| /* |
| * Physical mapping layer for MTD using the Axis partitiontable format |
| * |
| * Copyright (c) 2001, 2002, 2003 Axis Communications AB |
| * |
| * This file is under the GPL. |
| * |
| * First partition is always sector 0 regardless of if we find a partitiontable |
| * or not. In the start of the next sector, there can be a partitiontable that |
| * tells us what other partitions to define. If there isn't, we use a default |
| * partition split defined below. |
| * |
| * Copy of os/lx25/arch/cris/arch-v10/drivers/axisflashmap.c 1.5 |
| * with minor changes. |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| |
| #include <linux/mtd/concat.h> |
| #include <linux/mtd/map.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/mtdram.h> |
| #include <linux/mtd/partitions.h> |
| |
| #include <asm/arch/hwregs/config_defs.h> |
| #include <asm/axisflashmap.h> |
| #include <asm/mmu.h> |
| |
| #define MEM_CSE0_SIZE (0x04000000) |
| #define MEM_CSE1_SIZE (0x04000000) |
| |
| #define FLASH_UNCACHED_ADDR KSEG_E |
| #define FLASH_CACHED_ADDR KSEG_F |
| |
| #if CONFIG_ETRAX_FLASH_BUSWIDTH==1 |
| #define flash_data __u8 |
| #elif CONFIG_ETRAX_FLASH_BUSWIDTH==2 |
| #define flash_data __u16 |
| #elif CONFIG_ETRAX_FLASH_BUSWIDTH==4 |
| #define flash_data __u16 |
| #endif |
| |
| /* From head.S */ |
| extern unsigned long romfs_start, romfs_length, romfs_in_flash; |
| |
| /* The master mtd for the entire flash. */ |
| struct mtd_info* axisflash_mtd = NULL; |
| |
| /* Map driver functions. */ |
| |
| static map_word flash_read(struct map_info *map, unsigned long ofs) |
| { |
| map_word tmp; |
| tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs); |
| return tmp; |
| } |
| |
| static void flash_copy_from(struct map_info *map, void *to, |
| unsigned long from, ssize_t len) |
| { |
| memcpy(to, (void *)(map->map_priv_1 + from), len); |
| } |
| |
| static void flash_write(struct map_info *map, map_word d, unsigned long adr) |
| { |
| *(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0]; |
| } |
| |
| /* |
| * The map for chip select e0. |
| * |
| * We run into tricky coherence situations if we mix cached with uncached |
| * accesses to we only use the uncached version here. |
| * |
| * The size field is the total size where the flash chips may be mapped on the |
| * chip select. MTD probes should find all devices there and it does not matter |
| * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD |
| * probes will ignore them. |
| * |
| * The start address in map_priv_1 is in virtual memory so we cannot use |
| * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start |
| * address of cse0. |
| */ |
| static struct map_info map_cse0 = { |
| .name = "cse0", |
| .size = MEM_CSE0_SIZE, |
| .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH, |
| .read = flash_read, |
| .copy_from = flash_copy_from, |
| .write = flash_write, |
| .map_priv_1 = FLASH_UNCACHED_ADDR |
| }; |
| |
| /* |
| * The map for chip select e1. |
| * |
| * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong |
| * address, but there isn't. |
| */ |
| static struct map_info map_cse1 = { |
| .name = "cse1", |
| .size = MEM_CSE1_SIZE, |
| .bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH, |
| .read = flash_read, |
| .copy_from = flash_copy_from, |
| .write = flash_write, |
| .map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE |
| }; |
| |
| /* If no partition-table was found, we use this default-set. */ |
| #define MAX_PARTITIONS 7 |
| #define NUM_DEFAULT_PARTITIONS 3 |
| |
| /* |
| * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the |
| * size of one flash block and "filesystem"-partition needs 5 blocks to be able |
| * to use JFFS. |
| */ |
| static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = { |
| { |
| .name = "boot firmware", |
| .size = CONFIG_ETRAX_PTABLE_SECTOR, |
| .offset = 0 |
| }, |
| { |
| .name = "kernel", |
| .size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR), |
| .offset = CONFIG_ETRAX_PTABLE_SECTOR |
| }, |
| { |
| .name = "filesystem", |
| .size = 5 * CONFIG_ETRAX_PTABLE_SECTOR, |
| .offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR) |
| } |
| }; |
| |
| /* Initialize the ones normally used. */ |
| static struct mtd_partition axis_partitions[MAX_PARTITIONS] = { |
| { |
| .name = "part0", |
| .size = CONFIG_ETRAX_PTABLE_SECTOR, |
| .offset = 0 |
| }, |
| { |
| .name = "part1", |
| .size = 0, |
| .offset = 0 |
| }, |
