blob: bd47521b24ec1fa336f0b0a952d2b41c39cc5dd6 [file] [log] [blame]
/******************************************************************************
AudioScience HPI driver
Copyright (C) 1997-2010 AudioScience Inc. <support@audioscience.com>
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation;
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
\file hpicmn.c
Common functions used by hpixxxx.c modules
(C) Copyright AudioScience Inc. 1998-2003
*******************************************************************************/
#define SOURCEFILE_NAME "hpicmn.c"
#include "hpi_internal.h"
#include "hpidebug.h"
#include "hpimsginit.h"
#include "hpicmn.h"
struct hpi_adapters_list {
struct hpios_spinlock list_lock;
struct hpi_adapter_obj adapter[HPI_MAX_ADAPTERS];
u16 gw_num_adapters;
};
static struct hpi_adapters_list adapters;
/**
* Given an HPI Message that was sent out and a response that was received,
* validate that the response has the correct fields filled in,
* i.e ObjectType, Function etc
**/
u16 hpi_validate_response(struct hpi_message *phm, struct hpi_response *phr)
{
if (phr->type != HPI_TYPE_RESPONSE) {
HPI_DEBUG_LOG(ERROR, "header type %d invalid\n", phr->type);
return HPI_ERROR_INVALID_RESPONSE;
}
if (phr->object != phm->object) {
HPI_DEBUG_LOG(ERROR, "header object %d invalid\n",
phr->object);
return HPI_ERROR_INVALID_RESPONSE;
}
if (phr->function != phm->function) {
HPI_DEBUG_LOG(ERROR, "header function %d invalid\n",
phr->function);
return HPI_ERROR_INVALID_RESPONSE;
}
return 0;
}
u16 hpi_add_adapter(struct hpi_adapter_obj *pao)
{
u16 retval = 0;
/*HPI_ASSERT(pao->wAdapterType); */
hpios_alistlock_lock(&adapters);
if (pao->index >= HPI_MAX_ADAPTERS) {
retval = HPI_ERROR_BAD_ADAPTER_NUMBER;
goto unlock;
}
if (adapters.adapter[pao->index].adapter_type) {
int a;
for (a = HPI_MAX_ADAPTERS - 1; a >= 0; a--) {
if (!adapters.adapter[a].adapter_type) {
HPI_DEBUG_LOG(WARNING,
"ASI%X duplicate index %d moved to %d\n",
pao->adapter_type, pao->index, a);
pao->index = a;
break;
}
}
if (a < 0) {
retval = HPI_ERROR_DUPLICATE_ADAPTER_NUMBER;
goto unlock;
}
}
adapters.adapter[pao->index] = *pao;
hpios_dsplock_init(&adapters.adapter[pao->index]);
adapters.gw_num_adapters++;
unlock:
hpios_alistlock_unlock(&adapters);
return retval;
}
void hpi_delete_adapter(struct hpi_adapter_obj *pao)
{
if (!pao->adapter_type) {
HPI_DEBUG_LOG(ERROR, "removing null adapter?\n");
return;
}
hpios_alistlock_lock(&adapters);
if (adapters.adapter[pao->index].adapter_type)
adapters.gw_num_adapters--;
memset(&adapters.adapter[pao->index], 0, sizeof(adapters.adapter[0]));
hpios_alistlock_unlock(&adapters);
}
/**
* FindAdapter returns a pointer to the struct hpi_adapter_obj with
* index wAdapterIndex in an HPI_ADAPTERS_LIST structure.
