blob: 092f44632e1bd36f7fc719406dd1a347717bde38 [file] [log] [blame]
/* Copyright (c) 2011-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/irq.h>
#include <linux/mfd/core.h>
#include <linux/regmap.h>
#include <linux/mfd/wcd9xxx/core.h>
#include <linux/mfd/wcd9xxx/wcd9xxx_registers.h>
#include <linux/mfd/wcd9xxx/wcd9xxx-irq.h>
#include <linux/delay.h>
#include <linux/irqdomain.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include <soc/qcom/pm.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#define BYTE_BIT_MASK(nr) (1UL << ((nr) % BITS_PER_BYTE))
#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
#define WCD9XXX_SYSTEM_RESUME_TIMEOUT_MS 100
#ifndef NO_IRQ
#define NO_IRQ (-1)
#endif
#ifdef CONFIG_OF
struct wcd9xxx_irq_drv_data {
struct irq_domain *domain;
int irq;
};
#endif
static int virq_to_phyirq(
struct wcd9xxx_core_resource *wcd9xxx_res, int virq);
static int phyirq_to_virq(
struct wcd9xxx_core_resource *wcd9xxx_res, int irq);
static unsigned int wcd9xxx_irq_get_upstream_irq(
struct wcd9xxx_core_resource *wcd9xxx_res);
static void wcd9xxx_irq_put_upstream_irq(
struct wcd9xxx_core_resource *wcd9xxx_res);
static int wcd9xxx_map_irq(
struct wcd9xxx_core_resource *wcd9xxx_res, int irq);
static void wcd9xxx_irq_lock(struct irq_data *data)
{
struct wcd9xxx_core_resource *wcd9xxx_res =
irq_data_get_irq_chip_data(data);
mutex_lock(&wcd9xxx_res->irq_lock);
}
static void wcd9xxx_irq_sync_unlock(struct irq_data *data)
{
struct wcd9xxx_core_resource *wcd9xxx_res =
irq_data_get_irq_chip_data(data);
int i;
if ((ARRAY_SIZE(wcd9xxx_res->irq_masks_cur) >
WCD9XXX_MAX_IRQ_REGS) ||
(ARRAY_SIZE(wcd9xxx_res->irq_masks_cache) >
WCD9XXX_MAX_IRQ_REGS)) {
pr_err("%s: Array Size out of bound\n", __func__);
return;
}
if (!wcd9xxx_res->wcd_core_regmap) {
pr_err("%s: Codec core regmap not defined\n",
__func__);
return;
}
for (i = 0; i < ARRAY_SIZE(wcd9xxx_res->irq_masks_cur); i++) {
/* If there's been a change in the mask write it back
* to the hardware.
*/
if (wcd9xxx_res->irq_masks_cur[i] !=
wcd9xxx_res->irq_masks_cache[i]) {
wcd9xxx_res->irq_masks_cache[i] =
wcd9xxx_res->irq_masks_cur[i];
regmap_write(wcd9xxx_res->wcd_core_regmap,
wcd9xxx_res->intr_reg[WCD9XXX_INTR_MASK_BASE] + i,
wcd9xxx_res->irq_masks_cur[i]);
}
}
mutex_unlock(&wcd9xxx_res->irq_lock);
}
static void wcd9xxx_irq_enable(struct irq_data *data)
{
struct wcd9xxx_core_resource *wcd9xxx_res =
irq_data_get_irq_chip_data(data);
int wcd9xxx_irq = virq_to_phyirq(wcd9xxx_res, data->irq);
int byte = BIT_BYTE(wcd9xxx_irq);
int size = ARRAY_SIZE(wcd9xxx_res->irq_masks_cur);
if ((byte < size) && (byte >= 0)) {
wcd9xxx_res->irq_masks_cur[byte] &=
~(BYTE_BIT_MASK(wcd9xxx_irq));
} else {
pr_err("%s: Array size is %d but index is %d: Out of range\n",
__func__, size, byte);
}
}
