blob: e0a50aa90d5bc3defe9a567c0a4475fe967cd7c1 [file] [log] [blame]
/*
* Based on arch/arm/include/asm/io.h
*
* Copyright (C) 1996-2000 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ASM_IO_H
#define __ASM_IO_H
#ifdef __KERNEL__
#include <linux/types.h>
#include <linux/blk_types.h>
#include <asm/byteorder.h>
#include <asm/barrier.h>
#include <asm/memory.h>
#include <asm/pgtable.h>
#include <asm/early_ioremap.h>
#include <asm/alternative.h>
#include <asm/cpufeature.h>
#include <linux/msm_rtb.h>
#include <xen/xen.h>
/*
* Generic IO read/write. These perform native-endian accesses.
* that some architectures will want to re-define __raw_{read,write}w.
*/
static inline void __raw_writeb_no_log(u8 val, volatile void __iomem *addr)
{
asm volatile("strb %w0, [%1]" : : "r" (val), "r" (addr));
}
static inline void __raw_writew_no_log(u16 val, volatile void __iomem *addr)
{
asm volatile("strh %w0, [%1]" : : "r" (val), "r" (addr));
}
static inline void __raw_writel_no_log(u32 val, volatile void __iomem *addr)
{
asm volatile("str %w0, [%1]" : : "r" (val), "r" (addr));
}
static inline void __raw_writeq_no_log(u64 val, volatile void __iomem *addr)
{
asm volatile("str %0, [%1]" : : "r" (val), "r" (addr));
}
static inline u8 __raw_readb_no_log(const volatile void __iomem *addr)
{
u8 val;
asm volatile(ALTERNATIVE("ldrb %w0, [%1]",
"ldarb %w0, [%1]",
ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE)
: "=r" (val) : "r" (addr));
return val;
}
static inline u16 __raw_readw_no_log(const volatile void __iomem *addr)
{
u16 val;
asm volatile(ALTERNATIVE("ldrh %w0, [%1]",
"ldarh %w0, [%1]",
ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE)
: "=r" (val) : "r" (addr));
return val;
}
static inline u32 __raw_readl_no_log(const volatile void __iomem *addr)
{
u32 val;
asm volatile(ALTERNATIVE("ldr %w0, [%1]",
"ldar %w0, [%1]",
ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE)
: "=r" (val) : "r" (addr));
return val;
}
static inline u64 __raw_readq_no_log(const volatile void __iomem *addr)
{
u64 val;
asm volatile(ALTERNATIVE("ldr %0, [%1]",
"ldar %0, [%1]",
ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE)
: "=r" (val) : "r" (addr));
return val;
}
/*
* There may be cases when clients don't want to support or can't support the
* logging, The appropriate functions can be used but clinets should carefully
* consider why they can't support the logging
*/
#define __raw_write_logged(v, a, _t) ({ \
int _ret; \
void *_addr = (void *)(a); \
_ret = uncached_logk(LOGK_WRITEL, _addr); \
ETB_WAYPOINT; \
__raw_write##_t##_no_log((v), _addr); \
if (_ret) \
LOG_BARRIER; \
})
#define __raw_writeb(v, a) __raw_write_logged((v), a, b)
#define __raw_writew(v, a) __raw_write_logged((v), a, w)
#define __raw_writel(v, a) __raw_write_logged((v), a, l)
#define __raw_writeq(v, a) __raw_write_logged((v), a, q)
#define __raw_read_logged(a, _l, _t) ({ \
_t __a; \
void *_addr = (void *)(a); \
int _ret; \
_ret = uncached_logk(LOGK_READL, _addr); \
ETB_WAYPOINT; \
__a = __raw_read##_l##_no_log(_addr); \
if (_ret) \
LOG_BARRIER; \
__a; \
})
#define __raw_readb(a) __raw_read_logged((a), b, u8)
#define __raw_readw(a) __raw_read_logged((a), w, u16)
#define __raw_readl(a) __raw_read_logged((a), l, u32)
#define __raw_readq(a) __raw_read_logged((a), q, u64)
/* IO barriers */
#define __iormb() rmb()
#define __iowmb() wmb()
#define mmiowb() do { } while (0)
/*
* Relaxed I/O memory access primitives. These follow the Device memory
* ordering rules but do not guarantee any ordering relative to Normal memory
* accesses.
