| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_bit.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_sb.h" |
| #include "xfs_ag.h" |
| #include "xfs_dir2.h" |
| #include "xfs_trans.h" |
| #include "xfs_dmapi.h" |
| #include "xfs_mount.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_alloc_btree.h" |
| #include "xfs_ialloc_btree.h" |
| #include "xfs_dir2_sf.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_dinode.h" |
| #include "xfs_inode.h" |
| #include "xfs_alloc.h" |
| #include "xfs_btree.h" |
| #include "xfs_error.h" |
| #include "xfs_rw.h" |
| #include "xfs_iomap.h" |
| #include "xfs_vnodeops.h" |
| #include <linux/mpage.h> |
| #include <linux/pagevec.h> |
| #include <linux/writeback.h> |
| |
| STATIC void |
| xfs_count_page_state( |
| struct page *page, |
| int *delalloc, |
| int *unmapped, |
| int *unwritten) |
| { |
| struct buffer_head *bh, *head; |
| |
| *delalloc = *unmapped = *unwritten = 0; |
| |
| bh = head = page_buffers(page); |
| do { |
| if (buffer_uptodate(bh) && !buffer_mapped(bh)) |
| (*unmapped) = 1; |
| else if (buffer_unwritten(bh)) |
| (*unwritten) = 1; |
| else if (buffer_delay(bh)) |
| (*delalloc) = 1; |
| } while ((bh = bh->b_this_page) != head); |
| } |
| |
| #if defined(XFS_RW_TRACE) |
| void |
| xfs_page_trace( |
| int tag, |
| struct inode *inode, |
| struct page *page, |
| unsigned long pgoff) |
| { |
| xfs_inode_t *ip; |
| loff_t isize = i_size_read(inode); |
| loff_t offset = page_offset(page); |
| int delalloc = -1, unmapped = -1, unwritten = -1; |
| |
| if (page_has_buffers(page)) |
| xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); |
| |
| ip = XFS_I(inode); |
| if (!ip->i_rwtrace) |
| return; |
| |
| ktrace_enter(ip->i_rwtrace, |
| (void *)((unsigned long)tag), |
| (void *)ip, |
| (void *)inode, |
| (void *)page, |
| (void *)pgoff, |
| (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)), |
| (void *)((unsigned long)((isize >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(isize & 0xffffffff)), |
| (void *)((unsigned long)((offset >> 32) & 0xffffffff)), |
| (void *)((unsigned long)(offset & 0xffffffff)), |
| (void *)((unsigned long)delalloc), |
| (void *)((unsigned long)unmapped), |
| (void *)((unsigned long)unwritten), |
| (void *)((unsigned long)current_pid()), |
| (void *)NULL); |
| } |
| #else |
| #define xfs_page_trace(tag, inode, page, pgoff) |
| #endif |
| |
| STATIC struct block_device * |
| xfs_find_bdev_for_inode( |
| struct xfs_inode *ip) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| |
| if (XFS_IS_REALTIME_INODE(ip)) |
| return mp->m_rtdev_targp->bt_bdev; |
| else |
| return mp->m_ddev_targp->bt_bdev; |
| } |
| |
| /* |
| * Schedule IO completion handling on a xfsdatad if this was |
| * the final hold on this ioend. If we are asked to wait, |
| * flush the workqueue. |
| */ |
| STATIC void |
| xfs_finish_ioend( |
| xfs_ioend_t *ioend, |
| int wait) |
| { |
| if (atomic_dec_and_test(&ioend->io_remaining)) { |
| queue_work(xfsdatad_workqueue, &ioend->io_work); |
| if (wait) |
| flush_workqueue(xfsdatad_workqueue); |
| } |
| } |
| |
| /* |
| * We're now finished for good with this ioend structure. |
| * Update the page state via the associated buffer_heads, |
| * release holds on the inode and bio, and finally free |
| * up memory. Do not use the ioend after this. |
