |
| */ |
| tmpbuffer = kmem_alloc(state->blocksize, KM_SLEEP); |
| ASSERT(tmpbuffer != NULL); |
| memset(tmpbuffer, 0, state->blocksize); |
| tmp_leaf = (xfs_attr_leafblock_t *)tmpbuffer; |
| tmp_hdr = &tmp_leaf->hdr; |
| tmp_hdr->info = save_hdr->info; /* struct copy */ |
| tmp_hdr->count = 0; |
| INT_SET(tmp_hdr->firstused, ARCH_CONVERT, state->blocksize); |
| if (!tmp_hdr->firstused) { |
| INT_SET(tmp_hdr->firstused, ARCH_CONVERT, |
| state->blocksize - XFS_ATTR_LEAF_NAME_ALIGN); |
| } |
| tmp_hdr->usedbytes = 0; |
| if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) { |
| xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf, 0, |
| (int)INT_GET(drop_hdr->count, ARCH_CONVERT), |
| mp); |
| xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf, |
| INT_GET(tmp_leaf->hdr.count, ARCH_CONVERT), |
| (int)INT_GET(save_hdr->count, ARCH_CONVERT), |
| mp); |
| } else { |
| xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf, 0, |
| (int)INT_GET(save_hdr->count, ARCH_CONVERT), |
| mp); |
| xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf, |
| INT_GET(tmp_leaf->hdr.count, ARCH_CONVERT), |
| (int)INT_GET(drop_hdr->count, ARCH_CONVERT), |
| mp); |
| } |
| memcpy((char *)save_leaf, (char *)tmp_leaf, state->blocksize); |
| kmem_free(tmpbuffer, state->blocksize); |
| } |
| |
| xfs_da_log_buf(state->args->trans, save_blk->bp, 0, |
| state->blocksize - 1); |
| |
| /* |
| * Copy out last hashval in each block for B-tree code. |
| */ |
| save_blk->hashval = |
| INT_GET(save_leaf->entries[INT_GET(save_leaf->hdr.count, |
| ARCH_CONVERT)-1].hashval, |
| ARCH_CONVERT); |
| } |
| |
| /*======================================================================== |
| * Routines used for finding things in the Btree. |
| *========================================================================*/ |
| |
| /* |
| * Look up a name in a leaf attribute list structure. |
| * This is the internal routine, it uses the caller's buffer. |
| * |
| * Note that duplicate keys are allowed, but only check within the |
| * current leaf node. The Btree code must check in adjacent leaf nodes. |
| * |
| * Return in args->index the index into the entry[] array of either |
| * the found entry, or where the entry should have been (insert before |
| * that entry). |
| * |
| * Don't change the args->value unless we find the attribute. |
| */ |
| int |
| xfs_attr_leaf_lookup_int(xfs_dabuf_t *bp, xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_local_t *name_loc; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| int probe, span; |
| xfs_dahash_t hashval; |
| |
| leaf = bp->data; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(INT_GET(leaf->hdr.count, ARCH_CONVERT) |
| < (XFS_LBSIZE(args->dp->i_mount)/8)); |
| |
| /* |
| * Binary search. (note: small blocks will skip this loop) |
| */ |
| hashval = args->hashval; |
| probe = span = INT_GET(leaf->hdr.count, ARCH_CONVERT) / 2; |
| for (entry = &leaf->entries[probe]; span > 4; |
| entry = &leaf->entries[probe]) { |
| span /= 2; |
| if (INT_GET(entry->hashval, ARCH_CONVERT) < hashval) |
| probe += span; |
| else if (INT_GET(entry->hashval, ARCH_CONVERT) > hashval) |
| probe -= span; |
| else |
| break; |
| } |
| ASSERT((probe >= 0) && |
| (!leaf->hdr.count |
| || (probe < INT_GET(leaf->hdr.count, ARCH_CONVERT)))); |
| ASSERT((span <= 4) || (INT_GET(entry->hashval, ARCH_CONVERT) |
| == hashval)); |
| |
| /* |
| * Since we may have duplicate hashval's, find the first matching |
| * hashval in the leaf. |
| */ |
| while ((probe > 0) && (INT_GET(entry->hashval, ARCH_CONVERT) |
| >= hashval)) { |
| entry--; |
| probe--; |
| } |
| while ((probe < INT_GET(leaf->hdr.count, ARCH_CONVERT)) |
| && (INT_GET(entry->hashval, ARCH_CONVERT) < hashval)) { |
| entry++; |
| probe++; |
| } |
| if ((probe == INT_GET(leaf->hdr.count, ARCH_CONVERT)) |
| || (INT_GET(entry->hashval, ARCH_CONVERT) != hashval)) { |
| args->index = probe; |
| return(XFS_ERROR(ENOATTR)); |
| } |
| |
| /* |
| * Duplicate keys may be present, so search all of them for a match. |
| */ |
| for ( ; (probe < INT_GET(leaf->hdr.count, ARCH_CONVERT)) |
| && (INT_GET(entry->hashval, ARCH_CONVERT) == hashval); |
| entry++, probe++) { |
| /* |
| * GROT: Add code to remove incomplete entries. |
| */ |
| /* |
| * If we are looking for INCOMPLETE entries, show only those. |
| * If we are looking for complete entries, show only those. |
| */ |
| if ((args->flags & XFS_ATTR_INCOMPLETE) != |
| (entry->flags & XFS_ATTR_INCOMPLETE)) { |
| continue; |
| } |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, probe); |
| if (name_loc->namelen != args->namelen) |
| continue; |
| if (memcmp(args->name, (char *)name_loc->nameval, |
| args->namelen) != 0) |
| continue; |
| if (((args->flags & ATTR_SECURE) != 0) != |
| ((entry->flags & XFS_ATTR_SECURE) != 0)) |
| continue; |
| if (((args->flags & ATTR_ROOT) != 0) != |
| ((entry->flags & XFS_ATTR_ROOT) != 0)) |
