blob: ae0bc99d573e17f6c54ee5c7fd31bd2f1c7f6dcc [file] [log] [blame]
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 1992-1999,2001-2004 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef _ASM_IA64_SN_ADDRS_H
#define _ASM_IA64_SN_ADDRS_H
#include <asm/percpu.h>
#include <asm/sn/types.h>
#include <asm/sn/arch.h>
#include <asm/sn/pda.h>
/*
* Memory/SHUB Address Format:
* +-+---------+--+--------------+
* |0| NASID |AS| NodeOffset |
* +-+---------+--+--------------+
*
* NASID: (low NASID bit is 0) Memory and SHUB MMRs
* AS: 2-bit Address Space Identifier. Used only if low NASID bit is 0
* 00: Local Resources and MMR space
* Top bit of NodeOffset
* 0: Local resources space
* node id:
* 0: IA64/NT compatibility space
* 2: Local MMR Space
* 4: Local memory, regardless of local node id
* 1: Global MMR space
* 01: GET space.
* 10: AMO space.
* 11: Cacheable memory space.
*
* NodeOffset: byte offset
*
*
* TIO address format:
* +-+----------+--+--------------+
* |0| NASID |AS| Nodeoffset |
* +-+----------+--+--------------+
*
* NASID: (low NASID bit is 1) TIO
* AS: 2-bit Chiplet Identifier
* 00: TIO LB (Indicates TIO MMR access.)
* 01: TIO ICE (indicates coretalk space access.)
*
* NodeOffset: top bit must be set.
*
*
* Note that in both of the above address formats, the low
* NASID bit indicates if the reference is to the SHUB or TIO MMRs.
*/
/*
* Define basic shift & mask constants for manipulating NASIDs and AS values.
*/
#define NASID_BITMASK (sn_hub_info->nasid_bitmask)
#define NASID_SHIFT (sn_hub_info->nasid_shift)
#define AS_SHIFT (sn_hub_info->as_shift)
#define AS_BITMASK 0x3UL
#define NASID_MASK ((u64)NASID_BITMASK << NASID_SHIFT)
#define AS_MASK ((u64)AS_BITMASK << AS_SHIFT)
#define REGION_BITS 0xe000000000000000UL
/*
* AS values. These are the same on both SHUB1 & SHUB2.
*/
#define AS_GET_VAL 1UL
#define AS_AMO_VAL 2UL
#define AS_CAC_VAL 3UL
#define AS_GET_SPACE (AS_GET_VAL << AS_SHIFT)
#define AS_AMO_SPACE (AS_AMO_VAL << AS_SHIFT)
#define AS_CAC_SPACE (AS_CAC_VAL << AS_SHIFT)
/*
* Base addresses for various address ranges.
*/
#define CACHED 0xe000000000000000UL
#define UNCACHED 0xc000000000000000UL
#define UNCACHED_PHYS 0x8000000000000000UL
/*
* Virtual Mode Local & Global MMR space.
*/
#define SH1_LOCAL_MMR_OFFSET 0x8000000000UL
#define SH2_LOCAL_MMR_OFFSET 0x0200000000UL
#define LOCAL_MMR_OFFSET (is_shub2() ? SH2_LOCAL_MMR_OFFSET : SH1_LOCAL_MMR_OFFSET)
#define LOCAL_MMR_SPACE (UNCACHED | LOCAL_MMR_OFFSET)
#define LOCAL_PHYS_MMR_SPACE (UNCACHED_PHYS | LOCAL_MMR_OFFSET)
#define SH1_GLOBAL_MMR_OFFSET 0x0800000000UL
#define SH2_GLOBAL_MMR_OFFSET 0x0300000000UL
#define GLOBAL_MMR_OFFSET (is_shub2() ? SH2_GLOBAL_MMR_OFFSET : SH1_GLOBAL_MMR_OFFSET)
#define GLOBAL_MMR_SPACE (UNCACHED | GLOBAL_MMR_OFFSET)
/*
* Physical mode addresses
*/
#define GLOBAL_PHYS_MMR_SPACE (UNCACHED_PHYS | GLOBAL_MMR_OFFSET)
/*
* Clear region & AS bits.
*/
#define TO_PHYS_MASK (~(REGION_BITS | AS_MASK))
/*
* Misc NASID manipulation.
*/
#define NASID_SPACE(n) ((u64)(n) << NASID_SHIFT)
#define REMOTE_ADDR(n,a) (NASID_SPACE(n) | (a))
#define NODE_OFFSET(x) ((x) & (NODE_ADDRSPACE_SIZE - 1))
#define NODE_ADDRSPACE_SIZE (1UL << AS_SHIFT)
#define NASID_GET(x) (int) (((u64) (x) >> NASID_SHIFT) & NASID_BITMASK)
#define LOCAL_MMR_ADDR(a) (LOCAL_MMR_SPACE | (a))
#define GLOBAL_MMR_ADDR(n,a) (GLOBAL_MMR_SPACE | REMOTE_ADDR(n,a))
#define GLOBAL_MMR_PHYS_ADDR(n,a) (GLOBAL_PHYS_MMR_SPACE | REMOTE_ADDR(n,a))
#define GLOBAL_CAC_ADDR(n,a) (CAC_BASE | REMOTE_ADDR(n,a))
#define CHANGE_NASID(n,x) ((void *)(((u64)(x) & ~NASID_MASK) | NASID_SPACE(n)))
/* non-II mmr's start at top of big window space (4G) */
#define BWIN_TOP 0x0000000100000000UL
/*
* general address defines
*/
#define CAC_BASE (CACHED | AS_CAC_SPACE)
#define AMO_BASE (UNCACHED | AS_AMO_SPACE)
#define GET_BASE (CACHED | AS_GET_SPACE)
/*
* Convert Memory addresses between various addressing modes.