| */ |
| STATIC void |
| xfs_destroy_ioend( |
| xfs_ioend_t *ioend) |
| { |
| struct buffer_head *bh, *next; |
| |
| for (bh = ioend->io_buffer_head; bh; bh = next) { |
| next = bh->b_private; |
| bh->b_end_io(bh, !ioend->io_error); |
| } |
| if (unlikely(ioend->io_error)) { |
| vn_ioerror(XFS_I(ioend->io_inode), ioend->io_error, |
| __FILE__,__LINE__); |
| } |
| vn_iowake(XFS_I(ioend->io_inode)); |
| mempool_free(ioend, xfs_ioend_pool); |
| } |
| |
| /* |
| * Update on-disk file size now that data has been written to disk. |
| * The current in-memory file size is i_size. If a write is beyond |
| * eof i_new_size will be the intended file size until i_size is |
| * updated. If this write does not extend all the way to the valid |
| * file size then restrict this update to the end of the write. |
| */ |
| STATIC void |
| xfs_setfilesize( |
| xfs_ioend_t *ioend) |
| { |
| xfs_inode_t *ip = XFS_I(ioend->io_inode); |
| xfs_fsize_t isize; |
| xfs_fsize_t bsize; |
| |
| ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG); |
| ASSERT(ioend->io_type != IOMAP_READ); |
| |
| if (unlikely(ioend->io_error)) |
| return; |
| |
| bsize = ioend->io_offset + ioend->io_size; |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| |
| isize = MAX(ip->i_size, ip->i_new_size); |
| isize = MIN(isize, bsize); |
| |
| if (ip->i_d.di_size < isize) { |
| ip->i_d.di_size = isize; |
| ip->i_update_core = 1; |
| ip->i_update_size = 1; |
| xfs_mark_inode_dirty_sync(ip); |
| } |
| |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| } |
| |
| /* |
| * Buffered IO write completion for delayed allocate extents. |
| */ |
| STATIC void |
| xfs_end_bio_delalloc( |
| struct work_struct *work) |
| { |
| xfs_ioend_t *ioend = |
| container_of(work, xfs_ioend_t, io_work); |
| |
| xfs_setfilesize(ioend); |
| xfs_destroy_ioend(ioend); |
| } |
| |
| /* |
| * Buffered IO write completion for regular, written extents. |
| */ |
| STATIC void |
| xfs_end_bio_written( |
| struct work_struct *work) |
| { |
| xfs_ioend_t *ioend = |
| container_of(work, xfs_ioend_t, io_work); |
| |
| xfs_setfilesize(ioend); |
| xfs_destroy_ioend(ioend); |
| } |
| |
| /* |
| * IO write completion for unwritten extents. |
| * |
| * Issue transactions to convert a buffer range from unwritten |
| * to written extents. |
| */ |
| STATIC void |
| xfs_end_bio_unwritten( |
| struct work_struct *work) |
| { |
| xfs_ioend_t *ioend = |
| container_of(work, xfs_ioend_t, io_work); |
| struct xfs_inode *ip = XFS_I(ioend->io_inode); |
| xfs_off_t offset = ioend->io_offset; |
| size_t size = ioend->io_size; |
| |
| if (likely(!ioend->io_error)) { |
| if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { |
| int error; |
| error = xfs_iomap_write_unwritten(ip, offset, size); |
| if (error) |
| ioend->io_error = error; |
| } |
| xfs_setfilesize(ioend); |
| } |
| xfs_destroy_ioend(ioend); |
| } |
| |
| /* |
| * IO read completion for regular, written extents. |
| */ |
| STATIC void |
| xfs_end_bio_read( |
| struct work_struct *work) |
| { |
| xfs_ioend_t *ioend = |
| container_of(work, xfs_ioend_t, io_work); |
| |
| xfs_destroy_ioend(ioend); |
| } |
| |
| /* |
| * Allocate and initialise an IO completion structure. |
| * We need to track unwritten extent write completion here initially. |