*/
#define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; })
#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; })
#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; })
#define readq_relaxed(c) ({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; })
#define writeb_relaxed(v,c) ((void)__raw_writeb((v),(c)))
#define writew_relaxed(v,c) ((void)__raw_writew((__force u16)cpu_to_le16(v),(c)))
#define writel_relaxed(v,c) ((void)__raw_writel((__force u32)cpu_to_le32(v),(c)))
#define writeq_relaxed(v,c) ((void)__raw_writeq((__force u64)cpu_to_le64(v),(c)))
#define readb_relaxed_no_log(c) ({ u8 __v = __raw_readb_no_log(c); __v; })
#define readw_relaxed_no_log(c) ({ u16 __v = le16_to_cpu((__force __le16)__raw_readw_no_log(c)); __v; })
#define readl_relaxed_no_log(c) ({ u32 __v = le32_to_cpu((__force __le32)__raw_readl_no_log(c)); __v; })
#define readq_relaxed_no_log(c) ({ u64 __v = le64_to_cpu((__force __le64)__raw_readq_no_log(c)); __v; })
#define writeb_relaxed_no_log(v, c) ((void)__raw_writeb_no_log((v), (c)))
#define writew_relaxed_no_log(v, c) ((void)__raw_writew_no_log((__force u16)cpu_to_le32(v), (c)))
#define writel_relaxed_no_log(v, c) ((void)__raw_writel_no_log((__force u32)cpu_to_le32(v), (c)))
#define writeq_relaxed_no_log(v, c) ((void)__raw_writeq_no_log((__force u64)cpu_to_le32(v), (c)))
/*
* I/O memory access primitives. Reads are ordered relative to any
* following Normal memory access. Writes are ordered relative to any prior
* Normal memory access.
*/
#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
#define readq(c) ({ u64 __v = readq_relaxed(c); __iormb(); __v; })
#define writeb(v,c) ({ __iowmb(); writeb_relaxed((v),(c)); })
#define writew(v,c) ({ __iowmb(); writew_relaxed((v),(c)); })
#define writel(v,c) ({ __iowmb(); writel_relaxed((v),(c)); })
#define writeq(v,c) ({ __iowmb(); writeq_relaxed((v),(c)); })
#define readb_no_log(c) ({ u8 __v = readb_relaxed_no_log(c); __iormb(); __v; })
#define readw_no_log(c) ({ u16 __v = readw_relaxed_no_log(c); __iormb(); __v; })
#define readl_no_log(c) ({ u32 __v = readl_relaxed_no_log(c); __iormb(); __v; })
#define readq_no_log(c) ({ u64 __v = readq_relaxed_no_log(c); __iormb(); __v; })
#define writeb_no_log(v, c) ({ __iowmb(); writeb_relaxed_no_log((v), (c)); })
#define writew_no_log(v, c) ({ __iowmb(); writew_relaxed_no_log((v), (c)); })
#define writel_no_log(v, c) ({ __iowmb(); writel_relaxed_no_log((v), (c)); })
#define writeq_no_log(v, c) ({ __iowmb(); writeq_relaxed_no_log((v), (c)); })
/*
* I/O port access primitives.
*/
#define arch_has_dev_port() (1)
#define IO_SPACE_LIMIT (PCI_IO_SIZE - 1)
#define PCI_IOBASE ((void __iomem *)PCI_IO_START)
/*
* String version of I/O memory access operations.
*/
extern void __memcpy_fromio(void *, const volatile void __iomem *, size_t);
extern void __memcpy_toio(volatile void __iomem *, const void *, size_t);
extern void __memset_io(volatile void __iomem *, int, size_t);
#define memset_io(c,v,l) __memset_io((c),(v),(l))
#define memcpy_fromio(a,c,l) __memcpy_fromio((a),(c),(l))
#define memcpy_toio(c,a,l) __memcpy_toio((c),(a),(l))
/*
* I/O memory mapping functions.
*/
extern void __iomem *__ioremap(phys_addr_t phys_addr, size_t size, pgprot_t prot);
extern void __iounmap(volatile void __iomem *addr);
extern void __iomem *ioremap_cache(phys_addr_t phys_addr, size_t size);
#define ioremap(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRE))
#define ioremap_nocache(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRE))
#define ioremap_wc(addr, size) __ioremap((addr), (size), __pgprot(PROT_NORMAL_NC))
#define ioremap_wt(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRE))
#define iounmap __iounmap
/*
* io{read,write}{16,32,64}be() macros
*/
#define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
#define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
#define ioread64be(p) ({ __u64 __v = be64_to_cpu((__force __be64)__raw_readq(p)); __iormb(); __v; })
#define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
#define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
#define iowrite64be(v,p) ({ __iowmb(); __raw_writeq((__force __u64)cpu_to_be64(v), p); })
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
#define xlate_dev_mem_ptr(p) __va(p)
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#define xlate_dev_kmem_ptr(p) p
#include <asm-generic/io.h>
/*
* More restrictive address range checking than the default implementation
* (PHYS_OFFSET and PHYS_MASK taken into account).
*/
#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
extern int devmem_is_allowed(unsigned long pfn);
struct bio_vec;
extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
const struct bio_vec *vec2);
#define BIOVEC_PHYS_MERGEABLE(vec1, vec2) \
(__BIOVEC_PHYS_MERGEABLE(vec1, vec2) && \
(!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
#endif /* __KERNEL__ */
#endif /* __ASM_IO_H */