| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/sched.h> |
| #include <linux/spinlock.h> |
| |
| #include <asm/mipsregs.h> |
| #include <asm/ptrace.h> |
| #include <asm/hardirq.h> |
| #include <asm/div64.h> |
| #include <asm/cpu.h> |
| #include <asm/time.h> |
| |
| #include <linux/interrupt.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/timex.h> |
| #include <asm/mipsregs.h> |
| #include <asm/ptrace.h> |
| #include <asm/hardirq.h> |
| #include <asm/irq.h> |
| #include <asm/div64.h> |
| #include <asm/cpu.h> |
| #include <asm/time.h> |
| #include <asm/mc146818-time.h> |
| #include <asm/msc01_ic.h> |
| |
| #include <asm/mips-boards/generic.h> |
| #include <asm/mips-boards/prom.h> |
| #include <asm/mips-boards/simint.h> |
| #include <asm/mc146818-time.h> |
| #include <asm/smp.h> |
| |
| |
| unsigned long cpu_khz; |
| |
| extern asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs); |
| |
| irqreturn_t sim_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| #ifdef CONFIG_SMP |
| int cpu = smp_processor_id(); |
| |
| /* |
| * CPU 0 handles the global timer interrupt job |
| * resets count/compare registers to trigger next timer int. |
| */ |
| #ifndef CONFIG_MIPS_MT_SMTC |
| if (cpu == 0) { |
| timer_interrupt(irq, dev_id, regs); |
| } |
| else { |
| /* Everyone else needs to reset the timer int here as |
| ll_local_timer_interrupt doesn't */ |
| /* |
| * FIXME: need to cope with counter underflow. |
| * More support needs to be added to kernel/time for |
| * counter/timer interrupts on multiple CPU's |
| */ |
| write_c0_compare (read_c0_count() + ( mips_hpt_frequency/HZ)); |
| } |
| #else /* SMTC */ |
| /* |
| * In SMTC system, one Count/Compare set exists per VPE. |
| * Which TC within a VPE gets the interrupt is essentially |
| * random - we only know that it shouldn't be one with |
| * IXMT set. Whichever TC gets the interrupt needs to |
| * send special interprocessor interrupts to the other |
| * TCs to make sure that they schedule, etc. |
| * |
| * That code is specific to the SMTC kernel, not to |
| * the simulation platform, so it's invoked from |
| * the general MIPS timer_interrupt routine. |
| * |
| * We have a problem in that the interrupt vector code |
| * had to turn off the timer IM bit to avoid redundant |
| * entries, but we may never get to mips_cpu_irq_end |
| * to turn it back on again if the scheduler gets |
| * involved. So we clear the pending timer here, |
| * and re-enable the mask... |
| */ |
| |
| int vpflags = dvpe(); |
| write_c0_compare (read_c0_count() - 1); |
| clear_c0_cause(0x100 << MIPSCPU_INT_CPUCTR); |
| set_c0_status(0x100 << MIPSCPU_INT_CPUCTR); |
| irq_enable_hazard(); |
| evpe(vpflags); |
| |
| if(cpu_data[cpu].vpe_id == 0) timer_interrupt(irq, dev_id, regs); |
| else write_c0_compare (read_c0_count() + ( mips_hpt_frequency/HZ)); |
| smtc_timer_broadcast(cpu_data[cpu].vpe_id); |
| |
| #endif /* CONFIG_MIPS_MT_SMTC */ |
| |
| /* |
| * every CPU should do profiling and process accounting |
| */ |
| local_timer_interrupt (irq, dev_id, regs); |
| return IRQ_HANDLED; |
| #else |
| return timer_interrupt (irq, dev_id, regs); |
| #endif |
| } |
| |
| |
| |
| /* |
| * Estimate CPU frequency. Sets mips_counter_frequency as a side-effect |
| */ |
| static unsigned int __init estimate_cpu_frequency(void) |
| { |
| unsigned int prid = read_c0_prid() & 0xffff00; |
| unsigned int count; |
| |
| #if 1 |
| /* |
| * hardwire the board frequency to 12MHz. |
| */ |
| |
| if ((prid == (PRID_COMP_MIPS | PRID_IMP_20KC)) || |
| (prid == (PRID_COMP_MIPS | PRID_IMP_25KF))) |
| count = 12000000; |
| else |
| count = 6000000; |
| #else |
| unsigned int flags; |
| |
| local_irq_save(flags); |
| |
| /* Start counter exactly on falling edge of update flag */ |
| while (CMOS_READ(RTC_REG_A) & RTC_UIP); |
| while (!(CMOS_READ(RTC_REG_A) & RTC_UIP)); |
| |
| /* Start r4k counter. */ |
| write_c0_count(0); |
| |
| /* Read counter exactly on falling edge of update flag */ |
| while (CMOS_READ(RTC_REG_A) & RTC_UIP); |
| while (!(CMOS_READ(RTC_REG_A) & RTC_UIP)); |
| |
| count = read_c0_count(); |
| |
| /* restore interrupts */ |
| local_irq_restore(flags); |
| #endif |
| |
| mips_hpt_frequency = count; |
| |
| if ((prid != (PRID_COMP_MIPS | PRID_IMP_20KC)) && |
| (prid != (PRID_COMP_MIPS | PRID_IMP_25KF))) |
| count *= 2; |
| |
| count += 5000; /* round */ |
| count -= count%10000; |
| |
| return count; |
| } |
| |
| void __init sim_time_init(void) |
| { |
| unsigned int est_freq, flags; |
| |
| local_irq_save(flags); |
| |
| |
| /* Set Data mode - binary. */ |
| CMOS_WRITE(CMOS_READ(RTC_CONTROL) | RTC_DM_BINARY, RTC_CONTROL); |
| |
| |
| est_freq = estimate_cpu_frequency (); |
| |
| printk("CPU frequency %d.%02d MHz\n", est_freq/1000000, |
| (est_freq%1000000)*100/1000000); |
| |
| cpu_khz = est_freq / 1000; |
| |
| local_irq_restore(flags); |
| } |
| |
| static int mips_cpu_timer_irq; |
| |
| static void mips_timer_dispatch (struct pt_regs *regs) |
| { |
| do_IRQ (mips_cpu_timer_irq, regs); |
| } |
| |
| |
| void __init sim_timer_setup(struct irqaction *irq) |
| { |
| if (cpu_has_veic) { |
| set_vi_handler(MSC01E_INT_CPUCTR, mips_timer_dispatch); |
| mips_cpu_timer_irq = MSC01E_INT_BASE + MSC01E_INT_CPUCTR; |
| } |
| else { |
| if (cpu_has_vint) |
| set_vi_handler(MIPSCPU_INT_CPUCTR, mips_timer_dispatch); |
| mips_cpu_timer_irq = MIPSCPU_INT_BASE + MIPSCPU_INT_CPUCTR; |
| } |
| |
| /* we are using the cpu counter for timer interrupts */ |
| irq->handler = sim_timer_interrupt; |
| setup_irq(mips_cpu_timer_irq, irq); |
| |
| #ifdef CONFIG_SMP |
| /* irq_desc(riptor) is a global resource, when the interrupt overlaps |
| on seperate cpu's the first one tries to handle the second interrupt. |
| The effect is that the int remains disabled on the second cpu. |
| Mark the interrupt with IRQ_PER_CPU to avoid any confusion */ |
| irq_desc[mips_cpu_timer_irq].status |= IRQ_PER_CPU; |
| #endif |
| |
| /* to generate the first timer interrupt */ |
| write_c0_compare(read_c0_count() + (mips_hpt_frequency/HZ)); |
| } |