static void wcd9xxx_irq_disable(struct irq_data *data)
{
struct wcd9xxx_core_resource *wcd9xxx_res =
irq_data_get_irq_chip_data(data);
int wcd9xxx_irq = virq_to_phyirq(wcd9xxx_res, data->irq);
int byte = BIT_BYTE(wcd9xxx_irq);
int size = ARRAY_SIZE(wcd9xxx_res->irq_masks_cur);
if ((byte < size) && (byte >= 0)) {
wcd9xxx_res->irq_masks_cur[byte]
|= BYTE_BIT_MASK(wcd9xxx_irq);
} else {
pr_err("%s: Array size is %d but index is %d: Out of range\n",
__func__, size, byte);
}
}
static void wcd9xxx_irq_ack(struct irq_data *data)
{
int wcd9xxx_irq = 0;
struct wcd9xxx_core_resource *wcd9xxx_res =
irq_data_get_irq_chip_data(data);
if (wcd9xxx_res == NULL) {
pr_err("%s: wcd9xxx_res is NULL\n", __func__);
return;
}
wcd9xxx_irq = virq_to_phyirq(wcd9xxx_res, data->irq);
pr_debug("%s: IRQ_ACK called for WCD9XXX IRQ: %d\n",
__func__, wcd9xxx_irq);
}
static void wcd9xxx_irq_mask(struct irq_data *d)
{
/* do nothing but required as linux calls irq_mask without NULL check */
}
static struct irq_chip wcd9xxx_irq_chip = {
.name = "wcd9xxx",
.irq_bus_lock = wcd9xxx_irq_lock,
.irq_bus_sync_unlock = wcd9xxx_irq_sync_unlock,
.irq_disable = wcd9xxx_irq_disable,
.irq_enable = wcd9xxx_irq_enable,
.irq_mask = wcd9xxx_irq_mask,
.irq_ack = wcd9xxx_irq_ack,
};
bool wcd9xxx_lock_sleep(
struct wcd9xxx_core_resource *wcd9xxx_res)
{
enum wcd9xxx_pm_state os;
/*
* wcd9xxx_{lock/unlock}_sleep will be called by wcd9xxx_irq_thread
* and its subroutines only motly.
* but btn0_lpress_fn is not wcd9xxx_irq_thread's subroutine and
* It can race with wcd9xxx_irq_thread.
* So need to embrace wlock_holders with mutex.
*
* If system didn't resume, we can simply return false so codec driver's
* IRQ handler can return without handling IRQ.
* As interrupt line is still active, codec will have another IRQ to
* retry shortly.
*/
mutex_lock(&wcd9xxx_res->pm_lock);
if (wcd9xxx_res->wlock_holders++ == 0) {
pr_debug("%s: holding wake lock\n", __func__);
pm_qos_update_request(&wcd9xxx_res->pm_qos_req,
msm_cpuidle_get_deep_idle_latency());
pm_stay_awake(wcd9xxx_res->dev);
}
mutex_unlock(&wcd9xxx_res->pm_lock);
if (!wait_event_timeout(wcd9xxx_res->pm_wq,
((os = wcd9xxx_pm_cmpxchg(wcd9xxx_res,
WCD9XXX_PM_SLEEPABLE,
WCD9XXX_PM_AWAKE)) ==
WCD9XXX_PM_SLEEPABLE ||
(os == WCD9XXX_PM_AWAKE)),
msecs_to_jiffies(
WCD9XXX_SYSTEM_RESUME_TIMEOUT_MS))) {
pr_warn("%s: system didn't resume within %dms, s %d, w %d\n",
__func__,
WCD9XXX_SYSTEM_RESUME_TIMEOUT_MS, wcd9xxx_res->pm_state,
wcd9xxx_res->wlock_holders);
wcd9xxx_unlock_sleep(wcd9xxx_res);
return false;
}
wake_up_all(&wcd9xxx_res->pm_wq);
return true;
}
EXPORT_SYMBOL(wcd9xxx_lock_sleep);
void wcd9xxx_unlock_sleep(
struct wcd9xxx_core_resource *wcd9xxx_res)
{
mutex_lock(&wcd9xxx_res->pm_lock);
if (--wcd9xxx_res->wlock_holders == 0) {
pr_debug("%s: releasing wake lock pm_state %d -> %d\n",
