blob: 382a3dd029d748eb7540a539b2b934de0d7e57d4 [file] [log] [blame]
/*
* Synaptics DSX touchscreen driver
*
* Copyright (C) 2012-2015 Synaptics Incorporated. All rights reserved.
*
* Copyright (C) 2012 Alexandra Chin <alexandra.chin@tw.synaptics.com>
* Copyright (C) 2012 Scott Lin <scott.lin@tw.synaptics.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS," AND SYNAPTICS
* EXPRESSLY DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
* AND ANY WARRANTIES OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS.
* IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION
* WITH THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, HOWEVER CAUSED
* AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE. IF A TRIBUNAL OF COMPETENT JURISDICTION DOES
* NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS'
* TOTAL CUMULATIVE LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED U.S.
* DOLLARS.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/types.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <linux/input/synaptics_dsx_v2_6.h>
#include "synaptics_dsx_core.h"
#define SPI_READ 0x80
#define SPI_WRITE 0x00
#ifdef CONFIG_OF
static int parse_dt(struct device *dev, struct synaptics_dsx_board_data *bdata)
{
int retval;
u32 value;
const char *name;
struct property *prop;
struct device_node *np = dev->of_node;
bdata->irq_gpio = of_get_named_gpio_flags(np,
"synaptics,irq-gpio", 0,
(enum of_gpio_flags *)&bdata->irq_flags);
retval = of_property_read_u32(np, "synaptics,irq-on-state",
&value);
if (retval < 0)
bdata->irq_on_state = 0;
else
bdata->irq_on_state = value;
retval = of_property_read_string(np, "synaptics,pwr-reg-name", &name);
if (retval < 0)
bdata->pwr_reg_name = NULL;
else
bdata->pwr_reg_name = name;
retval = of_property_read_string(np, "synaptics,bus-reg-name", &name);
if (retval < 0)
bdata->bus_reg_name = NULL;
else
bdata->bus_reg_name = name;
prop = of_find_property(np, "synaptics,power-gpio", NULL);
if (prop && prop->length) {
bdata->power_gpio = of_get_named_gpio_flags(np,
"synaptics,power-gpio", 0, NULL);
retval = of_property_read_u32(np, "synaptics,power-on-state",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,power-on-state property\n",
__func__);
return retval;
} else {
bdata->power_on_state = value;
}
} else {
bdata->power_gpio = -1;
}
prop = of_find_property(np, "synaptics,power-delay-ms", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,power-delay-ms",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,power-delay-ms property\n",
__func__);
return retval;
} else {
bdata->power_delay_ms = value;
}
} else {
bdata->power_delay_ms = 0;
}
prop = of_find_property(np, "synaptics,reset-gpio", NULL);
if (prop && prop->length) {
bdata->reset_gpio = of_get_named_gpio_flags(np,
"synaptics,reset-gpio", 0, NULL);
retval = of_property_read_u32(np, "synaptics,reset-on-state",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,reset-on-state property\n",
__func__);
return retval;
} else {
bdata->reset_on_state = value;
}
retval = of_property_read_u32(np, "synaptics,reset-active-ms",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,reset-active-ms property\n",
__func__);
return retval;
} else {
bdata->reset_active_ms = value;
}
} else {
bdata->reset_gpio = -1;
}
prop = of_find_property(np, "synaptics,reset-delay-ms", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,reset-delay-ms",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,reset-delay-ms property\n",
__func__);
return retval;
} else {
bdata->reset_delay_ms = value;
}
} else {
bdata->reset_delay_ms = 0;
}
prop = of_find_property(np, "synaptics,byte-delay-us", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,byte-delay-us",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,byte-delay-us property\n",