*
*/
struct hpi_adapter_obj *hpi_find_adapter(u16 adapter_index)
{
struct hpi_adapter_obj *pao = NULL;
if (adapter_index >= HPI_MAX_ADAPTERS) {
HPI_DEBUG_LOG(VERBOSE, "find_adapter invalid index %d\n",
adapter_index);
return NULL;
}
pao = &adapters.adapter[adapter_index];
if (pao->adapter_type != 0) {
/*
HPI_DEBUG_LOG(VERBOSE, "Found adapter index %d\n",
wAdapterIndex);
*/
return pao;
} else {
/*
HPI_DEBUG_LOG(VERBOSE, "No adapter index %d\n",
wAdapterIndex);
*/
return NULL;
}
}
/**
*
* wipe an HPI_ADAPTERS_LIST structure.
*
**/
static void wipe_adapter_list(void)
{
memset(&adapters, 0, sizeof(adapters));
}
static void subsys_get_adapter(struct hpi_message *phm,
struct hpi_response *phr)
{
int count = phm->obj_index;
u16 index = 0;
/* find the nCount'th nonzero adapter in array */
for (index = 0; index < HPI_MAX_ADAPTERS; index++) {
if (adapters.adapter[index].adapter_type) {
if (!count)
break;
count--;
}
}
if (index < HPI_MAX_ADAPTERS) {
phr->u.s.adapter_index = adapters.adapter[index].index;
phr->u.s.adapter_type = adapters.adapter[index].adapter_type;
} else {
phr->u.s.adapter_index = 0;
phr->u.s.adapter_type = 0;
phr->error = HPI_ERROR_BAD_ADAPTER_NUMBER;
}
}
static unsigned int control_cache_alloc_check(struct hpi_control_cache *pC)
{
unsigned int i;
int cached = 0;
if (!pC)
return 0;
if (pC->init)
return pC->init;
if (!pC->p_cache)
return 0;
if (pC->control_count && pC->cache_size_in_bytes) {
char *p_master_cache;
unsigned int byte_count = 0;
p_master_cache = (char *)pC->p_cache;
HPI_DEBUG_LOG(DEBUG, "check %d controls\n",
pC->control_count);
for (i = 0; i < pC->control_count; i++) {
struct hpi_control_cache_info *info =
(struct hpi_control_cache_info *)
&p_master_cache[byte_count];
if (!info->size_in32bit_words) {
if (!i) {
HPI_DEBUG_LOG(INFO,
"adap %d cache not ready?\n",
pC->adap_idx);
return 0;
}
/* The cache is invalid.
* Minimum valid entry size is
* sizeof(struct hpi_control_cache_info)
*/
HPI_DEBUG_LOG(ERROR,
"adap %d zero size cache entry %d\n",
pC->adap_idx, i);
break;
}
if (info->control_type) {
pC->p_info[info->control_index] = info;
cached++;
} else { /* dummy cache entry */
pC->p_info[info->control_index] = NULL;
}
byte_count += info->size_in32bit_words * 4;
HPI_DEBUG_LOG(VERBOSE,
"cached %d, pinfo %p index %d type %d size %d\n",
cached, pC->p_info[info->control_index],
info->control_index, info->control_type,
info->size_in32bit_words);
/* quit loop early if whole cache has been scanned.
* dwControlCount is the maximum possible entries
* but some may be absent from the cache
*/
if (byte_count >= pC->cache_size_in_bytes)
break;
/* have seen last control index */
if (info->control_index == pC->control_count - 1)
break;
}
if (byte_count != pC->cache_size_in_bytes)
HPI_DEBUG_LOG(WARNING,
"adap %d bytecount %d != cache size %d\n",
pC->adap_idx, byte_count,
pC->cache_size_in_bytes);
else
HPI_DEBUG_LOG(DEBUG,
"adap %d cache good, bytecount == cache size = %d\n",
pC->adap_idx, byte_count);
pC->init = (u16)cached;
}
return pC->init;
}
/** Find a control.