__func__, wcd9xxx_res->pm_state, WCD9XXX_PM_SLEEPABLE);
/*
* if wcd9xxx_lock_sleep failed, pm_state would be still
* WCD9XXX_PM_ASLEEP, don't overwrite
*/
if (likely(wcd9xxx_res->pm_state == WCD9XXX_PM_AWAKE))
wcd9xxx_res->pm_state = WCD9XXX_PM_SLEEPABLE;
pm_qos_update_request(&wcd9xxx_res->pm_qos_req,
PM_QOS_DEFAULT_VALUE);
pm_relax(wcd9xxx_res->dev);
}
mutex_unlock(&wcd9xxx_res->pm_lock);
wake_up_all(&wcd9xxx_res->pm_wq);
}
EXPORT_SYMBOL(wcd9xxx_unlock_sleep);
void wcd9xxx_nested_irq_lock(struct wcd9xxx_core_resource *wcd9xxx_res)
{
mutex_lock(&wcd9xxx_res->nested_irq_lock);
}
void wcd9xxx_nested_irq_unlock(struct wcd9xxx_core_resource *wcd9xxx_res)
{
mutex_unlock(&wcd9xxx_res->nested_irq_lock);
}
static void wcd9xxx_irq_dispatch(struct wcd9xxx_core_resource *wcd9xxx_res,
struct intr_data *irqdata)
{
int irqbit = irqdata->intr_num;
if (!wcd9xxx_res->wcd_core_regmap) {
pr_err("%s: codec core regmap not defined\n",
__func__);
return;
}
if (irqdata->clear_first) {
wcd9xxx_nested_irq_lock(wcd9xxx_res);
regmap_write(wcd9xxx_res->wcd_core_regmap,
wcd9xxx_res->intr_reg[WCD9XXX_INTR_CLEAR_BASE] +
BIT_BYTE(irqbit),
BYTE_BIT_MASK(irqbit));
if (wcd9xxx_get_intf_type() == WCD9XXX_INTERFACE_TYPE_I2C)
regmap_write(wcd9xxx_res->wcd_core_regmap,
wcd9xxx_res->intr_reg[WCD9XXX_INTR_CLR_COMMIT],
0x02);
handle_nested_irq(phyirq_to_virq(wcd9xxx_res, irqbit));
wcd9xxx_nested_irq_unlock(wcd9xxx_res);
} else {
wcd9xxx_nested_irq_lock(wcd9xxx_res);
handle_nested_irq(phyirq_to_virq(wcd9xxx_res, irqbit));
regmap_write(wcd9xxx_res->wcd_core_regmap,
wcd9xxx_res->intr_reg[WCD9XXX_INTR_CLEAR_BASE] +
BIT_BYTE(irqbit),
BYTE_BIT_MASK(irqbit));
if (wcd9xxx_get_intf_type() == WCD9XXX_INTERFACE_TYPE_I2C)
regmap_write(wcd9xxx_res->wcd_core_regmap,
wcd9xxx_res->intr_reg[WCD9XXX_INTR_CLR_COMMIT],
0x02);
wcd9xxx_nested_irq_unlock(wcd9xxx_res);
}
}
static irqreturn_t wcd9xxx_irq_thread(int irq, void *data)
{
int ret;
int i;
struct intr_data irqdata;
char linebuf[128];
static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 1);
struct wcd9xxx_core_resource *wcd9xxx_res = data;
int num_irq_regs = wcd9xxx_res->num_irq_regs;
u8 status[4], status1[4] = {0}, unmask_status[4] = {0};
if (unlikely(wcd9xxx_lock_sleep(wcd9xxx_res) == false)) {
dev_err(wcd9xxx_res->dev, "Failed to hold suspend\n");
return IRQ_NONE;
}
if (!wcd9xxx_res->wcd_core_regmap) {
dev_err(wcd9xxx_res->dev,
"%s: Codec core regmap not supplied\n",
__func__);
goto err_disable_irq;
}
memset(status, 0, sizeof(status));
ret = regmap_bulk_read(wcd9xxx_res->wcd_core_regmap,
wcd9xxx_res->intr_reg[WCD9XXX_INTR_STATUS_BASE],
status, num_irq_regs);
if (ret < 0) {
dev_err(wcd9xxx_res->dev,
"Failed to read interrupt status: %d\n", ret);
goto err_disable_irq;
}
/*
* If status is 0 return without clearing.
