| /* |
| * drivers/dma/fsl-edma.c |
| * |
| * Copyright 2013-2014 Freescale Semiconductor, Inc. |
| * |
| * Driver for the Freescale eDMA engine with flexible channel multiplexing |
| * capability for DMA request sources. The eDMA block can be found on some |
| * Vybrid and Layerscape SoCs. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/clk.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmapool.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_dma.h> |
| |
| #include "virt-dma.h" |
| |
| #define EDMA_CR 0x00 |
| #define EDMA_ES 0x04 |
| #define EDMA_ERQ 0x0C |
| #define EDMA_EEI 0x14 |
| #define EDMA_SERQ 0x1B |
| #define EDMA_CERQ 0x1A |
| #define EDMA_SEEI 0x19 |
| #define EDMA_CEEI 0x18 |
| #define EDMA_CINT 0x1F |
| #define EDMA_CERR 0x1E |
| #define EDMA_SSRT 0x1D |
| #define EDMA_CDNE 0x1C |
| #define EDMA_INTR 0x24 |
| #define EDMA_ERR 0x2C |
| |
| #define EDMA_TCD_SADDR(x) (0x1000 + 32 * (x)) |
| #define EDMA_TCD_SOFF(x) (0x1004 + 32 * (x)) |
| #define EDMA_TCD_ATTR(x) (0x1006 + 32 * (x)) |
| #define EDMA_TCD_NBYTES(x) (0x1008 + 32 * (x)) |
| #define EDMA_TCD_SLAST(x) (0x100C + 32 * (x)) |
| #define EDMA_TCD_DADDR(x) (0x1010 + 32 * (x)) |
| #define EDMA_TCD_DOFF(x) (0x1014 + 32 * (x)) |
| #define EDMA_TCD_CITER_ELINK(x) (0x1016 + 32 * (x)) |
| #define EDMA_TCD_CITER(x) (0x1016 + 32 * (x)) |
| #define EDMA_TCD_DLAST_SGA(x) (0x1018 + 32 * (x)) |
| #define EDMA_TCD_CSR(x) (0x101C + 32 * (x)) |
| #define EDMA_TCD_BITER_ELINK(x) (0x101E + 32 * (x)) |
| #define EDMA_TCD_BITER(x) (0x101E + 32 * (x)) |
| |
| #define EDMA_CR_EDBG BIT(1) |
| #define EDMA_CR_ERCA BIT(2) |
| #define EDMA_CR_ERGA BIT(3) |
| #define EDMA_CR_HOE BIT(4) |
| #define EDMA_CR_HALT BIT(5) |
| #define EDMA_CR_CLM BIT(6) |
| #define EDMA_CR_EMLM BIT(7) |
| #define EDMA_CR_ECX BIT(16) |
| #define EDMA_CR_CX BIT(17) |
| |
| #define EDMA_SEEI_SEEI(x) ((x) & 0x1F) |
| #define EDMA_CEEI_CEEI(x) ((x) & 0x1F) |
| #define EDMA_CINT_CINT(x) ((x) & 0x1F) |
| #define EDMA_CERR_CERR(x) ((x) & 0x1F) |
| |
| #define EDMA_TCD_ATTR_DSIZE(x) (((x) & 0x0007)) |
| #define EDMA_TCD_ATTR_DMOD(x) (((x) & 0x001F) << 3) |
| #define EDMA_TCD_ATTR_SSIZE(x) (((x) & 0x0007) << 8) |
| #define EDMA_TCD_ATTR_SMOD(x) (((x) & 0x001F) << 11) |
| #define EDMA_TCD_ATTR_SSIZE_8BIT (0x0000) |
| #define EDMA_TCD_ATTR_SSIZE_16BIT (0x0100) |
| #define EDMA_TCD_ATTR_SSIZE_32BIT (0x0200) |
| #define EDMA_TCD_ATTR_SSIZE_64BIT (0x0300) |
| #define EDMA_TCD_ATTR_SSIZE_32BYTE (0x0500) |
| #define EDMA_TCD_ATTR_DSIZE_8BIT (0x0000) |
| #define EDMA_TCD_ATTR_DSIZE_16BIT (0x0001) |
| #define EDMA_TCD_ATTR_DSIZE_32BIT (0x0002) |
| #define EDMA_TCD_ATTR_DSIZE_64BIT (0x0003) |
| #define EDMA_TCD_ATTR_DSIZE_32BYTE (0x0005) |
| |
| #define EDMA_TCD_SOFF_SOFF(x) (x) |
| #define EDMA_TCD_NBYTES_NBYTES(x) (x) |
| #define EDMA_TCD_SLAST_SLAST(x) (x) |
| #define EDMA_TCD_DADDR_DADDR(x) (x) |
| #define EDMA_TCD_CITER_CITER(x) ((x) & 0x7FFF) |
| #define EDMA_TCD_DOFF_DOFF(x) (x) |
| #define EDMA_TCD_DLAST_SGA_DLAST_SGA(x) (x) |
| #define EDMA_TCD_BITER_BITER(x) ((x) & 0x7FFF) |
| |
| #define EDMA_TCD_CSR_START BIT(0) |
| #define EDMA_TCD_CSR_INT_MAJOR BIT(1) |
| #define EDMA_TCD_CSR_INT_HALF BIT(2) |
| #define EDMA_TCD_CSR_D_REQ BIT(3) |
| #define EDMA_TCD_CSR_E_SG BIT(4) |
| #define EDMA_TCD_CSR_E_LINK BIT(5) |
| #define EDMA_TCD_CSR_ACTIVE BIT(6) |
| #define EDMA_TCD_CSR_DONE BIT(7) |
| |
| #define EDMAMUX_CHCFG_DIS 0x0 |
| #define EDMAMUX_CHCFG_ENBL 0x80 |
| #define EDMAMUX_CHCFG_SOURCE(n) ((n) & 0x3F) |
| |
| #define DMAMUX_NR 2 |
| |
| #define FSL_EDMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) |
| |
| struct fsl_edma_hw_tcd { |
| __le32 saddr; |
