blob: 6cd47b75286f98d8cf8220378cca4aa32610f6dd [file] [log] [blame]
/*
* IOMMU API for ARM architected SMMU implementations.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) 2013 ARM Limited
*
* Author: Will Deacon <will.deacon@arm.com>
*
* This driver currently supports:
* - SMMUv1 and v2 implementations
* - Stream-matching and stream-indexing
* - v7/v8 long-descriptor format
* - Non-secure access to the SMMU
* - 4k and 64k pages, with contiguous pte hints.
* - Up to 48-bit addressing (dependent on VA_BITS)
* - Context fault reporting
*/
#define pr_fmt(fmt) "arm-smmu: " fmt
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/amba/bus.h>
#include <asm/pgalloc.h>
/* Maximum number of stream IDs assigned to a single device */
#define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS
/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS 128
/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS 128
/* SMMU global address space */
#define ARM_SMMU_GR0(smmu) ((smmu)->base)
#define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
/*
* SMMU global address space with conditional offset to access secure
* aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
* nsGFSYNR0: 0x450)
*/
#define ARM_SMMU_GR0_NS(smmu) \
((smmu)->base + \
((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
? 0x400 : 0))
/* Page table bits */
#define ARM_SMMU_PTE_XN (((pteval_t)3) << 53)
#define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
#define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
#define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
#define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
#define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
#define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
#if PAGE_SIZE == SZ_4K
#define ARM_SMMU_PTE_CONT_ENTRIES 16
#elif PAGE_SIZE == SZ_64K
#define ARM_SMMU_PTE_CONT_ENTRIES 32
#else
#define ARM_SMMU_PTE_CONT_ENTRIES 1
#endif
#define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
#define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
/* Stage-1 PTE */
#define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
#define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
#define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
#define ARM_SMMU_PTE_nG (((pteval_t)1) << 11)
/* Stage-2 PTE */
#define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
#define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
#define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
#define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
#define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
#define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0 0x0
#define sCR0_CLIENTPD (1 << 0)
#define sCR0_GFRE (1 << 1)
#define sCR0_GFIE (1 << 2)
#define sCR0_GCFGFRE (1 << 4)
#define sCR0_GCFGFIE (1 << 5)
#define sCR0_USFCFG (1 << 10)
#define sCR0_VMIDPNE (1 << 11)
#define sCR0_PTM (1 << 12)
#define sCR0_FB (1 << 13)
#define sCR0_BSU_SHIFT 14
#define sCR0_BSU_MASK 0x3
/* Identification registers */
#define ARM_SMMU_GR0_ID0 0x20
#define ARM_SMMU_GR0_ID1 0x24
#define ARM_SMMU_GR0_ID2 0x28
#define ARM_SMMU_GR0_ID3 0x2c
#define ARM_SMMU_GR0_ID4 0x30
#define ARM_SMMU_GR0_ID5 0x34
#define ARM_SMMU_GR0_ID6 0x38
#define ARM_SMMU_GR0_ID7 0x3c
#define ARM_SMMU_GR0_sGFSR 0x48
#define ARM_SMMU_GR0_sGFSYNR0 0x50
#define ARM_SMMU_GR0_sGFSYNR1 0x54
#define ARM_SMMU_GR0_sGFSYNR2 0x58
#define ARM_SMMU_GR0_PIDR0 0xfe0
#define ARM_SMMU_GR0_PIDR1 0xfe4
#define ARM_SMMU_GR0_PIDR2 0xfe8
#define ID0_S1TS (1 << 30)
#define ID0_S2TS (1 << 29)
#define ID0_NTS (1 << 28)
#define ID0_SMS (1 << 27)
#define ID0_PTFS_SHIFT 24
#define ID0_PTFS_MASK 0x2
#define ID0_PTFS_V8_ONLY 0x2
#define ID0_CTTW (1 << 14)
#define ID0_NUMIRPT_SHIFT 16
#define ID0_NUMIRPT_MASK 0xff
#define ID0_NUMSIDB_SHIFT 9
#define ID0_NUMSIDB_MASK 0xf
#define ID0_NUMSMRG_SHIFT 0
#define ID0_NUMSMRG_MASK 0xff
#define ID1_PAGESIZE (1 << 31)
#define ID1_NUMPAGENDXB_SHIFT 28
#define ID1_NUMPAGENDXB_MASK 7
#define ID1_NUMS2CB_SHIFT 16
#define ID1_NUMS2CB_MASK 0xff
#define ID1_NUMCB_SHIFT 0
#define ID1_NUMCB_MASK 0xff
#define ID2_OAS_SHIFT 4
#define ID2_OAS_MASK 0xf
#define ID2_IAS_SHIFT 0
#define ID2_IAS_MASK 0xf
#define ID2_UBS_SHIFT 8
#define ID2_UBS_MASK 0xf
#define ID2_PTFS_4K (1 << 12)
#define ID2_PTFS_16K (1 << 13)
#define ID2_PTFS_64K (1 << 14)
#define PIDR2_ARCH_SHIFT 4
#define PIDR2_ARCH_MASK 0xf
/* Global TLB invalidation */
#define ARM_SMMU_GR0_STLBIALL 0x60
#define ARM_SMMU_GR0_TLBIVMID 0x64
#define ARM_SMMU_GR0_TLBIALLNSNH 0x68
#define ARM_SMMU_GR0_TLBIALLH 0x6c
#define ARM_SMMU_GR0_sTLBGSYNC 0x70
#define ARM_SMMU_GR0_sTLBGSTATUS 0x74
#define sTLBGSTATUS_GSACTIVE (1 << 0)
#define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
#define SMR_VALID (1 << 31)
#define SMR_MASK_SHIFT 16
#define SMR_MASK_MASK 0x7fff
#define SMR_ID_SHIFT 0
#define SMR_ID_MASK 0x7fff
#define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT 0
#define S2CR_CBNDX_MASK 0xff
#define S2CR_TYPE_SHIFT 16
#define S2CR_TYPE_MASK 0x3
#define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT 0
#define CBAR_VMID_MASK 0xff
#define CBAR_S1_BPSHCFG_SHIFT 8
#define CBAR_S1_BPSHCFG_MASK 3
#define CBAR_S1_BPSHCFG_NSH 3
#define CBAR_S1_MEMATTR_SHIFT 12
#define CBAR_S1_MEMATTR_MASK 0xf
#define CBAR_S1_MEMATTR_WB 0xf
#define CBAR_TYPE_SHIFT 16
#define CBAR_TYPE_MASK 0x3
#define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT 24