* status contains: HW status - masked interrupts
* status1 contains: unhandled interrupts - masked interrupts
* unmasked_status contains: unhandled interrupts
*/
if (unlikely(!memcmp(status, status1, sizeof(status)))) {
pr_debug("%s: status is 0\n", __func__);
wcd9xxx_unlock_sleep(wcd9xxx_res);
return IRQ_HANDLED;
}
/*
* Copy status to unmask_status before masking, otherwise SW may miss
* to clear masked interrupt in corner case.
*/
memcpy(unmask_status, status, sizeof(unmask_status));
/* Apply masking */
for (i = 0; i < num_irq_regs; i++)
status[i] &= ~wcd9xxx_res->irq_masks_cur[i];
memcpy(status1, status, sizeof(status1));
/* Find out which interrupt was triggered and call that interrupt's
* handler function
*
* Since codec has only one hardware irq line which is shared by
* codec's different internal interrupts, so it's possible master irq
* handler dispatches multiple nested irq handlers after breaking
* order. Dispatch interrupts in the order that is maintained by
* the interrupt table.
*/
for (i = 0; i < wcd9xxx_res->intr_table_size; i++) {
irqdata = wcd9xxx_res->intr_table[i];
if (status[BIT_BYTE(irqdata.intr_num)] &
BYTE_BIT_MASK(irqdata.intr_num)) {
wcd9xxx_irq_dispatch(wcd9xxx_res, &irqdata);
status1[BIT_BYTE(irqdata.intr_num)] &=
~BYTE_BIT_MASK(irqdata.intr_num);
unmask_status[BIT_BYTE(irqdata.intr_num)] &=
~BYTE_BIT_MASK(irqdata.intr_num);
}
}
/*
* As a failsafe if unhandled irq is found, clear it to prevent
* interrupt storm.
* Note that we can say there was an unhandled irq only when no irq
* handled by nested irq handler since Taiko supports qdsp as irqs'
* destination for few irqs. Therefore driver shouldn't clear pending
* irqs when few handled while few others not.
*/
if (unlikely(!memcmp(status, status1, sizeof(status)))) {
if (__ratelimit(&ratelimit)) {
pr_warn("%s: Unhandled irq found\n", __func__);
hex_dump_to_buffer(status, sizeof(status), 16, 1,
linebuf, sizeof(linebuf), false);
pr_warn("%s: status0 : %s\n", __func__, linebuf);
hex_dump_to_buffer(status1, sizeof(status1), 16, 1,
linebuf, sizeof(linebuf), false);
pr_warn("%s: status1 : %s\n", __func__, linebuf);
}
/*
* unmask_status contains unhandled interrupts, hence clear all
* unhandled interrupts.