| continue; |
| args->index = probe; |
| return(XFS_ERROR(EEXIST)); |
| } else { |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, probe); |
| if (name_rmt->namelen != args->namelen) |
| continue; |
| if (memcmp(args->name, (char *)name_rmt->name, |
| args->namelen) != 0) |
| continue; |
| if (((args->flags & ATTR_SECURE) != 0) != |
| ((entry->flags & XFS_ATTR_SECURE) != 0)) |
| continue; |
| if (((args->flags & ATTR_ROOT) != 0) != |
| ((entry->flags & XFS_ATTR_ROOT) != 0)) |
| continue; |
| args->index = probe; |
| args->rmtblkno |
| = INT_GET(name_rmt->valueblk, ARCH_CONVERT); |
| args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount, |
| INT_GET(name_rmt->valuelen, |
| ARCH_CONVERT)); |
| return(XFS_ERROR(EEXIST)); |
| } |
| } |
| args->index = probe; |
| return(XFS_ERROR(ENOATTR)); |
| } |
| |
| /* |
| * Get the value associated with an attribute name from a leaf attribute |
| * list structure. |
| */ |
| int |
| xfs_attr_leaf_getvalue(xfs_dabuf_t *bp, xfs_da_args_t *args) |
| { |
| int valuelen; |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_local_t *name_loc; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| |
| leaf = bp->data; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(INT_GET(leaf->hdr.count, ARCH_CONVERT) |
| < (XFS_LBSIZE(args->dp->i_mount)/8)); |
| ASSERT(args->index < ((int)INT_GET(leaf->hdr.count, ARCH_CONVERT))); |
| |
| entry = &leaf->entries[args->index]; |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, args->index); |
| ASSERT(name_loc->namelen == args->namelen); |
| ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); |
| valuelen = INT_GET(name_loc->valuelen, ARCH_CONVERT); |
| if (args->flags & ATTR_KERNOVAL) { |
| args->valuelen = valuelen; |
| return(0); |
| } |
| if (args->valuelen < valuelen) { |
| args->valuelen = valuelen; |
| return(XFS_ERROR(ERANGE)); |
| } |
| args->valuelen = valuelen; |
| memcpy(args->value, &name_loc->nameval[args->namelen], valuelen); |
| } else { |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index); |
| ASSERT(name_rmt->namelen == args->namelen); |
| ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); |
| valuelen = INT_GET(name_rmt->valuelen, ARCH_CONVERT); |
| args->rmtblkno = INT_GET(name_rmt->valueblk, ARCH_CONVERT); |
| args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount, valuelen); |
| if (args->flags & ATTR_KERNOVAL) { |
| args->valuelen = valuelen; |
| return(0); |
| } |
| if (args->valuelen < valuelen) { |
| args->valuelen = valuelen; |
| return(XFS_ERROR(ERANGE)); |
| } |
| args->valuelen = valuelen; |
| } |
| return(0); |
| } |
| |
| /*======================================================================== |
| * Utility routines. |
| *========================================================================*/ |
| |
| /* |
| * Move the indicated entries from one leaf to another. |
| * NOTE: this routine modifies both source and destination leaves. |
| */ |
| /*ARGSUSED*/ |
| STATIC void |
| xfs_attr_leaf_moveents(xfs_attr_leafblock_t *leaf_s, int start_s, |
| xfs_attr_leafblock_t *leaf_d, int start_d, |
| int count, xfs_mount_t *mp) |
| { |
| xfs_attr_leaf_hdr_t *hdr_s, *hdr_d; |
| xfs_attr_leaf_entry_t *entry_s, *entry_d; |
| int desti, tmp, i; |
| |
| /* |
| * Check for nothing to do. |
| */ |
| if (count == 0) |
| return; |
| |
| /* |
| * Set up environment. |
| */ |
| ASSERT(INT_GET(leaf_s->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(INT_GET(leaf_d->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| hdr_s = &leaf_s->hdr; |
| hdr_d = &leaf_d->hdr; |
| ASSERT((INT_GET(hdr_s->count, ARCH_CONVERT) > 0) |
| && (INT_GET(hdr_s->count, ARCH_CONVERT) |
| < (XFS_LBSIZE(mp)/8))); |
| ASSERT(INT_GET(hdr_s->firstused, ARCH_CONVERT) >= |
| ((INT_GET(hdr_s->count, ARCH_CONVERT) |
| * sizeof(*entry_s))+sizeof(*hdr_s))); |
| ASSERT(INT_GET(hdr_d->count, ARCH_CONVERT) < (XFS_LBSIZE(mp)/8)); |
| ASSERT(INT_GET(hdr_d->firstused, ARCH_CONVERT) >= |
| ((INT_GET(hdr_d->count, ARCH_CONVERT) |
| * sizeof(*entry_d))+sizeof(*hdr_d))); |
| |
| ASSERT(start_s < INT_GET(hdr_s->count, ARCH_CONVERT)); |
| ASSERT(start_d <= INT_GET(hdr_d->count, ARCH_CONVERT)); |
| ASSERT(count <= INT_GET(hdr_s->count, ARCH_CONVERT)); |
| |
| /* |
| * Move the entries in the destination leaf up to make a hole? |
| */ |
| if (start_d < INT_GET(hdr_d->count, ARCH_CONVERT)) { |
| tmp = INT_GET(hdr_d->count, ARCH_CONVERT) - start_d; |
| tmp *= sizeof(xfs_attr_leaf_entry_t); |
| entry_s = &leaf_d->entries[start_d]; |
| entry_d = &leaf_d->entries[start_d + count]; |
| memmove((char *)entry_d, (char *)entry_s, tmp); |
| } |
| |
| /* |
| * Copy all entry's in the same (sorted) order, |
| * but allocate attribute info packed and in sequence. |
| */ |
| entry_s = &leaf_s->entries[start_s]; |
| entry_d = &leaf_d->entries[start_d]; |
| desti = start_d; |
| for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { |
| ASSERT(INT_GET(entry_s->nameidx, ARCH_CONVERT) |
| >= INT_GET(hdr_s->firstused, ARCH_CONVERT)); |
| tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); |
| #ifdef GROT |
| /* |
| * Code to drop INCOMPLETE entries. Difficult to use as we |
| * may also need to change the insertion index. Code turned |
| * off for 6.2, should be revisited later. |
| */ |
| if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ |
| memset(XFS_ATTR_LEAF_NAME(leaf_s, start_s + i), 0, tmp); |
| INT_MOD(hdr_s->usedbytes, ARCH_CONVERT, -tmp); |
| INT_MOD(hdr_s->count, ARCH_CONVERT, -1); |
| entry_d--; /* to compensate for ++ in loop hdr */ |
| desti--; |
| if ((start_s + i) < offset) |
| result++; /* insertion index adjustment */ |
| } else { |
| #endif /* GROT */ |
| INT_MOD(hdr_d->firstused, ARCH_CONVERT, -tmp); |
| /* both on-disk, don't endian flip twice */ |
| entry_d->hashval = entry_s->hashval; |
| /* both on-disk, don't endian flip twice */ |
| entry_d->nameidx = hdr_d->firstused; |
| entry_d->flags = entry_s->flags; |
| ASSERT(INT_GET(entry_d->nameidx, ARCH_CONVERT) + tmp |
| <= XFS_LBSIZE(mp)); |
| memmove(XFS_ATTR_LEAF_NAME(leaf_d, desti), |
| XFS_ATTR_LEAF_NAME(leaf_s, start_s + i), tmp); |
| ASSERT(INT_GET(entry_s->nameidx, ARCH_CONVERT) + tmp |
| <= XFS_LBSIZE(mp)); |
| memset(XFS_ATTR_LEAF_NAME(leaf_s, start_s + i), 0, tmp); |
| INT_MOD(hdr_s->usedbytes, ARCH_CONVERT, -tmp); |
| INT_MOD(hdr_d->usedbytes, ARCH_CONVERT, tmp); |
| INT_MOD(hdr_s->count, ARCH_CONVERT, -1); |
| INT_MOD(hdr_d->count, ARCH_CONVERT, 1); |
| tmp = INT_GET(hdr_d->count, ARCH_CONVERT) |
| * sizeof(xfs_attr_leaf_entry_t) |
| + sizeof(xfs_attr_leaf_hdr_t); |
| ASSERT(INT_GET(hdr_d->firstused, ARCH_CONVERT) >= tmp); |
| #ifdef GROT |
| } |
| #endif /* GROT */ |
| } |
| |
| /* |
| * Zero out the entries we just copied. |
| */ |
| if (start_s == INT_GET(hdr_s->count, ARCH_CONVERT)) { |
| tmp = count * sizeof(xfs_attr_leaf_entry_t); |
| entry_s = &leaf_s->entries[start_s]; |
| ASSERT(((char *)entry_s + tmp) <= |
| ((char *)leaf_s + XFS_LBSIZE(mp))); |
| memset((char *)entry_s, 0, tmp); |
| } else { |
| /* |
| * Move the remaining entries down to fill the hole, |
| * then zero the entries at the top. |
| */ |
| tmp = INT_GET(hdr_s->count, ARCH_CONVERT) - count; |
| tmp *= sizeof(xfs_attr_leaf_entry_t); |
| entry_s = &leaf_s->entries[start_s + count]; |
| entry_d = &leaf_s->entries[start_s]; |
| memmove((char *)entry_d, (char *)entry_s, tmp); |
| |
| tmp = count * sizeof(xfs_attr_leaf_entry_t); |
| entry_s = &leaf_s->entries[INT_GET(hdr_s->count, |
| ARCH_CONVERT)]; |
| ASSERT(((char *)entry_s + tmp) <= |
| ((char *)leaf_s + XFS_LBSIZE(mp))); |
| memset((char *)entry_s, 0, tmp); |
| } |
| |
| /* |
| * Fill in the freemap information |
| */ |
| INT_SET(hdr_d->freemap[0].base, ARCH_CONVERT, |
| sizeof(xfs_attr_leaf_hdr_t)); |
| INT_MOD(hdr_d->freemap[0].base, ARCH_CONVERT, |
| INT_GET(hdr_d->count, ARCH_CONVERT) |
| * sizeof(xfs_attr_leaf_entry_t)); |
| INT_SET(hdr_d->freemap[0].size, ARCH_CONVERT, |
| INT_GET(hdr_d->firstused, ARCH_CONVERT) |
| - INT_GET(hdr_d->freemap[0].base, ARCH_CONVERT)); |
| hdr_d->freemap[1].base = 0; |
| hdr_d->freemap[2].base = 0; |
| hdr_d->freemap[1].size = 0; |
| hdr_d->freemap[2].size = 0; |
| hdr_s->holes = 1; /* leaf may not be compact */ |
| } |
| |
| /* |
| * Compare two leaf blocks "order". |
| * Return 0 unless leaf2 should go before leaf1. |
| */ |
| int |
| xfs_attr_leaf_order(xfs_dabuf_t *leaf1_bp, xfs_dabuf_t *leaf2_bp) |
| { |
| xfs_attr_leafblock_t *leaf1, *leaf2; |
| |
| leaf1 = leaf1_bp->data; |
| leaf2 = leaf2_bp->data; |
| ASSERT((INT_GET(leaf1->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC) && |
| (INT_GET(leaf2->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC)); |
| if ( (INT_GET(leaf1->hdr.count, ARCH_CONVERT) > 0) |
| && (INT_GET(leaf2->hdr.count, ARCH_CONVERT) > 0) |
| && ( (INT_GET(leaf2->entries[ 0 ].hashval, ARCH_CONVERT) < |
| INT_GET(leaf1->entries[ 0 ].hashval, ARCH_CONVERT)) |
| || (INT_GET(leaf2->entries[INT_GET(leaf2->hdr.count, |
| ARCH_CONVERT)-1].hashval, ARCH_CONVERT) < |
| INT_GET(leaf1->entries[INT_GET(leaf1->hdr.count, |
| ARCH_CONVERT)-1].hashval, ARCH_CONVERT))) ) { |
| return(1); |
| } |
| return(0); |
| } |
| |
| /* |
| * Pick up the last hashvalue from a leaf block. |
| */ |
| xfs_dahash_t |
| xfs_attr_leaf_lasthash(xfs_dabuf_t *bp, int *count) |
| { |
| xfs_attr_leafblock_t *leaf; |
| |
| leaf = bp->data; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| if (count) |
| *count = INT_GET(leaf->hdr.count, ARCH_CONVERT); |
| if (!leaf->hdr.count) |
| return(0); |
| return(INT_GET(leaf->entries[INT_GET(leaf->hdr.count, |
| ARCH_CONVERT)-1].hashval, ARCH_CONVERT)); |
| } |
| |
| /* |
| * Calculate the number of bytes used to store the indicated attribute |
| * (whether local or remote only calculate bytes in this block). |
| */ |
| STATIC int |
| xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) |