#define CBAR_IRPTNDX_MASK 0xff
#define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT (0 << 0)
#define CBA2R_RW64_64BIT (1 << 0)
/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
#define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
#define ARM_SMMU_CB_SCTLR 0x0
#define ARM_SMMU_CB_RESUME 0x8
#define ARM_SMMU_CB_TTBCR2 0x10
#define ARM_SMMU_CB_TTBR0_LO 0x20
#define ARM_SMMU_CB_TTBR0_HI 0x24
#define ARM_SMMU_CB_TTBCR 0x30
#define ARM_SMMU_CB_S1_MAIR0 0x38
#define ARM_SMMU_CB_FSR 0x58
#define ARM_SMMU_CB_FAR_LO 0x60
#define ARM_SMMU_CB_FAR_HI 0x64
#define ARM_SMMU_CB_FSYNR0 0x68
#define ARM_SMMU_CB_S1_TLBIASID 0x610
#define SCTLR_S1_ASIDPNE (1 << 12)
#define SCTLR_CFCFG (1 << 7)
#define SCTLR_CFIE (1 << 6)
#define SCTLR_CFRE (1 << 5)
#define SCTLR_E (1 << 4)
#define SCTLR_AFE (1 << 2)
#define SCTLR_TRE (1 << 1)
#define SCTLR_M (1 << 0)
#define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
#define RESUME_RETRY (0 << 0)
#define RESUME_TERMINATE (1 << 0)
#define TTBCR_EAE (1 << 31)
#define TTBCR_PASIZE_SHIFT 16
#define TTBCR_PASIZE_MASK 0x7
#define TTBCR_TG0_4K (0 << 14)
#define TTBCR_TG0_64K (1 << 14)
#define TTBCR_SH0_SHIFT 12
#define TTBCR_SH0_MASK 0x3
#define TTBCR_SH_NS 0
#define TTBCR_SH_OS 2
#define TTBCR_SH_IS 3
#define TTBCR_ORGN0_SHIFT 10
#define TTBCR_IRGN0_SHIFT 8
#define TTBCR_RGN_MASK 0x3
#define TTBCR_RGN_NC 0
#define TTBCR_RGN_WBWA 1
#define TTBCR_RGN_WT 2
#define TTBCR_RGN_WB 3
#define TTBCR_SL0_SHIFT 6
#define TTBCR_SL0_MASK 0x3
#define TTBCR_SL0_LVL_2 0
#define TTBCR_SL0_LVL_1 1
#define TTBCR_T1SZ_SHIFT 16
#define TTBCR_T0SZ_SHIFT 0
#define TTBCR_SZ_MASK 0xf
#define TTBCR2_SEP_SHIFT 15
#define TTBCR2_SEP_MASK 0x7
#define TTBCR2_PASIZE_SHIFT 0
#define TTBCR2_PASIZE_MASK 0x7
/* Common definitions for PASize and SEP fields */
#define TTBCR2_ADDR_32 0
#define TTBCR2_ADDR_36 1
#define TTBCR2_ADDR_40 2
#define TTBCR2_ADDR_42 3
#define TTBCR2_ADDR_44 4
#define TTBCR2_ADDR_48 5
#define TTBRn_HI_ASID_SHIFT 16
#define MAIR_ATTR_SHIFT(n) ((n) << 3)
#define MAIR_ATTR_MASK 0xff
#define MAIR_ATTR_DEVICE 0x04
#define MAIR_ATTR_NC 0x44
#define MAIR_ATTR_WBRWA 0xff
#define MAIR_ATTR_IDX_NC 0
#define MAIR_ATTR_IDX_CACHE 1
#define MAIR_ATTR_IDX_DEV 2
#define FSR_MULTI (1 << 31)
#define FSR_SS (1 << 30)
#define FSR_UUT (1 << 8)
#define FSR_ASF (1 << 7)
#define FSR_TLBLKF (1 << 6)
#define FSR_TLBMCF (1 << 5)
#define FSR_EF (1 << 4)
#define FSR_PF (1 << 3)
#define FSR_AFF (1 << 2)
#define FSR_TF (1 << 1)
#define FSR_IGN (FSR_AFF | FSR_ASF | \
FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
#define FSYNR0_WNR (1 << 4)
static int force_stage;
module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(force_stage,
"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
enum arm_smmu_arch_version {
ARM_SMMU_V1 = 1,
ARM_SMMU_V2,
};
struct arm_smmu_smr {
u8 idx;
u16 mask;
u16 id;
};
struct arm_smmu_master_cfg {
int num_streamids;
u16 streamids[MAX_MASTER_STREAMIDS];
struct arm_smmu_smr *smrs;
};
struct arm_smmu_master {
struct device_node *of_node;
struct rb_node node;
struct arm_smmu_master_cfg cfg;
};
struct arm_smmu_device {
struct device *dev;
void __iomem *base;
unsigned long size;
unsigned long pgshift;
#define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
u32 features;
#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
u32 options;
enum arm_smmu_arch_version version;
u32 num_context_banks;
u32 num_s2_context_banks;
DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
atomic_t irptndx;
u32 num_mapping_groups;
DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
unsigned long s1_input_size;
unsigned long s1_output_size;
unsigned long s2_input_size;
unsigned long s2_output_size;
u32 num_global_irqs;
u32 num_context_irqs;
unsigned int *irqs;
struct list_head list;
struct rb_root masters;
};
struct arm_smmu_cfg {
u8 cbndx;
u8 irptndx;
u32 cbar;
pgd_t *pgd;
};
#define INVALID_IRPTNDX 0xff
#define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
enum arm_smmu_domain_stage {
ARM_SMMU_DOMAIN_S1 = 0,
ARM_SMMU_DOMAIN_S2,
ARM_SMMU_DOMAIN_NESTED,
};
struct arm_smmu_domain {
struct arm_smmu_device *smmu;
struct arm_smmu_cfg cfg;
enum arm_smmu_domain_stage stage;
spinlock_t lock;
};
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);
struct arm_smmu_option_prop {
u32 opt;
const char *prop;
};
static struct arm_smmu_option_prop arm_smmu_options[] = {
{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
{ 0, NULL},
};
static void parse_driver_options(struct arm_smmu_device *smmu)
{
int i = 0;
do {
if (of_property_read_bool(smmu->dev->of_node,
arm_smmu_options[i].prop)) {
smmu->options |= arm_smmu_options[i].opt;
dev_notice(smmu->dev, "option %s\n",
arm_smmu_options[i].prop);
}
} while (arm_smmu_options[++i].opt);
}
static struct device_node *dev_get_dev_node(struct device *dev)
{
if (dev_is_pci(dev)) {
struct pci_bus *bus = to_pci_dev(dev)->bus;
while (!pci_is_root_bus(bus))
bus = bus->parent;
return bus->bridge->parent->of_node;
}
return dev->of_node;
}
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
struct device_node *dev_node)
{
struct rb_node *node = smmu->masters.rb_node;
while (node) {
struct arm_smmu_master *master;
master = container_of(node, struct arm_smmu_master, node);
if (dev_node < master->of_node)
node = node->rb_left;
else if (dev_node > master->of_node)
node = node->rb_right;
else
return master;
}
return NULL;
}
static struct arm_smmu_master_cfg *
find_smmu_master_cfg(struct device *dev)
{