*/
ret = regmap_bulk_write(wcd9xxx_res->wcd_core_regmap,
wcd9xxx_res->intr_reg[WCD9XXX_INTR_CLEAR_BASE],
unmask_status, num_irq_regs);
if (wcd9xxx_get_intf_type() == WCD9XXX_INTERFACE_TYPE_I2C)
regmap_write(wcd9xxx_res->wcd_core_regmap,
wcd9xxx_res->intr_reg[WCD9XXX_INTR_CLR_COMMIT],
0x02);
}
wcd9xxx_unlock_sleep(wcd9xxx_res);
return IRQ_HANDLED;
err_disable_irq:
dev_err(wcd9xxx_res->dev,
"Disable irq %d\n", wcd9xxx_res->irq);
disable_irq_wake(wcd9xxx_res->irq);
disable_irq_nosync(wcd9xxx_res->irq);
wcd9xxx_unlock_sleep(wcd9xxx_res);
return IRQ_NONE;
}
/**
* wcd9xxx_free_irq
*
* @wcd9xxx_res: pointer to core resource
* irq: irq number
* @data: data pointer
*
*/
void wcd9xxx_free_irq(struct wcd9xxx_core_resource *wcd9xxx_res,
int irq, void *data)
{
free_irq(phyirq_to_virq(wcd9xxx_res, irq), data);
}
EXPORT_SYMBOL(wcd9xxx_free_irq);
/**
* wcd9xxx_enable_irq
*
* @wcd9xxx_res: pointer to core resource
* irq: irq number
*
*/
void wcd9xxx_enable_irq(struct wcd9xxx_core_resource *wcd9xxx_res, int irq)
{
if (wcd9xxx_res->irq)
enable_irq(phyirq_to_virq(wcd9xxx_res, irq));
}
EXPORT_SYMBOL(wcd9xxx_enable_irq);
/**
* wcd9xxx_disable_irq
*
* @wcd9xxx_res: pointer to core resource
* irq: irq number
*
*/
void wcd9xxx_disable_irq(struct wcd9xxx_core_resource *wcd9xxx_res, int irq)
{
if (wcd9xxx_res->irq)
disable_irq_nosync(phyirq_to_virq(wcd9xxx_res, irq));
}
EXPORT_SYMBOL(wcd9xxx_disable_irq);
/**
* wcd9xxx_disable_irq_sync
*
* @wcd9xxx_res: pointer to core resource
* irq: irq number
*
*/
void wcd9xxx_disable_irq_sync(
struct wcd9xxx_core_resource *wcd9xxx_res, int irq)
{
if (wcd9xxx_res->irq)
disable_irq(phyirq_to_virq(wcd9xxx_res, irq));
}
EXPORT_SYMBOL(wcd9xxx_disable_irq_sync);
static int wcd9xxx_irq_setup_downstream_irq(
struct wcd9xxx_core_resource *wcd9xxx_res)
{
int irq, virq, ret;
pr_debug("%s: enter\n", __func__);
for (irq = 0; irq < wcd9xxx_res->num_irqs; irq++) {
/* Map OF irq */
virq = wcd9xxx_map_irq(wcd9xxx_res, irq);
pr_debug("%s: irq %d -> %d\n", __func__, irq, virq);
if (virq == NO_IRQ) {
pr_err("%s, No interrupt specifier for irq %d\n",
__func__, irq);
return NO_IRQ;
}
ret = irq_set_chip_data(virq, wcd9xxx_res);
if (ret) {
pr_err("%s: Failed to configure irq %d (%d)\n",
__func__, irq, ret);
return ret;
}
if (wcd9xxx_res->irq_level_high[irq])
irq_set_chip_and_handler(virq, &wcd9xxx_irq_chip,
handle_level_irq);
else
irq_set_chip_and_handler(virq, &wcd9xxx_irq_chip,