__func__);
return retval;
} else {
bdata->byte_delay_us = value;
}
} else {
bdata->byte_delay_us = 0;
}
prop = of_find_property(np, "synaptics,block-delay-us", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,block-delay-us",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,block-delay-us property\n",
__func__);
return retval;
} else {
bdata->block_delay_us = value;
}
} else {
bdata->block_delay_us = 0;
}
prop = of_find_property(np, "synaptics,max-y-for-2d", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,max-y-for-2d",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,max-y-for-2d property\n",
__func__);
return retval;
} else {
bdata->max_y_for_2d = value;
}
} else {
bdata->max_y_for_2d = -1;
}
prop = of_find_property(np, "synaptics,swap-axes", NULL);
bdata->swap_axes = prop > 0 ? true : false;
prop = of_find_property(np, "synaptics,x-flip", NULL);
bdata->x_flip = prop > 0 ? true : false;
prop = of_find_property(np, "synaptics,y-flip", NULL);
bdata->y_flip = prop > 0 ? true : false;
prop = of_find_property(np, "synaptics,ub-i2c-addr", NULL);
if (prop && prop->length) {
retval = of_property_read_u32(np, "synaptics,ub-i2c-addr",
&value);
if (retval < 0) {
dev_err(dev, "%s: Unable to read synaptics,ub-i2c-addr property\n",
__func__);
return retval;
} else {
bdata->ub_i2c_addr = (unsigned short)value;
}
} else {
bdata->ub_i2c_addr = -1;
}
prop = of_find_property(np, "synaptics,cap-button-codes", NULL);
if (prop && prop->length) {
bdata->cap_button_map->map = devm_kzalloc(dev,
prop->length,
GFP_KERNEL);
if (!bdata->cap_button_map->map)
return -ENOMEM;
bdata->cap_button_map->nbuttons = prop->length / sizeof(u32);
retval = of_property_read_u32_array(np,
"synaptics,cap-button-codes",
bdata->cap_button_map->map,
bdata->cap_button_map->nbuttons);
if (retval < 0) {
bdata->cap_button_map->nbuttons = 0;
bdata->cap_button_map->map = NULL;
}
} else {
bdata->cap_button_map->nbuttons = 0;
bdata->cap_button_map->map = NULL;
}
prop = of_find_property(np, "synaptics,vir-button-codes", NULL);
if (prop && prop->length) {
bdata->vir_button_map->map = devm_kzalloc(dev,
prop->length,
GFP_KERNEL);
if (!bdata->vir_button_map->map)
return -ENOMEM;
bdata->vir_button_map->nbuttons = prop->length / sizeof(u32);
bdata->vir_button_map->nbuttons /= 5;
retval = of_property_read_u32_array(np,
"synaptics,vir-button-codes",
bdata->vir_button_map->map,
bdata->vir_button_map->nbuttons * 5);
if (retval < 0) {
bdata->vir_button_map->nbuttons = 0;
bdata->vir_button_map->map = NULL;
}
} else {
bdata->vir_button_map->nbuttons = 0;
bdata->vir_button_map->map = NULL;
}
return 0;
}
#endif
static int synaptics_rmi4_spi_set_page(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr)
{
int retval;
unsigned int index;
unsigned int xfer_count = PAGE_SELECT_LEN + 1;
unsigned char txbuf[xfer_count];
unsigned char page;
struct spi_message msg;
struct spi_transfer xfers[xfer_count];
struct spi_device *spi = to_spi_device(rmi4_data->pdev->dev.parent);
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
page = ((addr >> 8) & ~MASK_7BIT);
if (page != rmi4_data->current_page) {
spi_message_init(&msg);
txbuf[0] = SPI_WRITE;
txbuf[1] = MASK_8BIT;
txbuf[2] = page;
for (index = 0; index < xfer_count; index++) {
memset(&xfers[index], 0, sizeof(struct spi_transfer));
xfers[index].len = 1;
xfers[index].delay_usecs = bdata->byte_delay_us;
xfers[index].tx_buf = &txbuf[index];
spi_message_add_tail(&xfers[index], &msg);
}
if (bdata->block_delay_us)
xfers[index - 1].delay_usecs = bdata->block_delay_us;
retval = spi_sync(spi, &msg);
if (retval == 0) {
rmi4_data->current_page = page;
retval = PAGE_SELECT_LEN;