struct arm_smmu_master_cfg *cfg = NULL;
struct iommu_group *group = iommu_group_get(dev);
if (group) {
cfg = iommu_group_get_iommudata(group);
iommu_group_put(group);
}
return cfg;
}
static int insert_smmu_master(struct arm_smmu_device *smmu,
struct arm_smmu_master *master)
{
struct rb_node **new, *parent;
new = &smmu->masters.rb_node;
parent = NULL;
while (*new) {
struct arm_smmu_master *this
= container_of(*new, struct arm_smmu_master, node);
parent = *new;
if (master->of_node < this->of_node)
new = &((*new)->rb_left);
else if (master->of_node > this->of_node)
new = &((*new)->rb_right);
else
return -EEXIST;
}
rb_link_node(&master->node, parent, new);
rb_insert_color(&master->node, &smmu->masters);
return 0;
}
static int register_smmu_master(struct arm_smmu_device *smmu,
struct device *dev,
struct of_phandle_args *masterspec)
{
int i;
struct arm_smmu_master *master;
master = find_smmu_master(smmu, masterspec->np);
if (master) {
dev_err(dev,
"rejecting multiple registrations for master device %s\n",
masterspec->np->name);
return -EBUSY;
}
if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
dev_err(dev,
"reached maximum number (%d) of stream IDs for master device %s\n",
MAX_MASTER_STREAMIDS, masterspec->np->name);
return -ENOSPC;
}
master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
if (!master)
return -ENOMEM;
master->of_node = masterspec->np;
master->cfg.num_streamids = masterspec->args_count;
for (i = 0; i < master->cfg.num_streamids; ++i) {
u16 streamid = masterspec->args[i];
if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
(streamid >= smmu->num_mapping_groups)) {
dev_err(dev,
"stream ID for master device %s greater than maximum allowed (%d)\n",
masterspec->np->name, smmu->num_mapping_groups);
return -ERANGE;
}
master->cfg.streamids[i] = streamid;
}
return insert_smmu_master(smmu, master);
}
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
{
struct arm_smmu_device *smmu;
struct arm_smmu_master *master = NULL;
struct device_node *dev_node = dev_get_dev_node(dev);
spin_lock(&arm_smmu_devices_lock);
list_for_each_entry(smmu, &arm_smmu_devices, list) {
master = find_smmu_master(smmu, dev_node);
if (master)
break;
}
spin_unlock(&arm_smmu_devices_lock);
return master ? smmu : NULL;
}
static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
int idx;
do {
idx = find_next_zero_bit(map, end, start);
if (idx == end)
return -ENOSPC;
} while (test_and_set_bit(idx, map));
return idx;
}
static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
clear_bit(idx, map);
}
/* Wait for any pending TLB invalidations to complete */
static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{
int count = 0;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
& sTLBGSTATUS_GSACTIVE) {
cpu_relax();
if (++count == TLB_LOOP_TIMEOUT) {
dev_err_ratelimited(smmu->dev,
"TLB sync timed out -- SMMU may be deadlocked\n");
return;
}
udelay(1);
}
}
static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
{
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *base = ARM_SMMU_GR0(smmu);
bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
if (stage1) {
base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
writel_relaxed(ARM_SMMU_CB_ASID(cfg),
base + ARM_SMMU_CB_S1_TLBIASID);
} else {
base = ARM_SMMU_GR0(smmu);
writel_relaxed(ARM_SMMU_CB_VMID(cfg),
base + ARM_SMMU_GR0_TLBIVMID);
}
arm_smmu_tlb_sync(smmu);
}
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
int flags, ret;
u32 fsr, far, fsynr, resume;
unsigned long iova;
struct iommu_domain *domain = dev;
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *cb_base;
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
if (!(fsr & FSR_FAULT))
return IRQ_NONE;
if (fsr & FSR_IGN)
dev_err_ratelimited(smmu->dev,
"Unexpected context fault (fsr 0x%x)\n",
fsr);
fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
iova = far;
#ifdef CONFIG_64BIT
far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
iova |= ((unsigned long)far << 32);
#endif
if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
ret = IRQ_HANDLED;
resume = RESUME_RETRY;
} else {
dev_err_ratelimited(smmu->dev,
"Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
iova, fsynr, cfg->cbndx);
ret = IRQ_NONE;
resume = RESUME_TERMINATE;
}
/* Clear the faulting FSR */
writel(fsr, cb_base + ARM_SMMU_CB_FSR);
/* Retry or terminate any stalled transactions */
if (fsr & FSR_SS)
writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
return ret;
}
static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
struct arm_smmu_device *smmu = dev;
void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
if (!gfsr)
return IRQ_NONE;
dev_err_ratelimited(smmu->dev,
"Unexpected global fault, this could be serious\n");
dev_err_ratelimited(smmu->dev,
"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
gfsr, gfsynr0, gfsynr1, gfsynr2);
writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
return IRQ_HANDLED;
}
static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
size_t size)
{
unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
/* Ensure new page tables are visible to the hardware walker */
if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
dsb(ishst);
} else {
/*
* If the SMMU can't walk tables in the CPU caches, treat them
* like non-coherent DMA since we need to flush the new entries
* all the way out to memory. There's no possibility of
* recursion here as the SMMU table walker will not be wired
* through another SMMU.