handle_edge_irq);
irq_set_nested_thread(virq, 1);
}
pr_debug("%s: leave\n", __func__);
return 0;
}
/**
* wcd9xxx_irq_init
*
* @wcd9xxx_res: pointer to core resource
*
* Returns 0 on success, appropriate error code otherwise
*/
int wcd9xxx_irq_init(struct wcd9xxx_core_resource *wcd9xxx_res)
{
int i, ret;
u8 irq_level[wcd9xxx_res->num_irq_regs];
struct irq_domain *domain;
struct device_node *pnode;
mutex_init(&wcd9xxx_res->irq_lock);
mutex_init(&wcd9xxx_res->nested_irq_lock);
pnode = of_irq_find_parent(wcd9xxx_res->dev->of_node);
if (unlikely(!pnode))
return -EINVAL;
domain = irq_find_host(pnode);
if (unlikely(!domain))
return -EINVAL;
wcd9xxx_res->domain = domain;
wcd9xxx_res->irq = wcd9xxx_irq_get_upstream_irq(wcd9xxx_res);
if (!wcd9xxx_res->irq) {
pr_warn("%s: irq driver is not yet initialized\n", __func__);
mutex_destroy(&wcd9xxx_res->irq_lock);
mutex_destroy(&wcd9xxx_res->nested_irq_lock);
return -EPROBE_DEFER;
}
pr_debug("%s: probed irq %d\n", __func__, wcd9xxx_res->irq);
/* Setup downstream IRQs */
ret = wcd9xxx_irq_setup_downstream_irq(wcd9xxx_res);
if (ret) {
pr_err("%s: Failed to setup downstream IRQ\n", __func__);
wcd9xxx_irq_put_upstream_irq(wcd9xxx_res);
mutex_destroy(&wcd9xxx_res->irq_lock);
mutex_destroy(&wcd9xxx_res->nested_irq_lock);
return ret;
}
/* All other wcd9xxx interrupts are edge triggered */
wcd9xxx_res->irq_level_high[0] = true;
/* mask all the interrupts */
memset(irq_level, 0, wcd9xxx_res->num_irq_regs);
for (i = 0; i < wcd9xxx_res->num_irqs; i++) {
wcd9xxx_res->irq_masks_cur[BIT_BYTE(i)] |= BYTE_BIT_MASK(i);
wcd9xxx_res->irq_masks_cache[BIT_BYTE(i)] |= BYTE_BIT_MASK(i);
irq_level[BIT_BYTE(i)] |=
wcd9xxx_res->irq_level_high[i] << (i % BITS_PER_BYTE);
}
if (!wcd9xxx_res->wcd_core_regmap) {
dev_err(wcd9xxx_res->dev,
"%s: Codec core regmap not defined\n",
__func__);
ret = -EINVAL;
goto fail_irq_init;
}
for (i = 0; i < wcd9xxx_res->num_irq_regs; i++) {
/* Initialize interrupt mask and level registers */
regmap_write(wcd9xxx_res->wcd_core_regmap,
wcd9xxx_res->intr_reg[WCD9XXX_INTR_LEVEL_BASE] + i,
irq_level[i]);
regmap_write(wcd9xxx_res->wcd_core_regmap,
wcd9xxx_res->intr_reg[WCD9XXX_INTR_MASK_BASE] + i,
wcd9xxx_res->irq_masks_cur[i]);
}
ret = request_threaded_irq(wcd9xxx_res->irq, NULL, wcd9xxx_irq_thread,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"wcd9xxx", wcd9xxx_res);
if (ret != 0)
dev_err(wcd9xxx_res->dev, "Failed to request IRQ %d: %d\n",