| { |
| xfs_attr_leaf_name_local_t *name_loc; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| int size; |
| |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| if (leaf->entries[index].flags & XFS_ATTR_LOCAL) { |
| name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, index); |
| size = XFS_ATTR_LEAF_ENTSIZE_LOCAL(name_loc->namelen, |
| INT_GET(name_loc->valuelen, |
| ARCH_CONVERT)); |
| } else { |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, index); |
| size = XFS_ATTR_LEAF_ENTSIZE_REMOTE(name_rmt->namelen); |
| } |
| return(size); |
| } |
| |
| /* |
| * Calculate the number of bytes that would be required to store the new |
| * attribute (whether local or remote only calculate bytes in this block). |
| * This routine decides as a side effect whether the attribute will be |
| * a "local" or a "remote" attribute. |
| */ |
| int |
| xfs_attr_leaf_newentsize(xfs_da_args_t *args, int blocksize, int *local) |
| { |
| int size; |
| |
| size = XFS_ATTR_LEAF_ENTSIZE_LOCAL(args->namelen, args->valuelen); |
| if (size < XFS_ATTR_LEAF_ENTSIZE_LOCAL_MAX(blocksize)) { |
| if (local) { |
| *local = 1; |
| } |
| } else { |
| size = XFS_ATTR_LEAF_ENTSIZE_REMOTE(args->namelen); |
| if (local) { |
| *local = 0; |
| } |
| } |
| return(size); |
| } |
| |
| /* |
| * Copy out attribute list entries for attr_list(), for leaf attribute lists. |
| */ |
| int |
| xfs_attr_leaf_list_int(xfs_dabuf_t *bp, xfs_attr_list_context_t *context) |
| { |
| attrlist_cursor_kern_t *cursor; |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_local_t *name_loc; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| int retval, i; |
| |
| ASSERT(bp != NULL); |
| leaf = bp->data; |
| cursor = context->cursor; |
| cursor->initted = 1; |
| |
| xfs_attr_trace_l_cl("blk start", context, leaf); |
| |
| /* |
| * Re-find our place in the leaf block if this is a new syscall. |
| */ |
| if (context->resynch) { |
| entry = &leaf->entries[0]; |
| for (i = 0; i < INT_GET(leaf->hdr.count, ARCH_CONVERT); |
| entry++, i++) { |
| if (INT_GET(entry->hashval, ARCH_CONVERT) |
| == cursor->hashval) { |
| if (cursor->offset == context->dupcnt) { |
| context->dupcnt = 0; |
| break; |
| } |
| context->dupcnt++; |
| } else if (INT_GET(entry->hashval, ARCH_CONVERT) |
| > cursor->hashval) { |
| context->dupcnt = 0; |
| break; |
| } |
| } |
| if (i == INT_GET(leaf->hdr.count, ARCH_CONVERT)) { |
| xfs_attr_trace_l_c("not found", context); |
| return(0); |
| } |
| } else { |
| entry = &leaf->entries[0]; |
| i = 0; |
| } |
| context->resynch = 0; |
| |
| /* |
| * We have found our place, start copying out the new attributes. |
| */ |
| retval = 0; |
| for ( ; (i < INT_GET(leaf->hdr.count, ARCH_CONVERT)) |
| && (retval == 0); entry++, i++) { |
| attrnames_t *namesp; |
| |
| if (INT_GET(entry->hashval, ARCH_CONVERT) != cursor->hashval) { |
| cursor->hashval = INT_GET(entry->hashval, ARCH_CONVERT); |
| cursor->offset = 0; |
| } |
| |
| if (entry->flags & XFS_ATTR_INCOMPLETE) |
| continue; /* skip incomplete entries */ |
| if (((context->flags & ATTR_SECURE) != 0) != |
| ((entry->flags & XFS_ATTR_SECURE) != 0) && |
| !(context->flags & ATTR_KERNORMALS)) |
| continue; /* skip non-matching entries */ |
| if (((context->flags & ATTR_ROOT) != 0) != |
| ((entry->flags & XFS_ATTR_ROOT) != 0) && |
| !(context->flags & ATTR_KERNROOTLS)) |
| continue; /* skip non-matching entries */ |
| |
| namesp = (entry->flags & XFS_ATTR_SECURE) ? &attr_secure : |
| ((entry->flags & XFS_ATTR_ROOT) ? &attr_trusted : |
| &attr_user); |
| |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, i); |
| if (context->flags & ATTR_KERNOVAL) { |
| ASSERT(context->flags & ATTR_KERNAMELS); |
| context->count += namesp->attr_namelen + |
| (int)name_loc->namelen + 1; |
| } else { |
| retval = xfs_attr_put_listent(context, namesp, |
| (char *)name_loc->nameval, |
| (int)name_loc->namelen, |
| (int)INT_GET(name_loc->valuelen, |
| ARCH_CONVERT)); |
| } |
| } else { |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, i); |
| if (context->flags & ATTR_KERNOVAL) { |
| ASSERT(context->flags & ATTR_KERNAMELS); |
| context->count += namesp->attr_namelen + |
| (int)name_rmt->namelen + 1; |
| } else { |
| retval = xfs_attr_put_listent(context, namesp, |
| (char *)name_rmt->name, |
| (int)name_rmt->namelen, |
| (int)INT_GET(name_rmt->valuelen, |
| ARCH_CONVERT)); |
| } |
| } |
| if (retval == 0) { |
| cursor->offset++; |
| } |
| } |
| xfs_attr_trace_l_cl("blk end", context, leaf); |
| return(retval); |
| } |
| |
| #define ATTR_ENTBASESIZE /* minimum bytes used by an attr */ \ |
| (((struct attrlist_ent *) 0)->a_name - (char *) 0) |
| #define ATTR_ENTSIZE(namelen) /* actual bytes used by an attr */ \ |
| ((ATTR_ENTBASESIZE + (namelen) + 1 + sizeof(u_int32_t)-1) \ |
| & ~(sizeof(u_int32_t)-1)) |
| |
| /* |
| * Format an attribute and copy it out to the user's buffer. |