*/
dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
DMA_TO_DEVICE);
}
}
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
{
u32 reg;
bool stage1;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *cb_base, *gr0_base, *gr1_base;
gr0_base = ARM_SMMU_GR0(smmu);
gr1_base = ARM_SMMU_GR1(smmu);
stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
/* CBAR */
reg = cfg->cbar;
if (smmu->version == ARM_SMMU_V1)
reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
/*
* Use the weakest shareability/memory types, so they are
* overridden by the ttbcr/pte.
*/
if (stage1) {
reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
} else {
reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
}
writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
if (smmu->version > ARM_SMMU_V1) {
/* CBA2R */
#ifdef CONFIG_64BIT
reg = CBA2R_RW64_64BIT;
#else
reg = CBA2R_RW64_32BIT;
#endif
writel_relaxed(reg,
gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
/* TTBCR2 */
switch (smmu->s1_input_size) {
case 32:
reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
break;
case 36:
reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
break;
case 39:
case 40:
reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
break;
case 42:
reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
break;
case 44:
reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
break;
case 48:
reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
break;
}
switch (smmu->s1_output_size) {
case 32:
reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
break;
case 36:
reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
break;
case 39:
case 40:
reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
break;
case 42:
reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
break;
case 44:
reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
break;
case 48:
reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
break;
}
if (stage1)
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
}
/* TTBR0 */
arm_smmu_flush_pgtable(smmu, cfg->pgd,
PTRS_PER_PGD * sizeof(pgd_t));
reg = __pa(cfg->pgd);
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
if (stage1)
reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
/*
* TTBCR
* We use long descriptor, with inner-shareable WBWA tables in TTBR0.
*/
if (smmu->version > ARM_SMMU_V1) {
if (PAGE_SIZE == SZ_4K)
reg = TTBCR_TG0_4K;
else
reg = TTBCR_TG0_64K;
if (!stage1) {
reg |= (64 - smmu->s2_input_size) << TTBCR_T0SZ_SHIFT;
switch (smmu->s2_output_size) {
case 32:
reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
break;
case 36:
reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
break;
case 40:
reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
break;
case 42:
reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
break;
case 44:
reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
break;
case 48:
reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
break;
}
} else {
reg |= (64 - smmu->s1_input_size) << TTBCR_T0SZ_SHIFT;
}
} else {
reg = 0;
}
reg |= TTBCR_EAE |
(TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
(TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
(TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);
if (!stage1)
reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
/* MAIR0 (stage-1 only) */
if (stage1) {
reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
(MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
(MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
}
/* SCTLR */
reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
if (stage1)
reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
reg |= SCTLR_E;
#endif
writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
}
static int arm_smmu_init_domain_context(struct iommu_domain *domain,
struct arm_smmu_device *smmu)
{
int irq, start, ret = 0;
unsigned long flags;
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
spin_lock_irqsave(&smmu_domain->lock, flags);
if (smmu_domain->smmu)
goto out_unlock;
/*
* Mapping the requested stage onto what we support is surprisingly
* complicated, mainly because the spec allows S1+S2 SMMUs without
* support for nested translation. That means we end up with the
* following table:
*
* Requested Supported Actual
* S1 N S1
* S1 S1+S2 S1
* S1 S2 S2
* S1 S1 S1
* N N N
* N S1+S2 S2
* N S2 S2
* N S1 S1
*
* Note that you can't actually request stage-2 mappings.
*/
if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
switch (smmu_domain->stage) {
case ARM_SMMU_DOMAIN_S1:
cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
start = smmu->num_s2_context_banks;
break;
case ARM_SMMU_DOMAIN_NESTED:
/*
* We will likely want to change this if/when KVM gets
* involved.
*/
case ARM_SMMU_DOMAIN_S2:
cfg->cbar = CBAR_TYPE_S2_TRANS;
start = 0;
break;
default:
ret = -EINVAL;
goto out_unlock;
}
ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
smmu->num_context_banks);
if (IS_ERR_VALUE(ret))
goto out_unlock;
cfg->cbndx = ret;
if (smmu->version == ARM_SMMU_V1) {
cfg->irptndx = atomic_inc_return(&smmu->irptndx);
cfg->irptndx %= smmu->num_context_irqs;
} else {
cfg->irptndx = cfg->cbndx;
}
ACCESS_ONCE(smmu_domain->smmu) = smmu;
arm_smmu_init_context_bank(smmu_domain);
spin_unlock_irqrestore(&smmu_domain->lock, flags);
irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
"arm-smmu-context-fault", domain);
if (IS_ERR_VALUE(ret)) {
dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
cfg->irptndx, irq);
cfg->irptndx = INVALID_IRPTNDX;
}
return 0;
out_unlock:
spin_unlock_irqrestore(&smmu_domain->lock, flags);
return ret;
}
static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
void __iomem *cb_base;
int irq;
if (!smmu)
return;
/* Disable the context bank and nuke the TLB before freeing it. */
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
arm_smmu_tlb_inv_context(smmu_domain);
if (cfg->irptndx != INVALID_IRPTNDX) {
irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
free_irq(irq, domain);
}
__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
}
static int arm_smmu_domain_init(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain;
pgd_t *pgd;
/*
* Allocate the domain and initialise some of its data structures.
* We can't really do anything meaningful until we've added a
* master.