} else {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to complete SPI transfer, error = %d\n",
__func__, retval);
}
} else {
retval = PAGE_SELECT_LEN;
}
return retval;
}
static int synaptics_rmi4_spi_read(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data, unsigned short length)
{
int retval;
unsigned int index;
unsigned int xfer_count = length + ADDRESS_WORD_LEN;
unsigned char txbuf[ADDRESS_WORD_LEN];
unsigned char *rxbuf = NULL;
struct spi_message msg;
struct spi_transfer *xfers = NULL;
struct spi_device *spi = to_spi_device(rmi4_data->pdev->dev.parent);
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
spi_message_init(&msg);
xfers = kcalloc(xfer_count, sizeof(struct spi_transfer), GFP_KERNEL);
if (!xfers) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to allocate memory for xfers\n",
__func__);
retval = -ENOMEM;
goto exit;
}
txbuf[0] = (addr >> 8) | SPI_READ;
txbuf[1] = addr & MASK_8BIT;
rxbuf = kmalloc(length, GFP_KERNEL);
if (!rxbuf) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to allocate memory for rxbuf\n",
__func__);
retval = -ENOMEM;
goto exit;
}
mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
retval = synaptics_rmi4_spi_set_page(rmi4_data, addr);
if (retval != PAGE_SELECT_LEN) {
mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
retval = -EIO;
goto exit;
}
for (index = 0; index < xfer_count; index++) {
xfers[index].len = 1;
xfers[index].delay_usecs = bdata->byte_delay_us;
if (index < ADDRESS_WORD_LEN)
xfers[index].tx_buf = &txbuf[index];
else
xfers[index].rx_buf = &rxbuf[index - ADDRESS_WORD_LEN];
spi_message_add_tail(&xfers[index], &msg);
}
if (bdata->block_delay_us)
xfers[index - 1].delay_usecs = bdata->block_delay_us;
retval = spi_sync(spi, &msg);
if (retval == 0) {
retval = secure_memcpy(data, length, rxbuf, length, length);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to copy data\n",
__func__);
} else {
retval = length;
}
} else {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to complete SPI transfer, error = %d\n",
__func__, retval);
}
mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
exit:
kfree(rxbuf);
kfree(xfers);
return retval;
}
static int synaptics_rmi4_spi_write(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data, unsigned short length)
{
int retval;
unsigned int index;
unsigned int xfer_count = length + ADDRESS_WORD_LEN;
unsigned char *txbuf = NULL;
struct spi_message msg;
struct spi_transfer *xfers = NULL;
struct spi_device *spi = to_spi_device(rmi4_data->pdev->dev.parent);
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
spi_message_init(&msg);
xfers = kcalloc(xfer_count, sizeof(struct spi_transfer), GFP_KERNEL);
if (!xfers) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to allocate memory for xfers\n",
__func__);
retval = -ENOMEM;
goto exit;
}
txbuf = kmalloc(xfer_count, GFP_KERNEL);
if (!txbuf) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to allocate memory for txbuf\n",
__func__);
retval = -ENOMEM;
goto exit;
}
txbuf[0] = (addr >> 8) & ~SPI_READ;
txbuf[1] = addr & MASK_8BIT;
retval = secure_memcpy(&txbuf[ADDRESS_WORD_LEN],
xfer_count - ADDRESS_WORD_LEN, data, length, length);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to copy data\n",
__func__);
goto exit;
}
mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
retval = synaptics_rmi4_spi_set_page(rmi4_data, addr);
if (retval != PAGE_SELECT_LEN) {
mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
retval = -EIO;
goto exit;
}
for (index = 0; index < xfer_count; index++) {
xfers[index].len = 1;
xfers[index].delay_usecs = bdata->byte_delay_us;
xfers[index].tx_buf = &txbuf[index];
spi_message_add_tail(&xfers[index], &msg);
}
if (bdata->block_delay_us)
xfers[index - 1].delay_usecs = bdata->block_delay_us;