| * We'll need to extend this for updating the ondisk inode size later |
| * (vs. incore size). |
| */ |
| STATIC xfs_ioend_t * |
| xfs_alloc_ioend( |
| struct inode *inode, |
| unsigned int type) |
| { |
| xfs_ioend_t *ioend; |
| |
| ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); |
| |
| /* |
| * Set the count to 1 initially, which will prevent an I/O |
| * completion callback from happening before we have started |
| * all the I/O from calling the completion routine too early. |
| */ |
| atomic_set(&ioend->io_remaining, 1); |
| ioend->io_error = 0; |
| ioend->io_list = NULL; |
| ioend->io_type = type; |
| ioend->io_inode = inode; |
| ioend->io_buffer_head = NULL; |
| ioend->io_buffer_tail = NULL; |
| atomic_inc(&XFS_I(ioend->io_inode)->i_iocount); |
| ioend->io_offset = 0; |
| ioend->io_size = 0; |
| |
| if (type == IOMAP_UNWRITTEN) |
| INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten); |
| else if (type == IOMAP_DELAY) |
| INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc); |
| else if (type == IOMAP_READ) |
| INIT_WORK(&ioend->io_work, xfs_end_bio_read); |
| else |
| INIT_WORK(&ioend->io_work, xfs_end_bio_written); |
| |
| return ioend; |
| } |
| |
| STATIC int |
| xfs_map_blocks( |
| struct inode *inode, |
| loff_t offset, |
| ssize_t count, |
| xfs_iomap_t *mapp, |
| int flags) |
| { |
| int nmaps = 1; |
| |
| return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps); |
| } |
| |
| STATIC_INLINE int |
| xfs_iomap_valid( |
| xfs_iomap_t *iomapp, |
| loff_t offset) |
| { |
| return offset >= iomapp->iomap_offset && |
| offset < iomapp->iomap_offset + iomapp->iomap_bsize; |
| } |
| |
| /* |
| * BIO completion handler for buffered IO. |
| */ |
| STATIC void |
| xfs_end_bio( |
| struct bio *bio, |
| int error) |
| { |
| xfs_ioend_t *ioend = bio->bi_private; |
| |
| ASSERT(atomic_read(&bio->bi_cnt) >= 1); |
| ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; |
| |
| /* Toss bio and pass work off to an xfsdatad thread */ |
| bio->bi_private = NULL; |
| bio->bi_end_io = NULL; |
| bio_put(bio); |
| |
| xfs_finish_ioend(ioend, 0); |
| } |
| |
| STATIC void |
| xfs_submit_ioend_bio( |
| xfs_ioend_t *ioend, |
| struct bio *bio) |
| { |
| atomic_inc(&ioend->io_remaining); |
| |
| bio->bi_private = ioend; |
| bio->bi_end_io = xfs_end_bio; |
| |
| submit_bio(WRITE, bio); |
| ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP)); |
| bio_put(bio); |
| } |
| |
| STATIC struct bio * |
| xfs_alloc_ioend_bio( |
| struct buffer_head *bh) |
| { |
| struct bio *bio; |
| int nvecs = bio_get_nr_vecs(bh->b_bdev); |
| |
| do { |
| bio = bio_alloc(GFP_NOIO, nvecs); |
| nvecs >>= 1; |
| } while (!bio); |
| |
| ASSERT(bio->bi_private == NULL); |
| bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); |
| bio->bi_bdev = bh->b_bdev; |
| bio_get(bio); |
| return bio; |
| } |
| |
| STATIC void |
| xfs_start_buffer_writeback( |
| struct buffer_head *bh) |
| { |
| ASSERT(buffer_mapped(bh)); |
| ASSERT(buffer_locked(bh)); |
| ASSERT(!buffer_delay(bh)); |
| ASSERT(!buffer_unwritten(bh)); |
| |
| mark_buffer_async_write(bh); |
| set_buffer_uptodate(bh); |
| clear_buffer_dirty(bh); |
| } |
| |
| STATIC void |
| xfs_start_page_writeback( |
| struct page *page, |
| int clear_dirty, |
| int buffers) |
| { |
| ASSERT(PageLocked(page)); |
| ASSERT(!PageWriteback(page)); |