| * Take care to check values and protect against them changing later, |
| * we may be reading them directly out of a user buffer. |
| */ |
| /*ARGSUSED*/ |
| STATIC int |
| xfs_attr_put_listent(xfs_attr_list_context_t *context, |
| attrnames_t *namesp, char *name, int namelen, int valuelen) |
| { |
| attrlist_ent_t *aep; |
| int arraytop; |
| |
| ASSERT(!(context->flags & ATTR_KERNOVAL)); |
| if (context->flags & ATTR_KERNAMELS) { |
| char *offset; |
| |
| ASSERT(context->count >= 0); |
| |
| arraytop = context->count + namesp->attr_namelen + namelen + 1; |
| if (arraytop > context->firstu) { |
| context->count = -1; /* insufficient space */ |
| return(1); |
| } |
| offset = (char *)context->alist + context->count; |
| strncpy(offset, namesp->attr_name, namesp->attr_namelen); |
| offset += namesp->attr_namelen; |
| strncpy(offset, name, namelen); /* real name */ |
| offset += namelen; |
| *offset = '\0'; |
| context->count += namesp->attr_namelen + namelen + 1; |
| return(0); |
| } |
| |
| ASSERT(context->count >= 0); |
| ASSERT(context->count < (ATTR_MAX_VALUELEN/8)); |
| ASSERT(context->firstu >= sizeof(*context->alist)); |
| ASSERT(context->firstu <= context->bufsize); |
| |
| arraytop = sizeof(*context->alist) + |
| context->count * sizeof(context->alist->al_offset[0]); |
| context->firstu -= ATTR_ENTSIZE(namelen); |
| if (context->firstu < arraytop) { |
| xfs_attr_trace_l_c("buffer full", context); |
| context->alist->al_more = 1; |
| return(1); |
| } |
| |
| aep = (attrlist_ent_t *)&(((char *)context->alist)[ context->firstu ]); |
| aep->a_valuelen = valuelen; |
| memcpy(aep->a_name, name, namelen); |
| aep->a_name[ namelen ] = 0; |
| context->alist->al_offset[ context->count++ ] = context->firstu; |
| context->alist->al_count = context->count; |
| xfs_attr_trace_l_c("add", context); |
| return(0); |
| } |
| |
| /*======================================================================== |
| * Manage the INCOMPLETE flag in a leaf entry |
| *========================================================================*/ |
| |
| /* |
| * Clear the INCOMPLETE flag on an entry in a leaf block. |
| */ |
| int |
| xfs_attr_leaf_clearflag(xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| xfs_dabuf_t *bp; |
| int error; |
| #ifdef DEBUG |
| xfs_attr_leaf_name_local_t *name_loc; |
| int namelen; |
| char *name; |
| #endif /* DEBUG */ |
| |
| /* |
| * Set up the operation. |
| */ |
| error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp, |
| XFS_ATTR_FORK); |
| if (error) { |
| return(error); |
| } |
| ASSERT(bp != NULL); |
| |
| leaf = bp->data; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(args->index < INT_GET(leaf->hdr.count, ARCH_CONVERT)); |
| ASSERT(args->index >= 0); |
| entry = &leaf->entries[ args->index ]; |
| ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); |
| |
| #ifdef DEBUG |
| if (entry->flags & XFS_ATTR_LOCAL) { |
| name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, args->index); |
| namelen = name_loc->namelen; |
| name = (char *)name_loc->nameval; |
| } else { |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index); |
| namelen = name_rmt->namelen; |
| name = (char *)name_rmt->name; |
| } |
| ASSERT(INT_GET(entry->hashval, ARCH_CONVERT) == args->hashval); |
| ASSERT(namelen == args->namelen); |
| ASSERT(memcmp(name, args->name, namelen) == 0); |
| #endif /* DEBUG */ |
| |
| entry->flags &= ~XFS_ATTR_INCOMPLETE; |
| xfs_da_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); |
| |
| if (args->rmtblkno) { |
| ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index); |
| INT_SET(name_rmt->valueblk, ARCH_CONVERT, args->rmtblkno); |
| INT_SET(name_rmt->valuelen, ARCH_CONVERT, args->valuelen); |
| xfs_da_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); |
| } |
| xfs_da_buf_done(bp); |
| |
| /* |
| * Commit the flag value change and start the next trans in series. |
| */ |
| error = xfs_attr_rolltrans(&args->trans, args->dp); |
| |
| return(error); |
| } |
| |
| /* |
| * Set the INCOMPLETE flag on an entry in a leaf block. |
| */ |
| int |
| xfs_attr_leaf_setflag(xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| xfs_dabuf_t *bp; |
| int error; |
| |
| /* |
| * Set up the operation. |
| */ |
| error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp, |
| XFS_ATTR_FORK); |
| if (error) { |
| return(error); |
| } |
| ASSERT(bp != NULL); |
| |
| leaf = bp->data; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(args->index < INT_GET(leaf->hdr.count, ARCH_CONVERT)); |
| ASSERT(args->index >= 0); |
| entry = &leaf->entries[ args->index ]; |
| |
| ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); |
| entry->flags |= XFS_ATTR_INCOMPLETE; |
| xfs_da_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); |
| if ((entry->flags & XFS_ATTR_LOCAL) == 0) { |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index); |
| name_rmt->valueblk = 0; |
| name_rmt->valuelen = 0; |