| __le16 soff; |
| __le16 attr; |
| __le32 nbytes; |
| __le32 slast; |
| __le32 daddr; |
| __le16 doff; |
| __le16 citer; |
| __le32 dlast_sga; |
| __le16 csr; |
| __le16 biter; |
| }; |
| |
| struct fsl_edma_sw_tcd { |
| dma_addr_t ptcd; |
| struct fsl_edma_hw_tcd *vtcd; |
| }; |
| |
| struct fsl_edma_slave_config { |
| enum dma_transfer_direction dir; |
| enum dma_slave_buswidth addr_width; |
| u32 dev_addr; |
| u32 burst; |
| u32 attr; |
| }; |
| |
| struct fsl_edma_chan { |
| struct virt_dma_chan vchan; |
| enum dma_status status; |
| struct fsl_edma_engine *edma; |
| struct fsl_edma_desc *edesc; |
| struct fsl_edma_slave_config fsc; |
| struct dma_pool *tcd_pool; |
| }; |
| |
| struct fsl_edma_desc { |
| struct virt_dma_desc vdesc; |
| struct fsl_edma_chan *echan; |
| bool iscyclic; |
| unsigned int n_tcds; |
| struct fsl_edma_sw_tcd tcd[]; |
| }; |
| |
| struct fsl_edma_engine { |
| struct dma_device dma_dev; |
| void __iomem *membase; |
| void __iomem *muxbase[DMAMUX_NR]; |
| struct clk *muxclk[DMAMUX_NR]; |
| struct mutex fsl_edma_mutex; |
| u32 n_chans; |
| int txirq; |
| int errirq; |
| bool big_endian; |
| struct fsl_edma_chan chans[]; |
| }; |
| |
| /* |
| * R/W functions for big- or little-endian registers: |
| * The eDMA controller's endian is independent of the CPU core's endian. |
| * For the big-endian IP module, the offset for 8-bit or 16-bit registers |
| * should also be swapped opposite to that in little-endian IP. |
| */ |
| |
| static u32 edma_readl(struct fsl_edma_engine *edma, void __iomem *addr) |
| { |
| if (edma->big_endian) |
| return ioread32be(addr); |
| else |
| return ioread32(addr); |
| } |
| |
| static void edma_writeb(struct fsl_edma_engine *edma, u8 val, void __iomem *addr) |
| { |
| /* swap the reg offset for these in big-endian mode */ |
| if (edma->big_endian) |
| iowrite8(val, (void __iomem *)((unsigned long)addr ^ 0x3)); |
| else |
| iowrite8(val, addr); |
| } |
| |
| static void edma_writew(struct fsl_edma_engine *edma, u16 val, void __iomem *addr) |
| { |
| /* swap the reg offset for these in big-endian mode */ |
| if (edma->big_endian) |
| iowrite16be(val, (void __iomem *)((unsigned long)addr ^ 0x2)); |
| else |
| iowrite16(val, addr); |
| } |
| |
| static void edma_writel(struct fsl_edma_engine *edma, u32 val, void __iomem *addr) |
| { |
| if (edma->big_endian) |
| iowrite32be(val, addr); |
| else |
| iowrite32(val, addr); |
| } |
| |
| static struct fsl_edma_chan *to_fsl_edma_chan(struct dma_chan *chan) |
| { |
| return container_of(chan, struct fsl_edma_chan, vchan.chan); |
| } |
| |
| static struct fsl_edma_desc *to_fsl_edma_desc(struct virt_dma_desc *vd) |
| { |
| return container_of(vd, struct fsl_edma_desc, vdesc); |
| } |
| |
| static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan) |
| { |
| void __iomem *addr = fsl_chan->edma->membase; |
| u32 ch = fsl_chan->vchan.chan.chan_id; |
| |
| edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), addr + EDMA_SEEI); |
| edma_writeb(fsl_chan->edma, ch, addr + EDMA_SERQ); |
| } |
| |
| static void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan) |
| { |
| void __iomem *addr = fsl_chan->edma->membase; |
| u32 ch = fsl_chan->vchan.chan.chan_id; |
| |
| edma_writeb(fsl_chan->edma, ch, addr + EDMA_CERQ); |
| edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), addr + EDMA_CEEI); |
| } |
| |
| static void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan, |
| unsigned int slot, bool enable) |
| { |
| u32 ch = fsl_chan->vchan.chan.chan_id; |
| void __iomem *muxaddr; |
| unsigned chans_per_mux, ch_off; |
| |
| chans_per_mux = fsl_chan->edma->n_chans / DMAMUX_NR; |
| ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux; |
| muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux]; |
| slot = EDMAMUX_CHCFG_SOURCE(slot); |
| |
| if (enable) |
| iowrite8(EDMAMUX_CHCFG_ENBL | slot, muxaddr + ch_off); |
| else |
| iowrite8(EDMAMUX_CHCFG_DIS, muxaddr + ch_off); |
| } |
| |
| static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width) |
| { |
| switch (addr_width) { |
| case 1: |
| return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT; |
| case 2: |
| return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT; |
| case 4: |
| return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT; |
| case 8: |
| return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT; |
| default: |
| return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT; |
| } |
| } |
| |
| static void fsl_edma_free_desc(struct virt_dma_desc *vdesc) |
| { |
| struct fsl_edma_desc *fsl_desc; |
| int i; |
| |
| fsl_desc = to_fsl_edma_desc(vdesc); |
| for (i = 0; i < fsl_desc->n_tcds; i++) |
| dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd, |
| fsl_desc->tcd[i].ptcd); |
| kfree(fsl_desc); |
| } |
| |
| static int fsl_edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, |
| unsigned long arg) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| struct dma_slave_config *cfg = (void *)arg; |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| switch (cmd) { |
| case DMA_TERMINATE_ALL: |
| spin_lock_irqsave(&fsl_chan->vchan.lock, flags); |
| fsl_edma_disable_request(fsl_chan); |
| fsl_chan->edesc = NULL; |
| vchan_get_all_descriptors(&fsl_chan->vchan, &head); |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| vchan_dma_desc_free_list(&fsl_chan->vchan, &head); |
| return 0; |
| |
| case DMA_SLAVE_CONFIG: |
| fsl_chan->fsc.dir = cfg->direction; |
| if (cfg->direction == DMA_DEV_TO_MEM) { |
| fsl_chan->fsc.dev_addr = cfg->src_addr; |
| fsl_chan->fsc.addr_width = cfg->src_addr_width; |
| fsl_chan->fsc.burst = cfg->src_maxburst; |
| fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->src_addr_width); |
| } else if (cfg->direction == DMA_MEM_TO_DEV) { |
| fsl_chan->fsc.dev_addr = cfg->dst_addr; |
| fsl_chan->fsc.addr_width = cfg->dst_addr_width; |
| fsl_chan->fsc.burst = cfg->dst_maxburst; |
| fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->dst_addr_width); |
| } else { |
| return -EINVAL; |
| } |
| return 0; |
| |
| case DMA_PAUSE: |
| spin_lock_irqsave(&fsl_chan->vchan.lock, flags); |
| if (fsl_chan->edesc) { |
| fsl_edma_disable_request(fsl_chan); |
| fsl_chan->status = DMA_PAUSED; |
| } |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| return 0; |
| |
| case DMA_RESUME: |
| spin_lock_irqsave(&fsl_chan->vchan.lock, flags); |
| if (fsl_chan->edesc) { |
| fsl_edma_enable_request(fsl_chan); |
| fsl_chan->status = DMA_IN_PROGRESS; |
| } |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| return 0; |
| |
| default: |
| return -ENXIO; |
| } |
| } |
| |
| static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan, |
| struct virt_dma_desc *vdesc, bool in_progress) |
| { |
| struct fsl_edma_desc *edesc = fsl_chan->edesc; |
| void __iomem *addr = fsl_chan->edma->membase; |
| u32 ch = fsl_chan->vchan.chan.chan_id; |
| enum dma_transfer_direction dir = fsl_chan->fsc.dir; |
| dma_addr_t cur_addr, dma_addr; |
| size_t len, size; |
| int i; |
| |
| /* calculate the total size in this desc */ |
| for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++) |
| len += le32_to_cpu(edesc->tcd[i].vtcd->nbytes) |
| * le16_to_cpu(edesc->tcd[i].vtcd->biter); |
| |
| if (!in_progress) |
| return len; |
| |
| if (dir == DMA_MEM_TO_DEV) |
| cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_SADDR(ch)); |