*/
smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
if (!smmu_domain)
return -ENOMEM;
pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
if (!pgd)
goto out_free_domain;
smmu_domain->cfg.pgd = pgd;
spin_lock_init(&smmu_domain->lock);
domain->priv = smmu_domain;
return 0;
out_free_domain:
kfree(smmu_domain);
return -ENOMEM;
}
static void arm_smmu_free_ptes(pmd_t *pmd)
{
pgtable_t table = pmd_pgtable(*pmd);
__free_page(table);
}
static void arm_smmu_free_pmds(pud_t *pud)
{
int i;
pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
pmd = pmd_base;
for (i = 0; i < PTRS_PER_PMD; ++i) {
if (pmd_none(*pmd))
continue;
arm_smmu_free_ptes(pmd);
pmd++;
}
pmd_free(NULL, pmd_base);
}
static void arm_smmu_free_puds(pgd_t *pgd)
{
int i;
pud_t *pud, *pud_base = pud_offset(pgd, 0);
pud = pud_base;
for (i = 0; i < PTRS_PER_PUD; ++i) {
if (pud_none(*pud))
continue;
arm_smmu_free_pmds(pud);
pud++;
}
pud_free(NULL, pud_base);
}
static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
{
int i;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
pgd_t *pgd, *pgd_base = cfg->pgd;
/*
* Recursively free the page tables for this domain. We don't
* care about speculative TLB filling because the tables should
* not be active in any context bank at this point (SCTLR.M is 0).
*/
pgd = pgd_base;
for (i = 0; i < PTRS_PER_PGD; ++i) {
if (pgd_none(*pgd))
continue;
arm_smmu_free_puds(pgd);
pgd++;
}
kfree(pgd_base);
}
static void arm_smmu_domain_destroy(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
/*
* Free the domain resources. We assume that all devices have
* already been detached.
*/
arm_smmu_destroy_domain_context(domain);
arm_smmu_free_pgtables(smmu_domain);
kfree(smmu_domain);
}
static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
struct arm_smmu_master_cfg *cfg)
{
int i;
struct arm_smmu_smr *smrs;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
return 0;
if (cfg->smrs)
return -EEXIST;
smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
if (!smrs) {
dev_err(smmu->dev, "failed to allocate %d SMRs\n",
cfg->num_streamids);
return -ENOMEM;
}
/* Allocate the SMRs on the SMMU */
for (i = 0; i < cfg->num_streamids; ++i) {
int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
smmu->num_mapping_groups);
if (IS_ERR_VALUE(idx)) {
dev_err(smmu->dev, "failed to allocate free SMR\n");
goto err_free_smrs;
}
smrs[i] = (struct arm_smmu_smr) {
.idx = idx,
.mask = 0, /* We don't currently share SMRs */
.id = cfg->streamids[i],
};
}
/* It worked! Now, poke the actual hardware */
for (i = 0; i < cfg->num_streamids; ++i) {
u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
smrs[i].mask << SMR_MASK_SHIFT;
writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
}
cfg->smrs = smrs;
return 0;
err_free_smrs:
while (--i >= 0)
__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
kfree(smrs);
return -ENOSPC;
}
static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
struct arm_smmu_master_cfg *cfg)
{
int i;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
struct arm_smmu_smr *smrs = cfg->smrs;
if (!smrs)
return;
/* Invalidate the SMRs before freeing back to the allocator */
for (i = 0; i < cfg->num_streamids; ++i) {
u8 idx = smrs[i].idx;
writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
__arm_smmu_free_bitmap(smmu->smr_map, idx);
}
cfg->smrs = NULL;
kfree(smrs);
}
static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
struct arm_smmu_master_cfg *cfg)
{
int i, ret;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
/* Devices in an IOMMU group may already be configured */
ret = arm_smmu_master_configure_smrs(smmu, cfg);
if (ret)
return ret == -EEXIST ? 0 : ret;
for (i = 0; i < cfg->num_streamids; ++i) {
u32 idx, s2cr;
idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
s2cr = S2CR_TYPE_TRANS |
(smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
}
return 0;
}
static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
struct arm_smmu_master_cfg *cfg)
{
int i;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
/* An IOMMU group is torn down by the first device to be removed */
if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
return;
/*
* We *must* clear the S2CR first, because freeing the SMR means
* that it can be re-allocated immediately.
*/
for (i = 0; i < cfg->num_streamids; ++i) {
u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
writel_relaxed(S2CR_TYPE_BYPASS,
gr0_base + ARM_SMMU_GR0_S2CR(idx));
}
arm_smmu_master_free_smrs(smmu, cfg);
}
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
int ret;
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_device *smmu, *dom_smmu;
struct arm_smmu_master_cfg *cfg;
smmu = find_smmu_for_device(dev);
if (!smmu) {
dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
return -ENXIO;
}
if (dev->archdata.iommu) {
dev_err(dev, "already attached to IOMMU domain\n");
return -EEXIST;
}
/*
* Sanity check the domain. We don't support domains across
* different SMMUs.
*/
dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
if (!dom_smmu) {
/* Now that we have a master, we can finalise the domain */
ret = arm_smmu_init_domain_context(domain, smmu);
if (IS_ERR_VALUE(ret))
return ret;
dom_smmu = smmu_domain->smmu;
}
if (dom_smmu != smmu) {
dev_err(dev,
"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
return -EINVAL;
}
/* Looks ok, so add the device to the domain */
cfg = find_smmu_master_cfg(dev);
if (!cfg)
return -ENODEV;
ret = arm_smmu_domain_add_master(smmu_domain, cfg);
if (!ret)
dev->archdata.iommu = domain;
return ret;
}
static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_master_cfg *cfg;
cfg = find_smmu_master_cfg(dev);
if (!cfg)
return;
dev->archdata.iommu = NULL;
arm_smmu_domain_remove_master(smmu_domain, cfg);
}
static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
unsigned long end)
{
return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
(addr + ARM_SMMU_PTE_CONT_SIZE <= end);
}
static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
unsigned long addr, unsigned long end,
unsigned long pfn, int prot, int stage)
{
pte_t *pte, *start;
pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF;
if (pmd_none(*pmd)) {
/* Allocate a new set of tables */
pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
if (!table)
return -ENOMEM;
arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
pmd_populate(NULL, pmd, table);
arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
}
if (stage == 1) {
pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
pteval |= ARM_SMMU_PTE_AP_RDONLY;
if (prot & IOMMU_CACHE)
pteval |= (MAIR_ATTR_IDX_CACHE <<
ARM_SMMU_PTE_ATTRINDX_SHIFT);
} else {
pteval |= ARM_SMMU_PTE_HAP_FAULT;
if (prot & IOMMU_READ)
pteval |= ARM_SMMU_PTE_HAP_READ;
if (prot & IOMMU_WRITE)
pteval |= ARM_SMMU_PTE_HAP_WRITE;
if (prot & IOMMU_CACHE)
pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
else
pteval |= ARM_SMMU_PTE_MEMATTR_NC;
}
if (prot & IOMMU_NOEXEC)
pteval |= ARM_SMMU_PTE_XN;
/* If no access, create a faulting entry to avoid TLB fills */
if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
pteval &= ~ARM_SMMU_PTE_PAGE;
pteval |= ARM_SMMU_PTE_SH_IS;
start = pmd_page_vaddr(*pmd) + pte_index(addr);
pte = start;
/*
* Install the page table entries. This is fairly complicated
* since we attempt to make use of the contiguous hint in the
* ptes where possible. The contiguous hint indicates a series
* of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
* contiguous region with the following constraints:
*
* - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
* - Each pte in the region has the contiguous hint bit set
*
* This complicates unmapping (also handled by this code, when
* neither IOMMU_READ or IOMMU_WRITE are set) because it is
* possible, yet highly unlikely, that a client may unmap only
* part of a contiguous range. This requires clearing of the
* contiguous hint bits in the range before installing the new
* faulting entries.