*/
static short find_control(u16 control_index,
struct hpi_control_cache *p_cache, struct hpi_control_cache_info **pI)
{
if (!control_cache_alloc_check(p_cache)) {
HPI_DEBUG_LOG(VERBOSE,
"control_cache_alloc_check() failed %d\n",
control_index);
return 0;
}
*pI = p_cache->p_info[control_index];
if (!*pI) {
HPI_DEBUG_LOG(VERBOSE, "Uncached Control %d\n",
control_index);
return 0;
} else {
HPI_DEBUG_LOG(VERBOSE, "find_control() type %d\n",
(*pI)->control_type);
}
return 1;
}
/* allow unified treatment of several string fields within struct */
#define HPICMN_PAD_OFS_AND_SIZE(m) {\
offsetof(struct hpi_control_cache_pad, m), \
sizeof(((struct hpi_control_cache_pad *)(NULL))->m) }
struct pad_ofs_size {
unsigned int offset;
unsigned int field_size;
};
static const struct pad_ofs_size pad_desc[] = {
HPICMN_PAD_OFS_AND_SIZE(c_channel), /* HPI_PAD_CHANNEL_NAME */
HPICMN_PAD_OFS_AND_SIZE(c_artist), /* HPI_PAD_ARTIST */
HPICMN_PAD_OFS_AND_SIZE(c_title), /* HPI_PAD_TITLE */
HPICMN_PAD_OFS_AND_SIZE(c_comment), /* HPI_PAD_COMMENT */
};
/** CheckControlCache checks the cache and fills the struct hpi_response
* accordingly. It returns one if a cache hit occurred, zero otherwise.
*/
short hpi_check_control_cache(struct hpi_control_cache *p_cache,
struct hpi_message *phm, struct hpi_response *phr)
{
short found = 1;
struct hpi_control_cache_info *pI;
struct hpi_control_cache_single *pC;
size_t response_size;
if (!find_control(phm->obj_index, p_cache, &pI)) {
HPI_DEBUG_LOG(VERBOSE,
"HPICMN find_control() failed for adap %d\n",
phm->adapter_index);
return 0;
}
phr->error = 0;
/* set the default response size */
response_size =
sizeof(struct hpi_response_header) +
sizeof(struct hpi_control_res);
/* pC is the default cached control strucure. May be cast to
something else in the following switch statement.
*/
pC = (struct hpi_control_cache_single *)pI;
switch (pI->control_type) {
case HPI_CONTROL_METER:
if (phm->u.c.attribute == HPI_METER_PEAK) {
phr->u.c.an_log_value[0] = pC->u.meter.an_log_peak[0];
phr->u.c.an_log_value[1] = pC->u.meter.an_log_peak[1];
} else if (phm->u.c.attribute == HPI_METER_RMS) {
if (pC->u.meter.an_logRMS[0] ==
HPI_CACHE_INVALID_SHORT) {
phr->error =
HPI_ERROR_INVALID_CONTROL_ATTRIBUTE;
phr->u.c.an_log_value[0] = HPI_METER_MINIMUM;
phr->u.c.an_log_value[1] = HPI_METER_MINIMUM;
} else {
phr->u.c.an_log_value[0] =
pC->u.meter.an_logRMS[0];
phr->u.c.an_log_value[1] =
pC->u.meter.an_logRMS[1];
}
} else
found = 0;
break;
case HPI_CONTROL_VOLUME:
if (phm->u.c.attribute == HPI_VOLUME_GAIN) {
phr->u.c.an_log_value[0] = pC->u.vol.an_log[0];
phr->u.c.an_log_value[1] = pC->u.vol.an_log[1];
} else if (phm->u.c.attribute == HPI_VOLUME_MUTE) {
if (pC->u.vol.flags & HPI_VOLUME_FLAG_HAS_MUTE) {