| else |
| cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_DADDR(ch)); |
| |
| /* figure out the finished and calculate the residue */ |
| for (i = 0; i < fsl_chan->edesc->n_tcds; i++) { |
| size = le32_to_cpu(edesc->tcd[i].vtcd->nbytes) |
| * le16_to_cpu(edesc->tcd[i].vtcd->biter); |
| if (dir == DMA_MEM_TO_DEV) |
| dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr); |
| else |
| dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr); |
| |
| len -= size; |
| if (cur_addr >= dma_addr && cur_addr < dma_addr + size) { |
| len += dma_addr + size - cur_addr; |
| break; |
| } |
| } |
| |
| return len; |
| } |
| |
| static enum dma_status fsl_edma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, struct dma_tx_state *txstate) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| struct virt_dma_desc *vdesc; |
| enum dma_status status; |
| unsigned long flags; |
| |
| status = dma_cookie_status(chan, cookie, txstate); |
| if (status == DMA_COMPLETE) |
| return status; |
| |
| if (!txstate) |
| return fsl_chan->status; |
| |
| spin_lock_irqsave(&fsl_chan->vchan.lock, flags); |
| vdesc = vchan_find_desc(&fsl_chan->vchan, cookie); |
| if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie) |
| txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, true); |
| else if (vdesc) |
| txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, false); |
| else |
| txstate->residue = 0; |
| |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| |
| return fsl_chan->status; |
| } |
| |
| static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan, |
| struct fsl_edma_hw_tcd *tcd) |
| { |
| struct fsl_edma_engine *edma = fsl_chan->edma; |
| void __iomem *addr = fsl_chan->edma->membase; |
| u32 ch = fsl_chan->vchan.chan.chan_id; |
| |
| /* |
| * TCD parameters are stored in struct fsl_edma_hw_tcd in little |
| * endian format. However, we need to load the TCD registers in |
| * big- or little-endian obeying the eDMA engine model endian. |
| */ |
| edma_writew(edma, 0, addr + EDMA_TCD_CSR(ch)); |
| edma_writel(edma, le32_to_cpu(tcd->saddr), addr + EDMA_TCD_SADDR(ch)); |
| edma_writel(edma, le32_to_cpu(tcd->daddr), addr + EDMA_TCD_DADDR(ch)); |
| |
| edma_writew(edma, le16_to_cpu(tcd->attr), addr + EDMA_TCD_ATTR(ch)); |
| edma_writew(edma, le16_to_cpu(tcd->soff), addr + EDMA_TCD_SOFF(ch)); |
| |
| edma_writel(edma, le32_to_cpu(tcd->nbytes), addr + EDMA_TCD_NBYTES(ch)); |
| edma_writel(edma, le32_to_cpu(tcd->slast), addr + EDMA_TCD_SLAST(ch)); |
| |
| edma_writew(edma, le16_to_cpu(tcd->citer), addr + EDMA_TCD_CITER(ch)); |
| edma_writew(edma, le16_to_cpu(tcd->biter), addr + EDMA_TCD_BITER(ch)); |
| edma_writew(edma, le16_to_cpu(tcd->doff), addr + EDMA_TCD_DOFF(ch)); |
| |
| edma_writel(edma, le32_to_cpu(tcd->dlast_sga), addr + EDMA_TCD_DLAST_SGA(ch)); |
| |
| edma_writew(edma, le16_to_cpu(tcd->csr), addr + EDMA_TCD_CSR(ch)); |
| } |
| |
| static inline |
| void fsl_edma_fill_tcd(struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst, |
| u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer, |
| u16 biter, u16 doff, u32 dlast_sga, bool major_int, |
| bool disable_req, bool enable_sg) |
| { |
| u16 csr = 0; |
| |
| /* |
| * eDMA hardware SGs require the TCDs to be stored in little |
| * endian format irrespective of the register endian model. |
| * So we put the value in little endian in memory, waiting |
| * for fsl_edma_set_tcd_regs doing the swap. |
| */ |
| tcd->saddr = cpu_to_le32(src); |
| tcd->daddr = cpu_to_le32(dst); |
| |
| tcd->attr = cpu_to_le16(attr); |
| |
| tcd->soff = cpu_to_le16(EDMA_TCD_SOFF_SOFF(soff)); |
| |