*
* Note that re-mapping an address range without first unmapping
* it is not supported, so TLB invalidation is not required here
* and is instead performed at unmap and domain-init time.
*/
do {
int i = 1;
pteval &= ~ARM_SMMU_PTE_CONT;
if (arm_smmu_pte_is_contiguous_range(addr, end)) {
i = ARM_SMMU_PTE_CONT_ENTRIES;
pteval |= ARM_SMMU_PTE_CONT;
} else if (pte_val(*pte) &
(ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
int j;
pte_t *cont_start;
unsigned long idx = pte_index(addr);
idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
cont_start = pmd_page_vaddr(*pmd) + idx;
for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
pte_val(*(cont_start + j)) &=
~ARM_SMMU_PTE_CONT;
arm_smmu_flush_pgtable(smmu, cont_start,
sizeof(*pte) *
ARM_SMMU_PTE_CONT_ENTRIES);
}
do {
*pte = pfn_pte(pfn, __pgprot(pteval));
} while (pte++, pfn++, addr += PAGE_SIZE, --i);
} while (addr != end);
arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
return 0;
}
static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
unsigned long addr, unsigned long end,
phys_addr_t phys, int prot, int stage)
{
int ret;
pmd_t *pmd;
unsigned long next, pfn = __phys_to_pfn(phys);
#ifndef __PAGETABLE_PMD_FOLDED
if (pud_none(*pud)) {
pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
if (!pmd)
return -ENOMEM;
arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
pud_populate(NULL, pud, pmd);
arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
pmd += pmd_index(addr);
} else
#endif
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
prot, stage);
phys += next - addr;
pfn = __phys_to_pfn(phys);
} while (pmd++, addr = next, addr < end);
return ret;
}
static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
unsigned long addr, unsigned long end,
phys_addr_t phys, int prot, int stage)
{
int ret = 0;
pud_t *pud;
unsigned long next;
#ifndef __PAGETABLE_PUD_FOLDED
if (pgd_none(*pgd)) {
pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
if (!pud)
return -ENOMEM;
arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
pgd_populate(NULL, pgd, pud);
arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
pud += pud_index(addr);
} else
#endif
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
prot, stage);
phys += next - addr;
} while (pud++, addr = next, addr < end);
return ret;
}
static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
unsigned long iova, phys_addr_t paddr,
size_t size, int prot)
{
int ret, stage;
unsigned long end;
phys_addr_t input_mask, output_mask;
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
pgd_t *pgd = cfg->pgd;
unsigned long flags;
if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
stage = 2;
input_mask = (1ULL << smmu->s2_input_size) - 1;
output_mask = (1ULL << smmu->s2_output_size) - 1;
} else {
stage = 1;
input_mask = (1ULL << smmu->s1_input_size) - 1;
output_mask = (1ULL << smmu->s1_output_size) - 1;
}
if (!pgd)
return -EINVAL;
if (size & ~PAGE_MASK)
return -EINVAL;
if ((phys_addr_t)iova & ~input_mask)
return -ERANGE;
if (paddr & ~output_mask)
return -ERANGE;
spin_lock_irqsave(&smmu_domain->lock, flags);
pgd += pgd_index(iova);
end = iova + size;
do {
unsigned long next = pgd_addr_end(iova, end);
ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
prot, stage);
if (ret)
goto out_unlock;
paddr += next - iova;
iova = next;
} while (pgd++, iova != end);
out_unlock:
spin_unlock_irqrestore(&smmu_domain->lock, flags);
return ret;
}
static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
phys_addr_t paddr, size_t size, int prot)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
if (!smmu_domain)
return -ENODEV;
return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
}
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
size_t size)
{
int ret;
struct arm_smmu_domain *smmu_domain = domain->priv;
ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
arm_smmu_tlb_inv_context(smmu_domain);
return ret ? 0 : size;
}
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova)
{
pgd_t *pgdp, pgd;
pud_t pud;
pmd_t pmd;
pte_t pte;
struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
pgdp = cfg->pgd;
if (!pgdp)
return 0;
pgd = *(pgdp + pgd_index(iova));
if (pgd_none(pgd))
return 0;
pud = *pud_offset(&pgd, iova);
if (pud_none(pud))
return 0;
pmd = *pmd_offset(&pud, iova);
if (pmd_none(pmd))
return 0;
pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
if (pte_none(pte))
return 0;
return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
}
static bool arm_smmu_capable(enum iommu_cap cap)
{
switch (cap) {
case IOMMU_CAP_CACHE_COHERENCY:
/*
* Return true here as the SMMU can always send out coherent
* requests.