| { |
| .name = "part2", |
| .size = 0, |
| .offset = 0 |
| }, |
| { |
| .name = "part3", |
| .size = 0, |
| .offset = 0 |
| }, |
| { |
| .name = "part4", |
| .size = 0, |
| .offset = 0 |
| }, |
| { |
| .name = "part5", |
| .size = 0, |
| .offset = 0 |
| }, |
| { |
| .name = "part6", |
| .size = 0, |
| .offset = 0 |
| }, |
| }; |
| |
| /* |
| * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash |
| * chips in that order (because the amd_flash-driver is faster). |
| */ |
| static struct mtd_info *probe_cs(struct map_info *map_cs) |
| { |
| struct mtd_info *mtd_cs = NULL; |
| |
| printk(KERN_INFO |
| "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n", |
| map_cs->name, map_cs->size, map_cs->map_priv_1); |
| |
| #ifdef CONFIG_MTD_CFI |
| mtd_cs = do_map_probe("cfi_probe", map_cs); |
| #endif |
| #ifdef CONFIG_MTD_JEDECPROBE |
| if (!mtd_cs) |
| mtd_cs = do_map_probe("jedec_probe", map_cs); |
| #endif |
| |
| return mtd_cs; |
| } |
| |
| /* |
| * Probe each chip select individually for flash chips. If there are chips on |
| * both cse0 and cse1, the mtd_info structs will be concatenated to one struct |
| * so that MTD partitions can cross chip boundaries. |
| * |
| * The only known restriction to how you can mount your chips is that each |
| * chip select must hold similar flash chips. But you need external hardware |
| * to do that anyway and you can put totally different chips on cse0 and cse1 |
| * so it isn't really much of a restriction. |
| */ |
| extern struct mtd_info* __init crisv32_nand_flash_probe (void); |
| static struct mtd_info *flash_probe(void) |
| { |
| struct mtd_info *mtd_cse0; |
| struct mtd_info *mtd_cse1; |
| struct mtd_info *mtd_nand = NULL; |
| struct mtd_info *mtd_total; |
| struct mtd_info *mtds[3]; |
| int count = 0; |
| |
| if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL) |
| mtds[count++] = mtd_cse0; |
| if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL) |
| mtds[count++] = mtd_cse1; |
| |
| #ifdef CONFIG_ETRAX_NANDFLASH |
| if ((mtd_nand = crisv32_nand_flash_probe()) != NULL) |
| mtds[count++] = mtd_nand; |
| #endif |
| |
| if (!mtd_cse0 && !mtd_cse1 && !mtd_nand) { |
| /* No chip found. */ |
| return NULL; |
| } |
| |
| if (count > 1) { |
| #ifdef CONFIG_MTD_CONCAT |
| /* Since the concatenation layer adds a small overhead we |
| * could try to figure out if the chips in cse0 and cse1 are |
| * identical and reprobe the whole cse0+cse1 window. But since |
| * flash chips are slow, the overhead is relatively small. |
| * So we use the MTD concatenation layer instead of further |
| * complicating the probing procedure. |
| */ |
| mtd_total = mtd_concat_create(mtds, |
| count, |
| "cse0+cse1+nand"); |
| #else |
| printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel " |
| "(mis)configuration!\n", map_cse0.name, map_cse1.name); |
| mtd_toal = NULL; |
| #endif |
| if (!mtd_total) { |
| printk(KERN_ERR "%s and %s: Concatenation failed!\n", |
| map_cse0.name, map_cse1.name); |
| |
| /* The best we can do now is to only use what we found |
| * at cse0. |
| */ |
| mtd_total = mtd_cse0; |
| map_destroy(mtd_cse1); |
| } |
| } else { |
| mtd_total = mtd_cse0? mtd_cse0 : mtd_cse1 ? mtd_cse1 : mtd_nand; |
| |
| } |
| |
| return mtd_total; |
| } |
| |
| extern unsigned long crisv32_nand_boot; |
| extern unsigned long crisv32_nand_cramfs_offset; |
| |
| /* |
| * Probe the flash chip(s) and, if it succeeds, read the partition-table |
| * and register the partitions with MTD. |
| */ |
| static int __init init_axis_flash(void) |
| { |
| struct mtd_info *mymtd; |
| int err = 0; |
| int pidx = 0; |
| struct partitiontable_head *ptable_head = NULL; |
| struct partitiontable_entry *ptable; |
| int use_default_ptable = 1; /* Until proven otherwise. */ |
| const char *pmsg = KERN_INFO " /dev/flash%d at 0x%08x, size 0x%08x\n"; |
| static char page[512]; |
| size_t len; |
| |
| #ifndef CONFIG_ETRAXFS_SIM |
| mymtd = flash_probe(); |
| mymtd->read(mymtd, CONFIG_ETRAX_PTABLE_SECTOR, 512, &len, page); |
| ptable_head = (struct partitiontable_head *)(page + PARTITION_TABLE_OFFSET); |
| |
| if (!mymtd) { |
| /* There's no reason to use this module if no flash chip can |
| * be identified. Make sure that's understood. |
| */ |
| printk(KERN_INFO "axisflashmap: Found no flash chip.\n"); |
| } else { |
| printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n", |
| mymtd->name, mymtd->size); |
| axisflash_mtd = mymtd; |
| } |