| xfs_da_log_buf(args->trans, bp, |
| XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); |
| } |
| xfs_da_buf_done(bp); |
| |
| /* |
| * Commit the flag value change and start the next trans in series. |
| */ |
| error = xfs_attr_rolltrans(&args->trans, args->dp); |
| |
| return(error); |
| } |
| |
| /* |
| * In a single transaction, clear the INCOMPLETE flag on the leaf entry |
| * given by args->blkno/index and set the INCOMPLETE flag on the leaf |
| * entry given by args->blkno2/index2. |
| * |
| * Note that they could be in different blocks, or in the same block. |
| */ |
| int |
| xfs_attr_leaf_flipflags(xfs_da_args_t *args) |
| { |
| xfs_attr_leafblock_t *leaf1, *leaf2; |
| xfs_attr_leaf_entry_t *entry1, *entry2; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| xfs_dabuf_t *bp1, *bp2; |
| int error; |
| #ifdef DEBUG |
| xfs_attr_leaf_name_local_t *name_loc; |
| int namelen1, namelen2; |
| char *name1, *name2; |
| #endif /* DEBUG */ |
| |
| /* |
| * Read the block containing the "old" attr |
| */ |
| error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp1, |
| XFS_ATTR_FORK); |
| if (error) { |
| return(error); |
| } |
| ASSERT(bp1 != NULL); |
| |
| /* |
| * Read the block containing the "new" attr, if it is different |
| */ |
| if (args->blkno2 != args->blkno) { |
| error = xfs_da_read_buf(args->trans, args->dp, args->blkno2, |
| -1, &bp2, XFS_ATTR_FORK); |
| if (error) { |
| return(error); |
| } |
| ASSERT(bp2 != NULL); |
| } else { |
| bp2 = bp1; |
| } |
| |
| leaf1 = bp1->data; |
| ASSERT(INT_GET(leaf1->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(args->index < INT_GET(leaf1->hdr.count, ARCH_CONVERT)); |
| ASSERT(args->index >= 0); |
| entry1 = &leaf1->entries[ args->index ]; |
| |
| leaf2 = bp2->data; |
| ASSERT(INT_GET(leaf2->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| ASSERT(args->index2 < INT_GET(leaf2->hdr.count, ARCH_CONVERT)); |
| ASSERT(args->index2 >= 0); |
| entry2 = &leaf2->entries[ args->index2 ]; |
| |
| #ifdef DEBUG |
| if (entry1->flags & XFS_ATTR_LOCAL) { |
| name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf1, args->index); |
| namelen1 = name_loc->namelen; |
| name1 = (char *)name_loc->nameval; |
| } else { |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf1, args->index); |
| namelen1 = name_rmt->namelen; |
| name1 = (char *)name_rmt->name; |
| } |
| if (entry2->flags & XFS_ATTR_LOCAL) { |
| name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf2, args->index2); |
| namelen2 = name_loc->namelen; |
| name2 = (char *)name_loc->nameval; |
| } else { |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf2, args->index2); |
| namelen2 = name_rmt->namelen; |
| name2 = (char *)name_rmt->name; |
| } |
| ASSERT(INT_GET(entry1->hashval, ARCH_CONVERT) == INT_GET(entry2->hashval, ARCH_CONVERT)); |
| ASSERT(namelen1 == namelen2); |
| ASSERT(memcmp(name1, name2, namelen1) == 0); |
| #endif /* DEBUG */ |
| |
| ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); |
| ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); |
| |
| entry1->flags &= ~XFS_ATTR_INCOMPLETE; |
| xfs_da_log_buf(args->trans, bp1, |
| XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); |
| if (args->rmtblkno) { |
| ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf1, args->index); |
| INT_SET(name_rmt->valueblk, ARCH_CONVERT, args->rmtblkno); |
| INT_SET(name_rmt->valuelen, ARCH_CONVERT, args->valuelen); |
| xfs_da_log_buf(args->trans, bp1, |
| XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); |
| } |
| |
| entry2->flags |= XFS_ATTR_INCOMPLETE; |
| xfs_da_log_buf(args->trans, bp2, |
| XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); |
| if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf2, args->index2); |
| name_rmt->valueblk = 0; |
| name_rmt->valuelen = 0; |
| xfs_da_log_buf(args->trans, bp2, |
| XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); |
| } |
| xfs_da_buf_done(bp1); |
| if (bp1 != bp2) |
| xfs_da_buf_done(bp2); |
| |
| /* |
| * Commit the flag value change and start the next trans in series. |
| */ |
| error = xfs_attr_rolltrans(&args->trans, args->dp); |
| |
| return(error); |
| } |
| |
| /*======================================================================== |
| * Indiscriminately delete the entire attribute fork |
| *========================================================================*/ |
| |
| /* |
| * Recurse (gasp!) through the attribute nodes until we find leaves. |
| * We're doing a depth-first traversal in order to invalidate everything. |
| */ |
| int |
| xfs_attr_root_inactive(xfs_trans_t **trans, xfs_inode_t *dp) |
| { |
| xfs_da_blkinfo_t *info; |
| xfs_daddr_t blkno; |
| xfs_dabuf_t *bp; |
| int error; |
| |
| /* |
| * Read block 0 to see what we have to work with. |
| * We only get here if we have extents, since we remove |
| * the extents in reverse order the extent containing |