*/
return true;
case IOMMU_CAP_INTR_REMAP:
return true; /* MSIs are just memory writes */
case IOMMU_CAP_NOEXEC:
return true;
default:
return false;
}
}
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
*((u16 *)data) = alias;
return 0; /* Continue walking */
}
static void __arm_smmu_release_pci_iommudata(void *data)
{
kfree(data);
}
static int arm_smmu_add_device(struct device *dev)
{
struct arm_smmu_device *smmu;
struct arm_smmu_master_cfg *cfg;
struct iommu_group *group;
void (*releasefn)(void *) = NULL;
int ret;
smmu = find_smmu_for_device(dev);
if (!smmu)
return -ENODEV;
group = iommu_group_alloc();
if (IS_ERR(group)) {
dev_err(dev, "Failed to allocate IOMMU group\n");
return PTR_ERR(group);
}
if (dev_is_pci(dev)) {
struct pci_dev *pdev = to_pci_dev(dev);
cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
if (!cfg) {
ret = -ENOMEM;
goto out_put_group;
}
cfg->num_streamids = 1;
/*
* Assume Stream ID == Requester ID for now.
* We need a way to describe the ID mappings in FDT.
*/
pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
&cfg->streamids[0]);
releasefn = __arm_smmu_release_pci_iommudata;
} else {
struct arm_smmu_master *master;
master = find_smmu_master(smmu, dev->of_node);
if (!master) {
ret = -ENODEV;
goto out_put_group;
}
cfg = &master->cfg;
}
iommu_group_set_iommudata(group, cfg, releasefn);
ret = iommu_group_add_device(group, dev);
out_put_group:
iommu_group_put(group);
return ret;
}
static void arm_smmu_remove_device(struct device *dev)
{
iommu_group_remove_device(dev);
}
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
enum iommu_attr attr, void *data)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
switch (attr) {
case DOMAIN_ATTR_NESTING:
*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
return 0;
default:
return -ENODEV;
}
}
static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
enum iommu_attr attr, void *data)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
switch (attr) {
case DOMAIN_ATTR_NESTING:
if (smmu_domain->smmu)
return -EPERM;
if (*(int *)data)
smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
else
smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
return 0;
default:
return -ENODEV;
}
}
static const struct iommu_ops arm_smmu_ops = {
.capable = arm_smmu_capable,
.domain_init = arm_smmu_domain_init,
.domain_destroy = arm_smmu_domain_destroy,
.attach_dev = arm_smmu_attach_dev,
.detach_dev = arm_smmu_detach_dev,
.map = arm_smmu_map,
.unmap = arm_smmu_unmap,
.map_sg = default_iommu_map_sg,
.iova_to_phys = arm_smmu_iova_to_phys,
.add_device = arm_smmu_add_device,
.remove_device = arm_smmu_remove_device,
.domain_get_attr = arm_smmu_domain_get_attr,
.domain_set_attr = arm_smmu_domain_set_attr,
.pgsize_bitmap = (SECTION_SIZE |
ARM_SMMU_PTE_CONT_SIZE |
PAGE_SIZE),
};
static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
void __iomem *cb_base;
int i = 0;
u32 reg;
/* clear global FSR */
reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
/* Mark all SMRn as invalid and all S2CRn as bypass */
for (i = 0; i < smmu->num_mapping_groups; ++i) {
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
writel_relaxed(S2CR_TYPE_BYPASS,
gr0_base + ARM_SMMU_GR0_S2CR(i));
}
/* Make sure all context banks are disabled and clear CB_FSR */
for (i = 0; i < smmu->num_context_banks; ++i) {
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
}
/* Invalidate the TLB, just in case */
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
/* Enable fault reporting */
reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
/* Disable TLB broadcasting. */
reg |= (sCR0_VMIDPNE | sCR0_PTM);
/* Enable client access, but bypass when no mapping is found */
reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
/* Disable forced broadcasting */
reg &= ~sCR0_FB;
/* Don't upgrade barriers */
reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
/* Push the button */
arm_smmu_tlb_sync(smmu);
writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
}
static int arm_smmu_id_size_to_bits(int size)
{
switch (size) {
case 0:
return 32;
case 1:
return 36;
case 2:
return 40;
case 3:
return 42;
case 4:
return 44;
case 5:
default:
return 48;
}
}
static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
unsigned long size;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
u32 id;
dev_notice(smmu->dev, "probing hardware configuration...\n");
dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
/* ID0 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
#ifndef CONFIG_64BIT
if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
dev_err(smmu->dev, "\tno v7 descriptor support!\n");
return -ENODEV;
}
#endif
/* Restrict available stages based on module parameter */
if (force_stage == 1)
id &= ~(ID0_S2TS | ID0_NTS);
else if (force_stage == 2)
id &= ~(ID0_S1TS | ID0_NTS);
if (id & ID0_S1TS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
dev_notice(smmu->dev, "\tstage 1 translation\n");
}
if (id & ID0_S2TS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
dev_notice(smmu->dev, "\tstage 2 translation\n");
}
if (id & ID0_NTS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
dev_notice(smmu->dev, "\tnested translation\n");
}
if (!(smmu->features &
(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
dev_err(smmu->dev, "\tno translation support!\n");
return -ENODEV;
}
if (id & ID0_CTTW) {
smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
dev_notice(smmu->dev, "\tcoherent table walk\n");
}
if (id & ID0_SMS) {
u32 smr, sid, mask;
smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
ID0_NUMSMRG_MASK;
if (smmu->num_mapping_groups == 0) {
dev_err(smmu->dev,
"stream-matching supported, but no SMRs present!\n");
return -ENODEV;
}
smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
if ((mask & sid) != sid) {
dev_err(smmu->dev,
"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
mask, sid);
return -ENODEV;
}
dev_notice(smmu->dev,
"\tstream matching with %u register groups, mask 0x%x",
smmu->num_mapping_groups, mask);
} else {
smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
ID0_NUMSIDB_MASK;
}
/* ID1 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
/* Check for size mismatch of SMMU address space from mapped region */
size = 1 <<
(((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
size *= 2 << smmu->pgshift;
if (smmu->size != size)
dev_warn(smmu->dev,
"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