if (pC->u.vol.flags & HPI_VOLUME_FLAG_MUTED)
phr->u.c.param1 =
HPI_BITMASK_ALL_CHANNELS;
else
phr->u.c.param1 = 0;
} else {
phr->error =
HPI_ERROR_INVALID_CONTROL_ATTRIBUTE;
phr->u.c.param1 = 0;
}
} else {
found = 0;
}
break;
case HPI_CONTROL_MULTIPLEXER:
if (phm->u.c.attribute == HPI_MULTIPLEXER_SOURCE) {
phr->u.c.param1 = pC->u.mux.source_node_type;
phr->u.c.param2 = pC->u.mux.source_node_index;
} else {
found = 0;
}
break;
case HPI_CONTROL_CHANNEL_MODE:
if (phm->u.c.attribute == HPI_CHANNEL_MODE_MODE)
phr->u.c.param1 = pC->u.mode.mode;
else
found = 0;
break;
case HPI_CONTROL_LEVEL:
if (phm->u.c.attribute == HPI_LEVEL_GAIN) {
phr->u.c.an_log_value[0] = pC->u.level.an_log[0];
phr->u.c.an_log_value[1] = pC->u.level.an_log[1];
} else
found = 0;
break;
case HPI_CONTROL_TUNER:
if (phm->u.c.attribute == HPI_TUNER_FREQ)
phr->u.c.param1 = pC->u.tuner.freq_ink_hz;
else if (phm->u.c.attribute == HPI_TUNER_BAND)
phr->u.c.param1 = pC->u.tuner.band;
else if (phm->u.c.attribute == HPI_TUNER_LEVEL_AVG)
if (pC->u.tuner.s_level_avg ==
HPI_CACHE_INVALID_SHORT) {
phr->u.cu.tuner.s_level = 0;
phr->error =
HPI_ERROR_INVALID_CONTROL_ATTRIBUTE;
} else
phr->u.cu.tuner.s_level =
pC->u.tuner.s_level_avg;
else
found = 0;
break;
case HPI_CONTROL_AESEBU_RECEIVER:
if (phm->u.c.attribute == HPI_AESEBURX_ERRORSTATUS)
phr->u.c.param1 = pC->u.aes3rx.error_status;
else if (phm->u.c.attribute == HPI_AESEBURX_FORMAT)
phr->u.c.param1 = pC->u.aes3rx.format;
else
found = 0;
break;
case HPI_CONTROL_AESEBU_TRANSMITTER:
if (phm->u.c.attribute == HPI_AESEBUTX_FORMAT)
phr->u.c.param1 = pC->u.aes3tx.format;
else
found = 0;
break;
case HPI_CONTROL_TONEDETECTOR:
if (phm->u.c.attribute == HPI_TONEDETECTOR_STATE)
phr->u.c.param1 = pC->u.tone.state;
else
found = 0;
break;
case HPI_CONTROL_SILENCEDETECTOR:
if (phm->u.c.attribute == HPI_SILENCEDETECTOR_STATE) {
phr->u.c.param1 = pC->u.silence.state;
} else
found = 0;
break;
case HPI_CONTROL_MICROPHONE:
if (phm->u.c.attribute == HPI_MICROPHONE_PHANTOM_POWER)
phr->u.c.param1 = pC->u.microphone.phantom_state;
else
found = 0;
break;
case HPI_CONTROL_SAMPLECLOCK:
if (phm->u.c.attribute == HPI_SAMPLECLOCK_SOURCE)
phr->u.c.param1 = pC->u.clk.source;
else if (phm->u.c.attribute == HPI_SAMPLECLOCK_SOURCE_INDEX) {
if (pC->u.clk.source_index ==
HPI_CACHE_INVALID_UINT16) {
phr->u.c.param1 = 0;
phr->error =
HPI_ERROR_INVALID_CONTROL_ATTRIBUTE;
} else
phr->u.c.param1 = pC->u.clk.source_index;
} else if (phm->u.c.attribute == HPI_SAMPLECLOCK_SAMPLERATE)
phr->u.c.param1 = pC->u.clk.sample_rate;
else
found = 0;
break;
case HPI_CONTROL_PAD:{
struct hpi_control_cache_pad *p_pad;
p_pad = (struct hpi_control_cache_pad *)pI;
if (!(p_pad->field_valid_flags & (1 <<
HPI_CTL_ATTR_INDEX(phm->u.c.