| tcd->nbytes = cpu_to_le32(EDMA_TCD_NBYTES_NBYTES(nbytes)); |
| tcd->slast = cpu_to_le32(EDMA_TCD_SLAST_SLAST(slast)); |
| |
| tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer)); |
| tcd->doff = cpu_to_le16(EDMA_TCD_DOFF_DOFF(doff)); |
| |
| tcd->dlast_sga = cpu_to_le32(EDMA_TCD_DLAST_SGA_DLAST_SGA(dlast_sga)); |
| |
| tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter)); |
| if (major_int) |
| csr |= EDMA_TCD_CSR_INT_MAJOR; |
| |
| if (disable_req) |
| csr |= EDMA_TCD_CSR_D_REQ; |
| |
| if (enable_sg) |
| csr |= EDMA_TCD_CSR_E_SG; |
| |
| tcd->csr = cpu_to_le16(csr); |
| } |
| |
| static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan, |
| int sg_len) |
| { |
| struct fsl_edma_desc *fsl_desc; |
| int i; |
| |
| fsl_desc = kzalloc(sizeof(*fsl_desc) + sizeof(struct fsl_edma_sw_tcd) * sg_len, |
| GFP_NOWAIT); |
| if (!fsl_desc) |
| return NULL; |
| |
| fsl_desc->echan = fsl_chan; |
| fsl_desc->n_tcds = sg_len; |
| for (i = 0; i < sg_len; i++) { |
| fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool, |
| GFP_NOWAIT, &fsl_desc->tcd[i].ptcd); |
| if (!fsl_desc->tcd[i].vtcd) |
| goto err; |
| } |
| return fsl_desc; |
| |
| err: |
| while (--i >= 0) |
| dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd, |
| fsl_desc->tcd[i].ptcd); |
| kfree(fsl_desc); |
| return NULL; |
| } |
| |
| static struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic( |
| struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction direction, |
| unsigned long flags) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| struct fsl_edma_desc *fsl_desc; |
| dma_addr_t dma_buf_next; |
| int sg_len, i; |
| u32 src_addr, dst_addr, last_sg, nbytes; |
| u16 soff, doff, iter; |
| |
| if (!is_slave_direction(fsl_chan->fsc.dir)) |
| return NULL; |
| |
| sg_len = buf_len / period_len; |
| fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); |
| if (!fsl_desc) |
| return NULL; |
| fsl_desc->iscyclic = true; |
| |
| dma_buf_next = dma_addr; |
| nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst; |
| iter = period_len / nbytes; |
| |
| for (i = 0; i < sg_len; i++) { |
| if (dma_buf_next >= dma_addr + buf_len) |
| dma_buf_next = dma_addr; |
| |
| /* get next sg's physical address */ |
| last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd; |
| |
| if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) { |
| src_addr = dma_buf_next; |
| dst_addr = fsl_chan->fsc.dev_addr; |
| soff = fsl_chan->fsc.addr_width; |
| doff = 0; |
| } else { |
| src_addr = fsl_chan->fsc.dev_addr; |
| dst_addr = dma_buf_next; |
| soff = 0; |
| doff = fsl_chan->fsc.addr_width; |
| } |
| |
| fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, dst_addr, |
| fsl_chan->fsc.attr, soff, nbytes, 0, iter, |
| iter, doff, last_sg, true, false, true); |
| dma_buf_next += period_len; |
| } |
| |
| return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| struct fsl_edma_desc *fsl_desc; |
| struct scatterlist *sg; |
| u32 src_addr, dst_addr, last_sg, nbytes; |
| u16 soff, doff, iter; |
| int i; |
| |
| if (!is_slave_direction(fsl_chan->fsc.dir)) |
| return NULL; |
| |
| fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len); |
| if (!fsl_desc) |
| return NULL; |
| fsl_desc->iscyclic = false; |
| |
| nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst; |
| for_each_sg(sgl, sg, sg_len, i) { |
| /* get next sg's physical address */ |
| last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd; |
| |
| if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) { |
| src_addr = sg_dma_address(sg); |
| dst_addr = fsl_chan->fsc.dev_addr; |
| soff = fsl_chan->fsc.addr_width; |
| doff = 0; |
| } else { |
| src_addr = fsl_chan->fsc.dev_addr; |