wcd9xxx_res->irq, ret);
else {
ret = enable_irq_wake(wcd9xxx_res->irq);
if (ret)
dev_err(wcd9xxx_res->dev,
"Failed to set wake interrupt on IRQ %d: %d\n",
wcd9xxx_res->irq, ret);
if (ret)
free_irq(wcd9xxx_res->irq, wcd9xxx_res);
}
if (ret)
goto fail_irq_init;
return ret;
fail_irq_init:
dev_err(wcd9xxx_res->dev,
"%s: Failed to init wcd9xxx irq\n", __func__);
wcd9xxx_irq_put_upstream_irq(wcd9xxx_res);
mutex_destroy(&wcd9xxx_res->irq_lock);
mutex_destroy(&wcd9xxx_res->nested_irq_lock);
return ret;
}
EXPORT_SYMBOL(wcd9xxx_irq_init);
int wcd9xxx_request_irq(struct wcd9xxx_core_resource *wcd9xxx_res,
int irq, irq_handler_t handler,
const char *name, void *data)
{
int virq;
virq = phyirq_to_virq(wcd9xxx_res, irq);
return request_threaded_irq(virq, NULL, handler, IRQF_TRIGGER_RISING,
name, data);
}
EXPORT_SYMBOL(wcd9xxx_request_irq);
void wcd9xxx_irq_exit(struct wcd9xxx_core_resource *wcd9xxx_res)
{
dev_dbg(wcd9xxx_res->dev, "%s: Cleaning up irq %d\n", __func__,
wcd9xxx_res->irq);
if (wcd9xxx_res->irq) {
disable_irq_wake(wcd9xxx_res->irq);
free_irq(wcd9xxx_res->irq, wcd9xxx_res);
wcd9xxx_res->irq = 0;
wcd9xxx_irq_put_upstream_irq(wcd9xxx_res);
}
mutex_destroy(&wcd9xxx_res->irq_lock);
mutex_destroy(&wcd9xxx_res->nested_irq_lock);
}
#ifndef CONFIG_OF
static int phyirq_to_virq(
struct wcd9xxx_core_resource *wcd9xxx_res,
int offset)
{
return wcd9xxx_res->irq_base + offset;
}
static int virq_to_phyirq(
struct wcd9xxx_core_resource *wcd9xxx_res,
int virq)
{
return virq - wcd9xxx_res->irq_base;
}
static unsigned int wcd9xxx_irq_get_upstream_irq(
struct wcd9xxx_core_resource *wcd9xxx_res)
{
return wcd9xxx_res->irq;
}
static void wcd9xxx_irq_put_upstream_irq(
struct wcd9xxx_core_resource *wcd9xxx_res)
{
/* Do nothing */
}
static int wcd9xxx_map_irq(
struct wcd9xxx_core_resource *wcd9xxx_core_res, int irq)
{
return phyirq_to_virq(wcd9xxx_core_res, irq);
}
#else
static struct wcd9xxx_irq_drv_data *
wcd9xxx_irq_add_domain(struct device_node *node,
struct device_node *parent)
{
struct wcd9xxx_irq_drv_data *data = NULL;
pr_debug("%s: node %s, node parent %s\n", __func__,
node->name, node->parent->name);
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return NULL;
/*
* wcd9xxx_intc interrupt controller supports N to N irq mapping with
* single cell binding with irq numbers(offsets) only.
* Use irq_domain_simple_ops that has irq_domain_simple_map and
* irq_domain_xlate_onetwocell.