retval = spi_sync(spi, &msg);
if (retval == 0) {
retval = length;
} else {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to complete SPI transfer, error = %d\n",
__func__, retval);
}
mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
exit:
kfree(txbuf);
kfree(xfers);
return retval;
}
static struct synaptics_dsx_bus_access bus_access = {
.type = BUS_SPI,
.read = synaptics_rmi4_spi_read,
.write = synaptics_rmi4_spi_write,
};
static struct synaptics_dsx_hw_interface hw_if;
static struct platform_device *synaptics_dsx_spi_device;
static void synaptics_rmi4_spi_dev_release(struct device *dev)
{
kfree(synaptics_dsx_spi_device);
return;
}
static int synaptics_rmi4_spi_probe(struct spi_device *spi)
{
int retval;
if (spi->master->flags & SPI_MASTER_HALF_DUPLEX) {
dev_err(&spi->dev,
"%s: Full duplex not supported by host\n",
__func__);
return -EIO;
}
synaptics_dsx_spi_device = kzalloc(
sizeof(struct platform_device),
GFP_KERNEL);
if (!synaptics_dsx_spi_device) {
dev_err(&spi->dev,
"%s: Failed to allocate memory for synaptics_dsx_spi_device\n",
__func__);
return -ENOMEM;
}
#ifdef CONFIG_OF
if (spi->dev.of_node) {
hw_if.board_data = devm_kzalloc(&spi->dev,
sizeof(struct synaptics_dsx_board_data),
GFP_KERNEL);
if (!hw_if.board_data) {
dev_err(&spi->dev,
"%s: Failed to allocate memory for board data\n",
__func__);
return -ENOMEM;
}
hw_if.board_data->cap_button_map = devm_kzalloc(&spi->dev,
sizeof(struct synaptics_dsx_button_map),
GFP_KERNEL);
if (!hw_if.board_data->cap_button_map) {
dev_err(&spi->dev,
"%s: Failed to allocate memory for 0D button map\n",
__func__);
return -ENOMEM;
}
hw_if.board_data->vir_button_map = devm_kzalloc(&spi->dev,
sizeof(struct synaptics_dsx_button_map),
GFP_KERNEL);
if (!hw_if.board_data->vir_button_map) {
dev_err(&spi->dev,
"%s: Failed to allocate memory for virtual button map\n",
__func__);
return -ENOMEM;
}
parse_dt(&spi->dev, hw_if.board_data);
}
#else
hw_if.board_data = spi->dev.platform_data;
#endif
hw_if.bus_access = &bus_access;
spi->bits_per_word = 8;
spi->mode = SPI_MODE_3;
retval = spi_setup(spi);
if (retval < 0) {
dev_err(&spi->dev,
"%s: Failed to perform SPI setup\n",
__func__);
return retval;
}
synaptics_dsx_spi_device->name = PLATFORM_DRIVER_NAME;
synaptics_dsx_spi_device->id = 0;
synaptics_dsx_spi_device->num_resources = 0;
synaptics_dsx_spi_device->dev.parent = &spi->dev;
synaptics_dsx_spi_device->dev.platform_data = &hw_if;
synaptics_dsx_spi_device->dev.release = synaptics_rmi4_spi_dev_release;
retval = platform_device_register(synaptics_dsx_spi_device);
if (retval) {
dev_err(&spi->dev,
"%s: Failed to register platform device\n",
__func__);
return -ENODEV;
}
return 0;
}
static int synaptics_rmi4_spi_remove(struct spi_device *spi)
{
platform_device_unregister(synaptics_dsx_spi_device);
return 0;
}
#ifdef CONFIG_OF
static struct of_device_id synaptics_rmi4_of_match_table[] = {
{
.compatible = "synaptics,dsx-spi",
},
{},
};
MODULE_DEVICE_TABLE(of, synaptics_rmi4_of_match_table);
#else
#define synaptics_rmi4_of_match_table NULL
#endif
static struct spi_driver synaptics_rmi4_spi_driver = {
.driver = {
.name = SPI_DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = synaptics_rmi4_of_match_table,
},
.probe = synaptics_rmi4_spi_probe,
.remove = synaptics_rmi4_spi_remove,
};
int synaptics_rmi4_bus_init_v26(void)
{
return spi_register_driver(&synaptics_rmi4_spi_driver);
}
EXPORT_SYMBOL(synaptics_rmi4_bus_init_v26);
void synaptics_rmi4_bus_exit_v26(void)
{
spi_unregister_driver(&synaptics_rmi4_spi_driver);
return;
}
EXPORT_SYMBOL(synaptics_rmi4_bus_exit_v26);
MODULE_AUTHOR("Synaptics, Inc.");
MODULE_DESCRIPTION("Synaptics DSX SPI Bus Support Module");
MODULE_LICENSE("GPL v2");