| if (clear_dirty) |
| clear_page_dirty_for_io(page); |
| set_page_writeback(page); |
| unlock_page(page); |
| /* If no buffers on the page are to be written, finish it here */ |
| if (!buffers) |
| end_page_writeback(page); |
| } |
| |
| static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh) |
| { |
| return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); |
| } |
| |
| /* |
| * Submit all of the bios for all of the ioends we have saved up, covering the |
| * initial writepage page and also any probed pages. |
| * |
| * Because we may have multiple ioends spanning a page, we need to start |
| * writeback on all the buffers before we submit them for I/O. If we mark the |
| * buffers as we got, then we can end up with a page that only has buffers |
| * marked async write and I/O complete on can occur before we mark the other |
| * buffers async write. |
| * |
| * The end result of this is that we trip a bug in end_page_writeback() because |
| * we call it twice for the one page as the code in end_buffer_async_write() |
| * assumes that all buffers on the page are started at the same time. |
| * |
| * The fix is two passes across the ioend list - one to start writeback on the |
| * buffer_heads, and then submit them for I/O on the second pass. |
| */ |
| STATIC void |
| xfs_submit_ioend( |
| xfs_ioend_t *ioend) |
| { |
| xfs_ioend_t *head = ioend; |
| xfs_ioend_t *next; |
| struct buffer_head *bh; |
| struct bio *bio; |
| sector_t lastblock = 0; |
| |
| /* Pass 1 - start writeback */ |
| do { |
| next = ioend->io_list; |
| for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { |
| xfs_start_buffer_writeback(bh); |
| } |
| } while ((ioend = next) != NULL); |
| |
| /* Pass 2 - submit I/O */ |
| ioend = head; |
| do { |
| next = ioend->io_list; |
| bio = NULL; |
| |
| for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { |
| |
| if (!bio) { |
| retry: |
| bio = xfs_alloc_ioend_bio(bh); |
| } else if (bh->b_blocknr != lastblock + 1) { |
| xfs_submit_ioend_bio(ioend, bio); |
| goto retry; |
| } |
| |
| if (bio_add_buffer(bio, bh) != bh->b_size) { |
| xfs_submit_ioend_bio(ioend, bio); |
| goto retry; |
| } |
| |
| lastblock = bh->b_blocknr; |
| } |
| if (bio) |
| xfs_submit_ioend_bio(ioend, bio); |
| xfs_finish_ioend(ioend, 0); |
| } while ((ioend = next) != NULL); |
| } |
| |
| /* |
| * Cancel submission of all buffer_heads so far in this endio. |
| * Toss the endio too. Only ever called for the initial page |
| * in a writepage request, so only ever one page. |
| */ |
| STATIC void |
| xfs_cancel_ioend( |
| xfs_ioend_t *ioend) |
| { |
| xfs_ioend_t *next; |
| struct buffer_head *bh, *next_bh; |
| |
| do { |
| next = ioend->io_list; |
| bh = ioend->io_buffer_head; |
| do { |
| next_bh = bh->b_private; |
| clear_buffer_async_write(bh); |
| unlock_buffer(bh); |
| } while ((bh = next_bh) != NULL); |
| |
| vn_iowake(XFS_I(ioend->io_inode)); |
| mempool_free(ioend, xfs_ioend_pool); |
| } while ((ioend = next) != NULL); |
| } |
| |
| /* |
| * Test to see if we've been building up a completion structure for |
| * earlier buffers -- if so, we try to append to this ioend if we |
| * can, otherwise we finish off any current ioend and start another. |
| * Return true if we've finished the given ioend. |
| */ |
| STATIC void |
| xfs_add_to_ioend( |