*/
#define TO_PHYS(x) (TO_PHYS_MASK & (x))
#define TO_CAC(x) (CAC_BASE | TO_PHYS(x))
#define TO_AMO(x) (AMO_BASE | TO_PHYS(x))
#define TO_GET(x) (GET_BASE | TO_PHYS(x))
/*
* Covert from processor physical address to II/TIO physical address:
* II - squeeze out the AS bits
* TIO- requires a chiplet id in bits 38-39. For DMA to memory,
* the chiplet id is zero. If we implement TIO-TIO dma, we might need
* to insert a chiplet id into this macro. However, it is our belief
* right now that this chiplet id will be ICE, which is also zero.
* Nasid starts on bit 40.
*/
#define PHYS_TO_TIODMA(x) ( (((u64)(NASID_GET(x))) << 40) | NODE_OFFSET(x))
#define PHYS_TO_DMA(x) ( (((u64)(x) & NASID_MASK) >> 2) | NODE_OFFSET(x))
/*
* The following definitions pertain to the IO special address
* space. They define the location of the big and little windows
* of any given node.
*/
#define BWIN_SIZE_BITS 29 /* big window size: 512M */
#define TIO_BWIN_SIZE_BITS 30 /* big window size: 1G */
#define NODE_SWIN_BASE(n, w) ((w == 0) ? NODE_BWIN_BASE((n), SWIN0_BIGWIN) \
: RAW_NODE_SWIN_BASE(n, w))
#define NODE_IO_BASE(n) (GLOBAL_MMR_SPACE | NASID_SPACE(n))
#define BWIN_SIZE (1UL << BWIN_SIZE_BITS)
#define NODE_BWIN_BASE0(n) (NODE_IO_BASE(n) + BWIN_SIZE)
#define NODE_BWIN_BASE(n, w) (NODE_BWIN_BASE0(n) + ((u64) (w) << BWIN_SIZE_BITS))
#define RAW_NODE_SWIN_BASE(n, w) (NODE_IO_BASE(n) + ((u64) (w) << SWIN_SIZE_BITS))
#define BWIN_WIDGET_MASK 0x7
#define BWIN_WINDOWNUM(x) (((x) >> BWIN_SIZE_BITS) & BWIN_WIDGET_MASK)
#define TIO_BWIN_WINDOW_SELECT_MASK 0x7
#define TIO_BWIN_WINDOWNUM(x) (((x) >> TIO_BWIN_SIZE_BITS) & TIO_BWIN_WINDOW_SELECT_MASK)
/*
* The following definitions pertain to the IO special address
* space. They define the location of the big and little windows
* of any given node.
*/
#define SWIN_SIZE_BITS 24
#define SWIN_WIDGET_MASK 0xF
#define TIO_SWIN_SIZE_BITS 28
#define TIO_SWIN_SIZE (1UL << TIO_SWIN_SIZE_BITS)
#define TIO_SWIN_WIDGET_MASK 0x3
/*
* Convert smallwindow address to xtalk address.
*
* 'addr' can be physical or virtual address, but will be converted
* to Xtalk address in the range 0 -> SWINZ_SIZEMASK
*/
#define SWIN_WIDGETNUM(x) (((x) >> SWIN_SIZE_BITS) & SWIN_WIDGET_MASK)
#define TIO_SWIN_WIDGETNUM(x) (((x) >> TIO_SWIN_SIZE_BITS) & TIO_SWIN_WIDGET_MASK)
/*
* The following macros produce the correct base virtual address for
* the hub registers. The REMOTE_HUB_* macro produce
* the address for the specified hub's registers. The intent is
* that the appropriate PI, MD, NI, or II register would be substituted
* for x.
*
* WARNING:
* When certain Hub chip workaround are defined, it's not sufficient
* to dereference the *_HUB_ADDR() macros. You should instead use
* HUB_L() and HUB_S() if you must deal with pointers to hub registers.
* Otherwise, the recommended approach is to use *_HUB_L() and *_HUB_S().
* They're always safe.
*/
#define REMOTE_HUB_ADDR(n,x) \
((n & 1) ? \
/* TIO: */ \
((volatile u64 *)(GLOBAL_MMR_ADDR(n,x))) \
: /* SHUB: */ \
(((x) & BWIN_TOP) ? ((volatile u64 *)(GLOBAL_MMR_ADDR(n,x)))\
: ((volatile u64 *)(NODE_SWIN_BASE(n,1) + 0x800000 + (x)))))
#define HUB_L(x) (*((volatile typeof(*x) *)x))
#define HUB_S(x,d) (*((volatile typeof(*x) *)x) = (d))
#define REMOTE_HUB_L(n, a) HUB_L(REMOTE_HUB_ADDR((n), (a)))
#define REMOTE_HUB_S(n, a, d) HUB_S(REMOTE_HUB_ADDR((n), (a)), (d))
#endif /* _ASM_IA64_SN_ADDRS_H */