size, smmu->size);
smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
ID1_NUMS2CB_MASK;
smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
if (smmu->num_s2_context_banks > smmu->num_context_banks) {
dev_err(smmu->dev, "impossible number of S2 context banks!\n");
return -ENODEV;
}
dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
smmu->num_context_banks, smmu->num_s2_context_banks);
/* ID2 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
/* Stage-2 input size limited due to pgd allocation (PTRS_PER_PGD) */
#ifdef CONFIG_64BIT
smmu->s2_input_size = min_t(unsigned long, VA_BITS, size);
#else
smmu->s2_input_size = min(32UL, size);
#endif
/* The stage-2 output mask is also applied for bypass */
size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
if (smmu->version == ARM_SMMU_V1) {
smmu->s1_input_size = 32;
} else {
#ifdef CONFIG_64BIT
size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
#else
size = 32;
#endif
smmu->s1_input_size = size;
if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
(PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
(PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
PAGE_SIZE);
return -ENODEV;
}
}
if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
smmu->s1_input_size, smmu->s1_output_size);
if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
smmu->s2_input_size, smmu->s2_output_size);
return 0;
}
static const struct of_device_id arm_smmu_of_match[] = {
{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id;
struct resource *res;
struct arm_smmu_device *smmu;
struct device *dev = &pdev->dev;
struct rb_node *node;
struct of_phandle_args masterspec;
int num_irqs, i, err;
smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
if (!smmu) {
dev_err(dev, "failed to allocate arm_smmu_device\n");
return -ENOMEM;
}
smmu->dev = dev;
of_id = of_match_node(arm_smmu_of_match, dev->of_node);
smmu->version = (enum arm_smmu_arch_version)of_id->data;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
smmu->base = devm_ioremap_resource(dev, res);
if (IS_ERR(smmu->base))
return PTR_ERR(smmu->base);
smmu->size = resource_size(res);
if (of_property_read_u32(dev->of_node, "#global-interrupts",
&smmu->num_global_irqs)) {
dev_err(dev, "missing #global-interrupts property\n");
return -ENODEV;
}
num_irqs = 0;
while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
num_irqs++;
if (num_irqs > smmu->num_global_irqs)
smmu->num_context_irqs++;
}
if (!smmu->num_context_irqs) {
dev_err(dev, "found %d interrupts but expected at least %d\n",
num_irqs, smmu->num_global_irqs + 1);
return -ENODEV;
}
smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
GFP_KERNEL);
if (!smmu->irqs) {
dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
return -ENOMEM;
}
for (i = 0; i < num_irqs; ++i) {
int irq = platform_get_irq(pdev, i);
if (irq < 0) {
dev_err(dev, "failed to get irq index %d\n", i);
return -ENODEV;
}
smmu->irqs[i] = irq;
}
err = arm_smmu_device_cfg_probe(smmu);
if (err)
return err;
i = 0;
smmu->masters = RB_ROOT;
while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
"#stream-id-cells", i,
&masterspec)) {
err = register_smmu_master(smmu, dev, &masterspec);
if (err) {
dev_err(dev, "failed to add master %s\n",
masterspec.np->name);
goto out_put_masters;
}
i++;
}
dev_notice(dev, "registered %d master devices\n", i);
parse_driver_options(smmu);
if (smmu->version > ARM_SMMU_V1 &&
smmu->num_context_banks != smmu->num_context_irqs) {
dev_err(dev,
"found only %d context interrupt(s) but %d required\n",
smmu->num_context_irqs, smmu->num_context_banks);
err = -ENODEV;
goto out_put_masters;
}
for (i = 0; i < smmu->num_global_irqs; ++i) {
err = request_irq(smmu->irqs[i],
arm_smmu_global_fault,
IRQF_SHARED,
"arm-smmu global fault",
smmu);
if (err) {
dev_err(dev, "failed to request global IRQ %d (%u)\n",
i, smmu->irqs[i]);
goto out_free_irqs;
}
}
INIT_LIST_HEAD(&smmu->list);
spin_lock(&arm_smmu_devices_lock);
list_add(&smmu->list, &arm_smmu_devices);
spin_unlock(&arm_smmu_devices_lock);
arm_smmu_device_reset(smmu);
return 0;
out_free_irqs:
while (i--)
free_irq(smmu->irqs[i], smmu);
out_put_masters:
for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
struct arm_smmu_master *master
= container_of(node, struct arm_smmu_master, node);
of_node_put(master->of_node);
}
return err;
}
static int arm_smmu_device_remove(struct platform_device *pdev)
{
int i;
struct device *dev = &pdev->dev;
struct arm_smmu_device *curr, *smmu = NULL;
struct rb_node *node;
spin_lock(&arm_smmu_devices_lock);
list_for_each_entry(curr, &arm_smmu_devices, list) {
if (curr->dev == dev) {
smmu = curr;
list_del(&smmu->list);
break;
}
}
spin_unlock(&arm_smmu_devices_lock);
if (!smmu)
return -ENODEV;
for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
struct arm_smmu_master *master
= container_of(node, struct arm_smmu_master, node);
of_node_put(master->of_node);
}
if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
dev_err(dev, "removing device with active domains!\n");
for (i = 0; i < smmu->num_global_irqs; ++i)
free_irq(smmu->irqs[i], smmu);
/* Turn the thing off */
writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
return 0;
}
static struct platform_driver arm_smmu_driver = {
.driver = {
.name = "arm-smmu",
.of_match_table = of_match_ptr(arm_smmu_of_match),
},
.probe = arm_smmu_device_dt_probe,
.remove = arm_smmu_device_remove,
};
static int __init arm_smmu_init(void)
{
struct device_node *np;
int ret;
/*
* Play nice with systems that don't have an ARM SMMU by checking that
* an ARM SMMU exists in the system before proceeding with the driver
* and IOMMU bus operation registration.
*/
np = of_find_matching_node(NULL, arm_smmu_of_match);
if (!np)
return 0;
of_node_put(np);
ret = platform_driver_register(&arm_smmu_driver);
if (ret)
return ret;
/* Oh, for a proper bus abstraction */
if (!iommu_present(&platform_bus_type))
bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
#ifdef CONFIG_ARM_AMBA
if (!iommu_present(&amba_bustype))
bus_set_iommu(&amba_bustype, &arm_smmu_ops);
#endif
#ifdef CONFIG_PCI
if (!iommu_present(&pci_bus_type))
bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif
return 0;
}
static void __exit arm_smmu_exit(void)
{
return platform_driver_unregister(&arm_smmu_driver);
}
subsys_initcall(arm_smmu_init);
module_exit(arm_smmu_exit);
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");