attribute)))) {
phr->error =
HPI_ERROR_INVALID_CONTROL_ATTRIBUTE;
break;
}
if (phm->u.c.attribute == HPI_PAD_PROGRAM_ID)
phr->u.c.param1 = p_pad->pI;
else if (phm->u.c.attribute == HPI_PAD_PROGRAM_TYPE)
phr->u.c.param1 = p_pad->pTY;
else {
unsigned int index =
HPI_CTL_ATTR_INDEX(phm->u.c.
attribute) - 1;
unsigned int offset = phm->u.c.param1;
unsigned int pad_string_len, field_size;
char *pad_string;
unsigned int tocopy;
if (index > ARRAY_SIZE(pad_desc) - 1) {
phr->error =
HPI_ERROR_INVALID_CONTROL_ATTRIBUTE;
break;
}
pad_string =
((char *)p_pad) +
pad_desc[index].offset;
field_size = pad_desc[index].field_size;
/* Ensure null terminator */
pad_string[field_size - 1] = 0;
pad_string_len = strlen(pad_string) + 1;
if (offset > pad_string_len) {
phr->error =
HPI_ERROR_INVALID_CONTROL_VALUE;
break;
}
tocopy = pad_string_len - offset;
if (tocopy > sizeof(phr->u.cu.chars8.sz_data))
tocopy = sizeof(phr->u.cu.chars8.
sz_data);
memcpy(phr->u.cu.chars8.sz_data,
&pad_string[offset], tocopy);
phr->u.cu.chars8.remaining_chars =
pad_string_len - offset - tocopy;
}
}
break;
default:
found = 0;
break;
}
HPI_DEBUG_LOG(VERBOSE, "%s Adap %d, Ctl %d, Type %d, Attr %d\n",
found ? "Cached" : "Uncached", phm->adapter_index,
pI->control_index, pI->control_type, phm->u.c.attribute);
if (found)
phr->size = (u16)response_size;
return found;
}
/** Updates the cache with Set values.
Only update if no error.
Volume and Level return the limited values in the response, so use these
Multiplexer does so use sent values
*/
void hpi_cmn_control_cache_sync_to_msg(struct hpi_control_cache *p_cache,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_control_cache_single *pC;
struct hpi_control_cache_info *pI;
if (phr->error)
return;
if (!find_control(phm->obj_index, p_cache, &pI)) {
HPI_DEBUG_LOG(VERBOSE,
"HPICMN find_control() failed for adap %d\n",
phm->adapter_index);
return;
}
/* pC is the default cached control strucure.
May be cast to something else in the following switch statement.
*/
pC = (struct hpi_control_cache_single *)pI;
switch (pI->control_type) {
case HPI_CONTROL_VOLUME:
if (phm->u.c.attribute == HPI_VOLUME_GAIN) {
pC->u.vol.an_log[0] = phr->u.c.an_log_value[0];
pC->u.vol.an_log[1] = phr->u.c.an_log_value[1];
} else if (phm->u.c.attribute == HPI_VOLUME_MUTE) {
if (phm->u.c.param1)
pC->u.vol.flags |= HPI_VOLUME_FLAG_MUTED;
else
pC->u.vol.flags &= ~HPI_VOLUME_FLAG_MUTED;
}
break;
case HPI_CONTROL_MULTIPLEXER:
/* mux does not return its setting on Set command. */
if (phm->u.c.attribute == HPI_MULTIPLEXER_SOURCE) {
pC->u.mux.source_node_type = (u16)phm->u.c.param1;
pC->u.mux.source_node_index = (u16)phm->u.c.param2;
}
break;
case HPI_CONTROL_CHANNEL_MODE:
/* mode does not return its setting on Set command. */
if (phm->u.c.attribute == HPI_CHANNEL_MODE_MODE)
pC->u.mode.mode = (u16)phm->u.c.param1;
break;
case HPI_CONTROL_LEVEL:
if (phm->u.c.attribute == HPI_LEVEL_GAIN) {
pC->u.vol.an_log[0] = phr->u.c.an_log_value[0];
pC->u.vol.an_log[1] = phr->u.c.an_log_value[1];
}
break;
case HPI_CONTROL_MICROPHONE:
if (phm->u.c.attribute == HPI_MICROPHONE_PHANTOM_POWER)
pC->u.microphone.phantom_state = (u16)phm->u.c.param1;
break;
case HPI_CONTROL_AESEBU_TRANSMITTER:
if (phm->u.c.attribute == HPI_AESEBUTX_FORMAT)
pC->u.aes3tx.format = phm->u.c.param1;
break;
case HPI_CONTROL_AESEBU_RECEIVER:
if (phm->u.c.attribute == HPI_AESEBURX_FORMAT)
pC->u.aes3rx.format = phm->u.c.param1;
break;
case HPI_CONTROL_SAMPLECLOCK:
if (phm->u.c.attribute == HPI_SAMPLECLOCK_SOURCE)
pC->u.clk.source = (u16)phm->u.c.param1;
else if (phm->u.c.attribute == HPI_SAMPLECLOCK_SOURCE_INDEX)
pC->u.clk.source_index = (u16)phm->u.c.param1;
else if (phm->u.c.attribute == HPI_SAMPLECLOCK_SAMPLERATE)
pC->u.clk.sample_rate = phm->u.c.param1;
break;
default:
break;
}
}
/** Allocate control cache.
\return Cache pointer, or NULL if allocation fails.
*/
struct hpi_control_cache *hpi_alloc_control_cache(const u32 control_count,
const u32 size_in_bytes, u8 *p_dsp_control_buffer)
{
struct hpi_control_cache *p_cache =
kmalloc(sizeof(*p_cache), GFP_KERNEL);
if (!p_cache)
return NULL;
p_cache->p_info = kzalloc(sizeof(*p_cache->p_info) * control_count,
GFP_KERNEL);
if (!p_cache->p_info) {
kfree(p_cache);
return NULL;
}
p_cache->cache_size_in_bytes = size_in_bytes;
p_cache->control_count = control_count;
p_cache->p_cache = p_dsp_control_buffer;
p_cache->init = 0;
return p_cache;
}
void hpi_free_control_cache(struct hpi_control_cache *p_cache)
{
if (p_cache) {
kfree(p_cache->p_info);
kfree(p_cache);
}
}
static void subsys_message(struct hpi_message *phm, struct hpi_response *phr)
{
hpi_init_response(phr, HPI_OBJ_SUBSYSTEM, phm->function, 0);
switch (phm->function) {
case HPI_SUBSYS_OPEN:
case HPI_SUBSYS_CLOSE:
case HPI_SUBSYS_DRIVER_UNLOAD:
break;
case HPI_SUBSYS_DRIVER_LOAD:
wipe_adapter_list();
hpios_alistlock_init(&adapters);
break;
case HPI_SUBSYS_GET_ADAPTER:
subsys_get_adapter(phm, phr);
break;
case HPI_SUBSYS_GET_NUM_ADAPTERS:
phr->u.s.num_adapters = adapters.gw_num_adapters;
break;
case HPI_SUBSYS_CREATE_ADAPTER:
break;
default:
phr->error = HPI_ERROR_INVALID_FUNC;
break;
}
}
void HPI_COMMON(struct hpi_message *phm, struct hpi_response *phr)
{
switch (phm->type) {
case HPI_TYPE_REQUEST:
switch (phm->object) {
case HPI_OBJ_SUBSYSTEM:
subsys_message(phm, phr);
break;
}
break;
default:
phr->error = HPI_ERROR_INVALID_TYPE;
break;
}
}