| * block 0 must still be there. |
| */ |
| error = xfs_da_read_buf(*trans, dp, 0, -1, &bp, XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| blkno = xfs_da_blkno(bp); |
| |
| /* |
| * Invalidate the tree, even if the "tree" is only a single leaf block. |
| * This is a depth-first traversal! |
| */ |
| info = bp->data; |
| if (INT_GET(info->magic, ARCH_CONVERT) == XFS_DA_NODE_MAGIC) { |
| error = xfs_attr_node_inactive(trans, dp, bp, 1); |
| } else if (INT_GET(info->magic, ARCH_CONVERT) == XFS_ATTR_LEAF_MAGIC) { |
| error = xfs_attr_leaf_inactive(trans, dp, bp); |
| } else { |
| error = XFS_ERROR(EIO); |
| xfs_da_brelse(*trans, bp); |
| } |
| if (error) |
| return(error); |
| |
| /* |
| * Invalidate the incore copy of the root block. |
| */ |
| error = xfs_da_get_buf(*trans, dp, 0, blkno, &bp, XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| xfs_da_binval(*trans, bp); /* remove from cache */ |
| /* |
| * Commit the invalidate and start the next transaction. |
| */ |
| error = xfs_attr_rolltrans(trans, dp); |
| |
| return (error); |
| } |
| |
| /* |
| * Recurse (gasp!) through the attribute nodes until we find leaves. |
| * We're doing a depth-first traversal in order to invalidate everything. |
| */ |
| STATIC int |
| xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp, |
| int level) |
| { |
| xfs_da_blkinfo_t *info; |
| xfs_da_intnode_t *node; |
| xfs_dablk_t child_fsb; |
| xfs_daddr_t parent_blkno, child_blkno; |
| int error, count, i; |
| xfs_dabuf_t *child_bp; |
| |
| /* |
| * Since this code is recursive (gasp!) we must protect ourselves. |
| */ |
| if (level > XFS_DA_NODE_MAXDEPTH) { |
| xfs_da_brelse(*trans, bp); /* no locks for later trans */ |
| return(XFS_ERROR(EIO)); |
| } |
| |
| node = bp->data; |
| ASSERT(INT_GET(node->hdr.info.magic, ARCH_CONVERT) |
| == XFS_DA_NODE_MAGIC); |
| parent_blkno = xfs_da_blkno(bp); /* save for re-read later */ |
| count = INT_GET(node->hdr.count, ARCH_CONVERT); |
| if (!count) { |
| xfs_da_brelse(*trans, bp); |
| return(0); |
| } |
| child_fsb = INT_GET(node->btree[0].before, ARCH_CONVERT); |
| xfs_da_brelse(*trans, bp); /* no locks for later trans */ |
| |
| /* |
| * If this is the node level just above the leaves, simply loop |
| * over the leaves removing all of them. If this is higher up |
| * in the tree, recurse downward. |
| */ |
| for (i = 0; i < count; i++) { |
| /* |
| * Read the subsidiary block to see what we have to work with. |
| * Don't do this in a transaction. This is a depth-first |
| * traversal of the tree so we may deal with many blocks |
| * before we come back to this one. |
| */ |
| error = xfs_da_read_buf(*trans, dp, child_fsb, -2, &child_bp, |
| XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| if (child_bp) { |
| /* save for re-read later */ |
| child_blkno = xfs_da_blkno(child_bp); |
| |
| /* |
| * Invalidate the subtree, however we have to. |
| */ |
| info = child_bp->data; |
| if (INT_GET(info->magic, ARCH_CONVERT) |
| == XFS_DA_NODE_MAGIC) { |
| error = xfs_attr_node_inactive(trans, dp, |
| child_bp, level+1); |
| } else if (INT_GET(info->magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC) { |
| error = xfs_attr_leaf_inactive(trans, dp, |
| child_bp); |
| } else { |
| error = XFS_ERROR(EIO); |
| xfs_da_brelse(*trans, child_bp); |
| } |
| if (error) |
| return(error); |
| |
| /* |
| * Remove the subsidiary block from the cache |
| * and from the log. |
| */ |
| error = xfs_da_get_buf(*trans, dp, 0, child_blkno, |
| &child_bp, XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| xfs_da_binval(*trans, child_bp); |
| } |
| |
| /* |
| * If we're not done, re-read the parent to get the next |
| * child block number. |
| */ |
| if ((i+1) < count) { |
| error = xfs_da_read_buf(*trans, dp, 0, parent_blkno, |
| &bp, XFS_ATTR_FORK); |
| if (error) |
| return(error); |
| child_fsb = INT_GET(node->btree[i+1].before, ARCH_CONVERT); |
| xfs_da_brelse(*trans, bp); |
| } |
| /* |
| * Atomically commit the whole invalidate stuff. |
| */ |
| if ((error = xfs_attr_rolltrans(trans, dp))) |
| return (error); |
| } |
| |
| return(0); |
| } |
| |
| /* |
| * Invalidate all of the "remote" value regions pointed to by a particular |
| * leaf block. |
| * Note that we must release the lock on the buffer so that we are not |
| * caught holding something that the logging code wants to flush to disk. |
| */ |
| STATIC int |
| xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp) |
| { |
| xfs_attr_leafblock_t *leaf; |
| xfs_attr_leaf_entry_t *entry; |
| xfs_attr_leaf_name_remote_t *name_rmt; |
| xfs_attr_inactive_list_t *list, *lp; |
| int error, count, size, tmp, i; |
| |
| leaf = bp->data; |
| ASSERT(INT_GET(leaf->hdr.info.magic, ARCH_CONVERT) |
| == XFS_ATTR_LEAF_MAGIC); |
| |
| /* |
| * Count the number of "remote" value extents. |
| */ |
| count = 0; |
| entry = &leaf->entries[0]; |
| for (i = 0; i < INT_GET(leaf->hdr.count, ARCH_CONVERT); entry++, i++) { |