| |
| if (mymtd) { |
| mymtd->owner = THIS_MODULE; |
| } |
| pidx++; /* First partition is always set to the default. */ |
| |
| if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC) |
| && (ptable_head->size < |
| (MAX_PARTITIONS * sizeof(struct partitiontable_entry) + |
| PARTITIONTABLE_END_MARKER_SIZE)) |
| && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) + |
| ptable_head->size - |
| PARTITIONTABLE_END_MARKER_SIZE) |
| == PARTITIONTABLE_END_MARKER)) { |
| /* Looks like a start, sane length and end of a |
| * partition table, lets check csum etc. |
| */ |
| int ptable_ok = 0; |
| struct partitiontable_entry *max_addr = |
| (struct partitiontable_entry *) |
| ((unsigned long)ptable_head + sizeof(*ptable_head) + |
| ptable_head->size); |
| unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR; |
| unsigned char *p; |
| unsigned long csum = 0; |
| |
| ptable = (struct partitiontable_entry *) |
| ((unsigned long)ptable_head + sizeof(*ptable_head)); |
| |
| /* Lets be PARANOID, and check the checksum. */ |
| p = (unsigned char*) ptable; |
| |
| while (p <= (unsigned char*)max_addr) { |
| csum += *p++; |
| csum += *p++; |
| csum += *p++; |
| csum += *p++; |
| } |
| ptable_ok = (csum == ptable_head->checksum); |
| |
| /* Read the entries and use/show the info. */ |
| printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n", |
| (ptable_ok ? " valid" : "n invalid"), ptable_head, |
| max_addr); |
| |
| /* We have found a working bootblock. Now read the |
| * partition table. Scan the table. It ends when |
| * there is 0xffffffff, that is, empty flash. |
| */ |
| while (ptable_ok |
| && ptable->offset != 0xffffffff |
| && ptable < max_addr |
| && pidx < MAX_PARTITIONS) { |
| |
| axis_partitions[pidx].offset = offset + ptable->offset + (crisv32_nand_boot ? 16384 : 0); |
| axis_partitions[pidx].size = ptable->size; |
| |
| printk(pmsg, pidx, axis_partitions[pidx].offset, |
| axis_partitions[pidx].size); |
| pidx++; |
| ptable++; |
| } |
| use_default_ptable = !ptable_ok; |
| } |
| |
| if (romfs_in_flash) { |
| /* Add an overlapping device for the root partition (romfs). */ |
| |
| axis_partitions[pidx].name = "romfs"; |
| if (crisv32_nand_boot) { |
| char* data = kmalloc(1024, GFP_KERNEL); |
| int len; |
| int offset = crisv32_nand_cramfs_offset & ~(1024-1); |
| char* tmp; |
| |
| mymtd->read(mymtd, offset, 1024, &len, data); |
| tmp = &data[crisv32_nand_cramfs_offset % 512]; |
| axis_partitions[pidx].size = *(unsigned*)(tmp + 4); |
| axis_partitions[pidx].offset = crisv32_nand_cramfs_offset; |
| kfree(data); |
| } else { |
| axis_partitions[pidx].size = romfs_length; |
| axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR; |
| } |
| |
| axis_partitions[pidx].mask_flags |= MTD_WRITEABLE; |
| |
| printk(KERN_INFO |
| " Adding readonly flash partition for romfs image:\n"); |
| printk(pmsg, pidx, axis_partitions[pidx].offset, |
| axis_partitions[pidx].size); |
| pidx++; |
| } |
| |
| if (mymtd) { |
| if (use_default_ptable) { |
| printk(KERN_INFO " Using default partition table.\n"); |
| err = add_mtd_partitions(mymtd, axis_default_partitions, |
| NUM_DEFAULT_PARTITIONS); |
| } else { |
| err = add_mtd_partitions(mymtd, axis_partitions, pidx); |
| } |
| |
| if (err) { |
| panic("axisflashmap could not add MTD partitions!\n"); |
| } |
| } |
| /* CONFIG_EXTRAXFS_SIM */ |
| #endif |
| |
| if (!romfs_in_flash) { |
| /* Create an RAM device for the root partition (romfs). */ |
| |
| #if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0) |
| /* No use trying to boot this kernel from RAM. Panic! */ |
| printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM " |
| "device due to kernel (mis)configuration!\n"); |
| panic("This kernel cannot boot from RAM!\n"); |
| #else |
| struct mtd_info *mtd_ram; |
| |
| mtd_ram = kmalloc(sizeof(struct mtd_info), |
| GFP_KERNEL); |
| if (!mtd_ram) { |
| panic("axisflashmap couldn't allocate memory for " |
| "mtd_info!\n"); |
| } |
| |
| printk(KERN_INFO " Adding RAM partition for romfs image:\n"); |
| printk(pmsg, pidx, romfs_start, romfs_length); |
| |
| err = mtdram_init_device(mtd_ram, (void*)romfs_start, |
| romfs_length, "romfs"); |
| if (err) { |
| panic("axisflashmap could not initialize MTD RAM " |
| "device!\n"); |
| } |
| #endif |
| } |
| |
| return err; |
| } |
| |
| /* This adds the above to the kernels init-call chain. */ |
| module_init(init_axis_flash); |
| |
| EXPORT_SYMBOL(axisflash_mtd); |