*/
data->domain = irq_domain_add_linear(node, WCD9XXX_MAX_NUM_IRQS,
&irq_domain_simple_ops, data);
if (!data->domain) {
kfree(data);
return NULL;
}
return data;
}
static struct wcd9xxx_irq_drv_data *
wcd9xxx_get_irq_drv_d(const struct wcd9xxx_core_resource *wcd9xxx_res)
{
struct irq_domain *domain;
domain = wcd9xxx_res->domain;
if (domain)
return domain->host_data;
else
return NULL;
}
static int phyirq_to_virq(struct wcd9xxx_core_resource *wcd9xxx_res, int offset)
{
struct wcd9xxx_irq_drv_data *data;
data = wcd9xxx_get_irq_drv_d(wcd9xxx_res);
if (!data) {
pr_warn("%s: not registered to interrupt controller\n",
__func__);
return -EINVAL;
}
return irq_linear_revmap(data->domain, offset);
}
static int virq_to_phyirq(struct wcd9xxx_core_resource *wcd9xxx_res, int virq)
{
struct irq_data *irq_data = irq_get_irq_data(virq);
if (unlikely(!irq_data)) {
pr_err("%s: irq_data is NULL", __func__);
return -EINVAL;
}
return irq_data->hwirq;
}
static unsigned int wcd9xxx_irq_get_upstream_irq(
struct wcd9xxx_core_resource *wcd9xxx_res)
{
struct wcd9xxx_irq_drv_data *data;
data = wcd9xxx_get_irq_drv_d(wcd9xxx_res);
if (!data) {
pr_err("%s: interrupt controller is not registered\n",
__func__);
return 0;
}
/* Make sure data is updated before return. */
rmb();
return data->irq;
}
static void wcd9xxx_irq_put_upstream_irq(
struct wcd9xxx_core_resource *wcd9xxx_res)
{
wcd9xxx_res->domain = NULL;
}
static int wcd9xxx_map_irq(struct wcd9xxx_core_resource *wcd9xxx_res, int irq)
{
return of_irq_to_resource(wcd9xxx_res->dev->of_node, irq, NULL);
}
static int wcd9xxx_irq_probe(struct platform_device *pdev)
{
int irq, dir_apps_irq = -EINVAL;
struct wcd9xxx_irq_drv_data *data;
struct device_node *node = pdev->dev.of_node;
int ret = -EINVAL;
irq = of_get_named_gpio(node, "qcom,gpio-connect", 0);
if (!gpio_is_valid(irq))
dir_apps_irq = platform_get_irq_byname(pdev, "wcd_irq");
if (!gpio_is_valid(irq) && dir_apps_irq < 0) {
dev_err(&pdev->dev, "TLMM connect gpio not found\n");
return -EPROBE_DEFER;
}
if (dir_apps_irq > 0) {
irq = dir_apps_irq;
} else {
irq = gpio_to_irq(irq);
if (irq < 0) {
dev_err(&pdev->dev, "Unable to configure irq\n");
return irq;
}
}
dev_dbg(&pdev->dev, "%s: virq = %d\n", __func__, irq);
data = wcd9xxx_irq_add_domain(node, node->parent);
if (!data) {
pr_err("%s: irq_add_domain failed\n", __func__);
return -EINVAL;
}
data->irq = irq;
/* Make sure irq is saved before return. */
wmb();
ret = 0;
return ret;
}
static int wcd9xxx_irq_remove(struct platform_device *pdev)
{
struct irq_domain *domain;
struct wcd9xxx_irq_drv_data *data;
domain = irq_find_host(pdev->dev.of_node);
if (unlikely(!domain)) {
pr_err("%s: domain is NULL", __func__);
return -EINVAL;
}
data = (struct wcd9xxx_irq_drv_data *)domain->host_data;
data->irq = 0;
/* Make sure irq variable is updated in data, before irq removal. */
wmb();
irq_domain_remove(data->domain);
kfree(data);
domain->host_data = NULL;
return 0;
}
static const struct of_device_id of_match[] = {
{ .compatible = "qcom,wcd9xxx-irq" },
{ }
};
static struct platform_driver wcd9xxx_irq_driver = {
.probe = wcd9xxx_irq_probe,
.remove = wcd9xxx_irq_remove,
.driver = {
.name = "wcd9xxx_intc",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(of_match),
},
};
int wcd9xxx_irq_drv_init(void)
{
return platform_driver_register(&wcd9xxx_irq_driver);
}
void wcd9xxx_irq_drv_exit(void)
{
platform_driver_unregister(&wcd9xxx_irq_driver);
}
#endif /* CONFIG_OF */