| dst_addr = sg_dma_address(sg); |
| soff = 0; |
| doff = fsl_chan->fsc.addr_width; |
| } |
| |
| iter = sg_dma_len(sg) / nbytes; |
| if (i < sg_len - 1) { |
| last_sg = fsl_desc->tcd[(i + 1)].ptcd; |
| fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, |
| dst_addr, fsl_chan->fsc.attr, soff, |
| nbytes, 0, iter, iter, doff, last_sg, |
| false, false, true); |
| } else { |
| last_sg = 0; |
| fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, |
| dst_addr, fsl_chan->fsc.attr, soff, |
| nbytes, 0, iter, iter, doff, last_sg, |
| true, true, false); |
| } |
| } |
| |
| return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags); |
| } |
| |
| static void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan) |
| { |
| struct virt_dma_desc *vdesc; |
| |
| vdesc = vchan_next_desc(&fsl_chan->vchan); |
| if (!vdesc) |
| return; |
| fsl_chan->edesc = to_fsl_edma_desc(vdesc); |
| fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd); |
| fsl_edma_enable_request(fsl_chan); |
| fsl_chan->status = DMA_IN_PROGRESS; |
| } |
| |
| static irqreturn_t fsl_edma_tx_handler(int irq, void *dev_id) |
| { |
| struct fsl_edma_engine *fsl_edma = dev_id; |
| unsigned int intr, ch; |
| void __iomem *base_addr; |
| struct fsl_edma_chan *fsl_chan; |
| |
| base_addr = fsl_edma->membase; |
| |
| intr = edma_readl(fsl_edma, base_addr + EDMA_INTR); |
| if (!intr) |
| return IRQ_NONE; |
| |
| for (ch = 0; ch < fsl_edma->n_chans; ch++) { |
| if (intr & (0x1 << ch)) { |
| edma_writeb(fsl_edma, EDMA_CINT_CINT(ch), |
| base_addr + EDMA_CINT); |
| |
| fsl_chan = &fsl_edma->chans[ch]; |
| |
| spin_lock(&fsl_chan->vchan.lock); |
| if (!fsl_chan->edesc->iscyclic) { |
| list_del(&fsl_chan->edesc->vdesc.node); |
| vchan_cookie_complete(&fsl_chan->edesc->vdesc); |
| fsl_chan->edesc = NULL; |
| fsl_chan->status = DMA_COMPLETE; |
| } else { |
| vchan_cyclic_callback(&fsl_chan->edesc->vdesc); |
| } |
| |
| if (!fsl_chan->edesc) |
| fsl_edma_xfer_desc(fsl_chan); |
| |
| spin_unlock(&fsl_chan->vchan.lock); |
| } |
| } |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t fsl_edma_err_handler(int irq, void *dev_id) |
| { |
| struct fsl_edma_engine *fsl_edma = dev_id; |
| unsigned int err, ch; |
| |
| err = edma_readl(fsl_edma, fsl_edma->membase + EDMA_ERR); |
| if (!err) |
| return IRQ_NONE; |
| |
| for (ch = 0; ch < fsl_edma->n_chans; ch++) { |
| if (err & (0x1 << ch)) { |
| fsl_edma_disable_request(&fsl_edma->chans[ch]); |
| edma_writeb(fsl_edma, EDMA_CERR_CERR(ch), |
| fsl_edma->membase + EDMA_CERR); |
| fsl_edma->chans[ch].status = DMA_ERROR; |
| } |
| } |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t fsl_edma_irq_handler(int irq, void *dev_id) |
| { |
| if (fsl_edma_tx_handler(irq, dev_id) == IRQ_HANDLED) |
| return IRQ_HANDLED; |
| |
| return fsl_edma_err_handler(irq, dev_id); |
| } |
| |
| static void fsl_edma_issue_pending(struct dma_chan *chan) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fsl_chan->vchan.lock, flags); |
| |
| if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc) |
| fsl_edma_xfer_desc(fsl_chan); |
| |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| } |
| |
| static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *ofdma) |
| { |
| struct fsl_edma_engine *fsl_edma = ofdma->of_dma_data; |
| struct dma_chan *chan, *_chan; |
| unsigned long chans_per_mux = fsl_edma->n_chans / DMAMUX_NR; |
| |
| if (dma_spec->args_count != 2) |
| return NULL; |
| |
| mutex_lock(&fsl_edma->fsl_edma_mutex); |
| list_for_each_entry_safe(chan, _chan, &fsl_edma->dma_dev.channels, device_node) { |
| if (chan->client_count) |
| continue; |
| if ((chan->chan_id / chans_per_mux) == dma_spec->args[0]) { |
