| /* |
| * linux/mm/mincore.c |
| * |
| * Copyright (C) 1994-2006 Linus Torvalds |
| */ |
| |
| /* |
| * The mincore() system call. |
| */ |
| #include <linux/slab.h> |
| #include <linux/pagemap.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/syscalls.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| |
| /* |
| * Later we can get more picky about what "in core" means precisely. |
| * For now, simply check to see if the page is in the page cache, |
| * and is up to date; i.e. that no page-in operation would be required |
| * at this time if an application were to map and access this page. |
| */ |
| static unsigned char mincore_page(struct address_space *mapping, pgoff_t pgoff) |
| { |
| unsigned char present = 0; |
| struct page *page; |
| |
| /* |
| * When tmpfs swaps out a page from a file, any process mapping that |
| * file will not get a swp_entry_t in its pte, but rather it is like |
| * any other file mapping (ie. marked !present and faulted in with |
| * tmpfs's .nopage). So swapped out tmpfs mappings are tested here. |
| * |
| * However when tmpfs moves the page from pagecache and into swapcache, |
| * it is still in core, but the find_get_page below won't find it. |
| * No big deal, but make a note of it. |
| */ |
| page = find_get_page(mapping, pgoff); |
| if (page) { |
| present = PageUptodate(page); |
| page_cache_release(page); |
| } |
| |
| return present; |
| } |
| |
| /* |
| * Do a chunk of "sys_mincore()". We've already checked |
| * all the arguments, we hold the mmap semaphore: we should |
| * just return the amount of info we're asked for. |
| */ |
| static long do_mincore(unsigned long addr, unsigned char *vec, unsigned long pages) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *ptep; |
| spinlock_t *ptl; |
| unsigned long nr; |
| int i; |
| pgoff_t pgoff; |
| struct vm_area_struct *vma = find_vma(current->mm, addr); |
| |
| /* |
| * find_vma() didn't find anything above us, or we're |
| * in an unmapped hole in the address space: ENOMEM. |
| */ |
| if (!vma || addr < vma->vm_start) |
| return -ENOMEM; |
| |
| /* |
| * Calculate how many pages there are left in the last level of the |
| * PTE array for our address. |
| */ |
| nr = PTRS_PER_PTE - ((addr >> PAGE_SHIFT) & (PTRS_PER_PTE-1)); |
| if (nr > pages) |
| nr = pages; |
| |
| pgd = pgd_offset(vma->vm_mm, addr); |
| if (pgd_none_or_clear_bad(pgd)) |
| goto none_mapped; |
| pud = pud_offset(pgd, addr); |
| if (pud_none_or_clear_bad(pud)) |
| goto none_mapped; |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none_or_clear_bad(pmd)) |
| goto none_mapped; |
| |
| ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| for (i = 0; i < nr; i++, ptep++, addr += PAGE_SIZE) { |
| unsigned char present; |
| pte_t pte = *ptep; |
| |
| if (pte_present(pte)) { |
| present = 1; |
| |
| } else if (pte_none(pte)) { |
| if (vma->vm_file) { |
| pgoff = linear_page_index(vma, addr); |
| present = mincore_page(vma->vm_file->f_mapping, |
| pgoff); |
| } else |
| present = 0; |
| |
| } else if (pte_file(pte)) { |
| pgoff = pte_to_pgoff(pte); |
| present = mincore_page(vma->vm_file->f_mapping, pgoff); |
| |
| } else { /* pte is a swap entry */ |
| swp_entry_t entry = pte_to_swp_entry(pte); |
| if (is_migration_entry(entry)) { |
| /* migration entries are always uptodate */ |
| present = 1; |
| } else { |
| pgoff = entry.val; |
| present = mincore_page(&swapper_space, pgoff); |
| } |
| } |
| } |
| pte_unmap_unlock(ptep-1, ptl); |
| |
| return nr; |
| |
| none_mapped: |
| if (vma->vm_file) { |
| pgoff = linear_page_index(vma, addr); |
| for (i = 0; i < nr; i++, pgoff++) |
| vec[i] = mincore_page(vma->vm_file->f_mapping, pgoff); |
| } |
| |
| return nr; |
| } |
| |
| /* |
| * The mincore(2) system call. |
| * |
| * mincore() returns the memory residency status of the pages in the |
| * current process's address space specified by [addr, addr + len). |
| * The status is returned in a vector of bytes. The least significant |
| * bit of each byte is 1 if the referenced page is in memory, otherwise |
| * it is zero. |
| * |
| * Because the status of a page can change after mincore() checks it |
| * but before it returns to the application, the returned vector may |
| * contain stale information. Only locked pages are guaranteed to |
| * remain in memory. |
| * |
| * return values: |
| * zero - success |
| * -EFAULT - vec points to an illegal address |
| * -EINVAL - addr is not a multiple of PAGE_CACHE_SIZE |
| * -ENOMEM - Addresses in the range [addr, addr + len] are |
| * invalid for the address space of this process, or |
| * specify one or more pages which are not currently |
| * mapped |
| * -EAGAIN - A kernel resource was temporarily unavailable. |
| */ |
| asmlinkage long sys_mincore(unsigned long start, size_t len, |
| unsigned char __user * vec) |
| { |
| long retval; |
| unsigned long pages; |
| unsigned char *tmp; |
| |
| /* Check the start address: needs to be page-aligned.. */ |
| if (start & ~PAGE_CACHE_MASK) |
| return -EINVAL; |
| |
| /* ..and we need to be passed a valid user-space range */ |
| if (!access_ok(VERIFY_READ, (void __user *) start, len)) |
| return -ENOMEM; |
| |
| /* This also avoids any overflows on PAGE_CACHE_ALIGN */ |
| pages = len >> PAGE_SHIFT; |
| pages += (len & ~PAGE_MASK) != 0; |
| |
| if (!access_ok(VERIFY_WRITE, vec, pages)) |
| return -EFAULT; |
| |
| tmp = (void *) __get_free_page(GFP_USER); |
| if (!tmp) |
| return -EAGAIN; |
| |
| retval = 0; |
| while (pages) { |
| /* |
| * Do at most PAGE_SIZE entries per iteration, due to |
| * the temporary buffer size. |
| */ |
| down_read(¤t->mm->mmap_sem); |
| retval = do_mincore(start, tmp, min(pages, PAGE_SIZE)); |
| up_read(¤t->mm->mmap_sem); |
| |
| if (retval <= 0) |
| break; |
| if (copy_to_user(vec, tmp, retval)) { |
| retval = -EFAULT; |
| break; |
| } |
| pages -= retval; |
| vec += retval; |
| start += retval << PAGE_SHIFT; |
| retval = 0; |
| } |
| free_page((unsigned long) tmp); |
| return retval; |
| } |