| if ( INT_GET(entry->nameidx, ARCH_CONVERT) |
| && ((entry->flags & XFS_ATTR_LOCAL) == 0)) { |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, i); |
| if (name_rmt->valueblk) |
| count++; |
| } |
| } |
| |
| /* |
| * If there are no "remote" values, we're done. |
| */ |
| if (count == 0) { |
| xfs_da_brelse(*trans, bp); |
| return(0); |
| } |
| |
| /* |
| * Allocate storage for a list of all the "remote" value extents. |
| */ |
| size = count * sizeof(xfs_attr_inactive_list_t); |
| list = (xfs_attr_inactive_list_t *)kmem_alloc(size, KM_SLEEP); |
| |
| /* |
| * Identify each of the "remote" value extents. |
| */ |
| lp = list; |
| entry = &leaf->entries[0]; |
| for (i = 0; i < INT_GET(leaf->hdr.count, ARCH_CONVERT); entry++, i++) { |
| if ( INT_GET(entry->nameidx, ARCH_CONVERT) |
| && ((entry->flags & XFS_ATTR_LOCAL) == 0)) { |
| name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, i); |
| if (name_rmt->valueblk) { |
| /* both on-disk, don't endian flip twice */ |
| lp->valueblk = name_rmt->valueblk; |
| INT_SET(lp->valuelen, ARCH_CONVERT, |
| XFS_B_TO_FSB(dp->i_mount, |
| INT_GET(name_rmt->valuelen, |
| ARCH_CONVERT))); |
| lp++; |
| } |
| } |
| } |
| xfs_da_brelse(*trans, bp); /* unlock for trans. in freextent() */ |
| |
| /* |
| * Invalidate each of the "remote" value extents. |
| */ |
| error = 0; |
| for (lp = list, i = 0; i < count; i++, lp++) { |
| tmp = xfs_attr_leaf_freextent(trans, dp, |
| INT_GET(lp->valueblk, |
| ARCH_CONVERT), |
| INT_GET(lp->valuelen, |
| ARCH_CONVERT)); |
| if (error == 0) |
| error = tmp; /* save only the 1st errno */ |
| } |
| |
| kmem_free((xfs_caddr_t)list, size); |
| return(error); |
| } |
| |
| /* |
| * Look at all the extents for this logical region, |
| * invalidate any buffers that are incore/in transactions. |
| */ |
| STATIC int |
| xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp, |
| xfs_dablk_t blkno, int blkcnt) |
| { |
| xfs_bmbt_irec_t map; |
| xfs_dablk_t tblkno; |
| int tblkcnt, dblkcnt, nmap, error; |
| xfs_daddr_t dblkno; |
| xfs_buf_t *bp; |
| |
| /* |
| * Roll through the "value", invalidating the attribute value's |
| * blocks. |
| */ |
| tblkno = blkno; |
| tblkcnt = blkcnt; |
| while (tblkcnt > 0) { |
| /* |
| * Try to remember where we decided to put the value. |
| */ |
| nmap = 1; |
| error = xfs_bmapi(*trans, dp, (xfs_fileoff_t)tblkno, tblkcnt, |
| XFS_BMAPI_ATTRFORK | XFS_BMAPI_METADATA, |
| NULL, 0, &map, &nmap, NULL); |
| if (error) { |
| return(error); |
| } |
| ASSERT(nmap == 1); |
| ASSERT(map.br_startblock != DELAYSTARTBLOCK); |
| |
| /* |
| * If it's a hole, these are already unmapped |
| * so there's nothing to invalidate. |
| */ |
| if (map.br_startblock != HOLESTARTBLOCK) { |
| |
| dblkno = XFS_FSB_TO_DADDR(dp->i_mount, |
| map.br_startblock); |
| dblkcnt = XFS_FSB_TO_BB(dp->i_mount, |
| map.br_blockcount); |
| bp = xfs_trans_get_buf(*trans, |
| dp->i_mount->m_ddev_targp, |
| dblkno, dblkcnt, XFS_BUF_LOCK); |
| xfs_trans_binval(*trans, bp); |
| /* |
| * Roll to next transaction. |
| */ |
| if ((error = xfs_attr_rolltrans(trans, dp))) |
| return (error); |
| } |
| |
| tblkno += map.br_blockcount; |
| tblkcnt -= map.br_blockcount; |
| } |
| |
| return(0); |
| } |
| |
| |
| /* |
| * Roll from one trans in the sequence of PERMANENT transactions to the next. |
| */ |
| int |
| xfs_attr_rolltrans(xfs_trans_t **transp, xfs_inode_t *dp) |
| { |
| xfs_trans_t *trans; |
| unsigned int logres, count; |
| int error; |
| |
| /* |
| * Ensure that the inode is always logged. |
| */ |
| trans = *transp; |
| xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE); |
| |
| /* |
| * Copy the critical parameters from one trans to the next. |
| */ |
| logres = trans->t_log_res; |
| count = trans->t_log_count; |
| *transp = xfs_trans_dup(trans); |
| |
| /* |
| * Commit the current transaction. |
| * If this commit failed, then it'd just unlock those items that |
| * are not marked ihold. That also means that a filesystem shutdown |
| * is in progress. The caller takes the responsibility to cancel |
| * the duplicate transaction that gets returned. |
| */ |
| if ((error = xfs_trans_commit(trans, 0, NULL))) |
| return (error); |
| |
| trans = *transp; |
| |
| /* |
| * Reserve space in the log for th next transaction. |
| * This also pushes items in the "AIL", the list of logged items, |
| * out to disk if they are taking up space at the tail of the log |
| * that we want to use. This requires that either nothing be locked |
| * across this call, or that anything that is locked be logged in |
| * the prior and the next transactions. |
| */ |
| error = xfs_trans_reserve(trans, 0, logres, 0, |
| XFS_TRANS_PERM_LOG_RES, count); |
| /* |
| * Ensure that the inode is in the new transaction and locked. |
| */ |
| if (!error) { |
| xfs_trans_ijoin(trans, dp, XFS_ILOCK_EXCL); |
| xfs_trans_ihold(trans, dp); |
| } |
| return (error); |
| |
| } |