| chan = dma_get_slave_channel(chan); |
| if (chan) { |
| chan->device->privatecnt++; |
| fsl_edma_chan_mux(to_fsl_edma_chan(chan), |
| dma_spec->args[1], true); |
| mutex_unlock(&fsl_edma->fsl_edma_mutex); |
| return chan; |
| } |
| } |
| } |
| mutex_unlock(&fsl_edma->fsl_edma_mutex); |
| return NULL; |
| } |
| |
| static int fsl_edma_alloc_chan_resources(struct dma_chan *chan) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| |
| fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev, |
| sizeof(struct fsl_edma_hw_tcd), |
| 32, 0); |
| return 0; |
| } |
| |
| static void fsl_edma_free_chan_resources(struct dma_chan *chan) |
| { |
| struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan); |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&fsl_chan->vchan.lock, flags); |
| fsl_edma_disable_request(fsl_chan); |
| fsl_edma_chan_mux(fsl_chan, 0, false); |
| fsl_chan->edesc = NULL; |
| vchan_get_all_descriptors(&fsl_chan->vchan, &head); |
| spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags); |
| |
| vchan_dma_desc_free_list(&fsl_chan->vchan, &head); |
| dma_pool_destroy(fsl_chan->tcd_pool); |
| fsl_chan->tcd_pool = NULL; |
| } |
| |
| static int fsl_dma_device_slave_caps(struct dma_chan *dchan, |
| struct dma_slave_caps *caps) |
| { |
| caps->src_addr_widths = FSL_EDMA_BUSWIDTHS; |
| caps->dstn_addr_widths = FSL_EDMA_BUSWIDTHS; |
| caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); |
| caps->cmd_pause = true; |
| caps->cmd_terminate = true; |
| |
| return 0; |
| } |
| |
| static int |
| fsl_edma_irq_init(struct platform_device *pdev, struct fsl_edma_engine *fsl_edma) |
| { |
| int ret; |
| |
| fsl_edma->txirq = platform_get_irq_byname(pdev, "edma-tx"); |
| if (fsl_edma->txirq < 0) { |
| dev_err(&pdev->dev, "Can't get edma-tx irq.\n"); |
| return fsl_edma->txirq; |
| } |
| |
| fsl_edma->errirq = platform_get_irq_byname(pdev, "edma-err"); |
| if (fsl_edma->errirq < 0) { |
| dev_err(&pdev->dev, "Can't get edma-err irq.\n"); |
| return fsl_edma->errirq; |
| } |
| |
| if (fsl_edma->txirq == fsl_edma->errirq) { |
| ret = devm_request_irq(&pdev->dev, fsl_edma->txirq, |
| fsl_edma_irq_handler, 0, "eDMA", fsl_edma); |
| if (ret) { |
| dev_err(&pdev->dev, "Can't register eDMA IRQ.\n"); |
| return ret; |
| } |
| } else { |
| ret = devm_request_irq(&pdev->dev, fsl_edma->txirq, |
| fsl_edma_tx_handler, 0, "eDMA tx", fsl_edma); |
| if (ret) { |
| dev_err(&pdev->dev, "Can't register eDMA tx IRQ.\n"); |
| return ret; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, fsl_edma->errirq, |
| fsl_edma_err_handler, 0, "eDMA err", fsl_edma); |
| if (ret) { |
| dev_err(&pdev->dev, "Can't register eDMA err IRQ.\n"); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int fsl_edma_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct fsl_edma_engine *fsl_edma; |
| struct fsl_edma_chan *fsl_chan; |
| struct resource *res; |
| int len, chans; |
| int ret, i; |
| |
| ret = of_property_read_u32(np, "dma-channels", &chans); |
| if (ret) { |
| dev_err(&pdev->dev, "Can't get dma-channels.\n"); |
| return ret; |
| } |
| |
| len = sizeof(*fsl_edma) + sizeof(*fsl_chan) * chans; |
| fsl_edma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL); |
| if (!fsl_edma) |
| return -ENOMEM; |
| |
| fsl_edma->n_chans = chans; |
| mutex_init(&fsl_edma->fsl_edma_mutex); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| fsl_edma->membase = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(fsl_edma->membase)) |
| return PTR_ERR(fsl_edma->membase); |
| |
| for (i = 0; i < DMAMUX_NR; i++) { |
| char clkname[32]; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 1 + i); |
| fsl_edma->muxbase[i] = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(fsl_edma->muxbase[i])) |
| return PTR_ERR(fsl_edma->muxbase[i]); |
| |
| sprintf(clkname, "dmamux%d", i); |
| fsl_edma->muxclk[i] = devm_clk_get(&pdev->dev, clkname); |
| if (IS_ERR(fsl_edma->muxclk[i])) { |
| dev_err(&pdev->dev, "Missing DMAMUX block clock.\n"); |
| return PTR_ERR(fsl_edma->muxclk[i]); |
| } |
| |
| ret = clk_prepare_enable(fsl_edma->muxclk[i]); |
| if (ret) { |
| dev_err(&pdev->dev, "DMAMUX clk block failed.\n"); |
| return ret; |
| } |
| |
| } |
| |
| ret = fsl_edma_irq_init(pdev, fsl_edma); |
| if (ret) |
| return ret; |
| |
| fsl_edma->big_endian = of_property_read_bool(np, "big-endian"); |
| |
| INIT_LIST_HEAD(&fsl_edma->dma_dev.channels); |
| for (i = 0; i < fsl_edma->n_chans; i++) { |
| struct fsl_edma_chan *fsl_chan = &fsl_edma->chans[i]; |
| |
| fsl_chan->edma = fsl_edma; |
| |
| fsl_chan->vchan.desc_free = fsl_edma_free_desc; |
| vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev); |
| |
| edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i)); |
| fsl_edma_chan_mux(fsl_chan, 0, false); |
| } |
| |
| dma_cap_set(DMA_PRIVATE, fsl_edma->dma_dev.cap_mask); |
| dma_cap_set(DMA_SLAVE, fsl_edma->dma_dev.cap_mask); |
| dma_cap_set(DMA_CYCLIC, fsl_edma->dma_dev.cap_mask); |
| |
| fsl_edma->dma_dev.dev = &pdev->dev; |
| fsl_edma->dma_dev.device_alloc_chan_resources |
| = fsl_edma_alloc_chan_resources; |
| fsl_edma->dma_dev.device_free_chan_resources |
| = fsl_edma_free_chan_resources; |
| fsl_edma->dma_dev.device_tx_status = fsl_edma_tx_status; |
| fsl_edma->dma_dev.device_prep_slave_sg = fsl_edma_prep_slave_sg; |
| fsl_edma->dma_dev.device_prep_dma_cyclic = fsl_edma_prep_dma_cyclic; |
| fsl_edma->dma_dev.device_control = fsl_edma_control; |
| fsl_edma->dma_dev.device_issue_pending = fsl_edma_issue_pending; |
| fsl_edma->dma_dev.device_slave_caps = fsl_dma_device_slave_caps; |
| |
| platform_set_drvdata(pdev, fsl_edma); |
| |
| ret = dma_async_device_register(&fsl_edma->dma_dev); |
| if (ret) { |
| dev_err(&pdev->dev, "Can't register Freescale eDMA engine.\n"); |
| return ret; |
| } |
| |
| ret = of_dma_controller_register(np, fsl_edma_xlate, fsl_edma); |
| if (ret) { |
| dev_err(&pdev->dev, "Can't register Freescale eDMA of_dma.\n"); |
| dma_async_device_unregister(&fsl_edma->dma_dev); |
| return ret; |
| } |
| |
| /* enable round robin arbitration */ |
| edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, fsl_edma->membase + EDMA_CR); |
| |
| return 0; |
| } |
| |
| static int fsl_edma_remove(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct fsl_edma_engine *fsl_edma = platform_get_drvdata(pdev); |
| int i; |
| |
| of_dma_controller_free(np); |
| dma_async_device_unregister(&fsl_edma->dma_dev); |
| |
| for (i = 0; i < DMAMUX_NR; i++) |
| clk_disable_unprepare(fsl_edma->muxclk[i]); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id fsl_edma_dt_ids[] = { |
| { .compatible = "fsl,vf610-edma", }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, fsl_edma_dt_ids); |
| |
| static struct platform_driver fsl_edma_driver = { |
| .driver = { |
| .name = "fsl-edma", |
| .of_match_table = fsl_edma_dt_ids, |
| }, |
| .probe = fsl_edma_probe, |
| .remove = fsl_edma_remove, |
| }; |
| |
| static int __init fsl_edma_init(void) |
| { |
| return platform_driver_register(&fsl_edma_driver); |
| } |
| subsys_initcall(fsl_edma_init); |
| |
| static void __exit fsl_edma_exit(void) |
| { |
| platform_driver_unregister(&fsl_edma_driver); |
| } |
| module_exit(fsl_edma_exit); |
| |
| MODULE_ALIAS("platform:fsl-edma"); |
| MODULE_DESCRIPTION("Freescale eDMA engine driver"); |
| MODULE_LICENSE("GPL v2"); |