| struct inode *inode, |
| struct buffer_head *bh, |
| xfs_off_t offset, |
| unsigned int type, |
| xfs_ioend_t **result, |
| int need_ioend) |
| { |
| xfs_ioend_t *ioend = *result; |
| |
| if (!ioend || need_ioend || type != ioend->io_type) { |
| xfs_ioend_t *previous = *result; |
| |
| ioend = xfs_alloc_ioend(inode, type); |
| ioend->io_offset = offset; |
| ioend->io_buffer_head = bh; |
| ioend->io_buffer_tail = bh; |
| if (previous) |
| previous->io_list = ioend; |
| *result = ioend; |
| } else { |
| ioend->io_buffer_tail->b_private = bh; |
| ioend->io_buffer_tail = bh; |
| } |
| |
| bh->b_private = NULL; |
| ioend->io_size += bh->b_size; |
| } |
| |
| STATIC void |
| xfs_map_buffer( |
| struct buffer_head *bh, |
| xfs_iomap_t *mp, |
| xfs_off_t offset, |
| uint block_bits) |
| { |
| sector_t bn; |
| |
| ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL); |
| |
| bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) + |
| ((offset - mp->iomap_offset) >> block_bits); |
| |
| ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME)); |
| |
| bh->b_blocknr = bn; |
| set_buffer_mapped(bh); |
| } |
| |
| STATIC void |
| xfs_map_at_offset( |
| struct buffer_head *bh, |
| loff_t offset, |
| int block_bits, |
| xfs_iomap_t *iomapp) |
| { |
| ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE)); |
| ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY)); |
| |
| lock_buffer(bh); |
| xfs_map_buffer(bh, iomapp, offset, block_bits); |
| bh->b_bdev = iomapp->iomap_target->bt_bdev; |
| set_buffer_mapped(bh); |
| clear_buffer_delay(bh); |
| clear_buffer_unwritten(bh); |
| } |
| |
| /* |
| * Look for a page at index that is suitable for clustering. |
| */ |
| STATIC unsigned int |
| xfs_probe_page( |
| struct page *page, |
| unsigned int pg_offset, |
| int mapped) |
| { |
| int ret = 0; |
| |
| if (PageWriteback(page)) |
| return 0; |
| |
| if (page->mapping && PageDirty(page)) { |
| if (page_has_buffers(page)) { |
| struct buffer_head *bh, *head; |
| |
| bh = head = page_buffers(page); |
| do { |
| if (!buffer_uptodate(bh)) |
| break; |
| if (mapped != buffer_mapped(bh)) |
| break; |
| ret += bh->b_size; |
| if (ret >= pg_offset) |
| break; |
| } while ((bh = bh->b_this_page) != head); |
| } else |
| ret = mapped ? 0 : PAGE_CACHE_SIZE; |
| } |
| |
| return ret; |
| } |
| |
| STATIC size_t |
| xfs_probe_cluster( |
| struct inode *inode, |
| struct page *startpage, |
| struct buffer_head *bh, |
| struct buffer_head *head, |
| int mapped) |
| { |
| struct pagevec pvec; |
| pgoff_t tindex, tlast, tloff; |
| size_t total = 0; |
| int done = 0, i; |
| |
| /* First sum forwards in this page */ |
| do { |
| if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh))) |
| return total; |
| total += bh->b_size; |
| } while ((bh = bh->b_this_page) != head); |
| |
| /* if we reached the end of the page, sum forwards in following pages */ |
| tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT; |
| tindex = startpage->index + 1; |
| |
| /* Prune this back to avoid pathological behavior */ |
| tloff = min(tlast, startpage->index + 64); |
| |
| pagevec_init(&pvec, 0); |
| while (!done && tindex <= tloff) { |
| unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); |
| |
| if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) |
| break; |
| |
| for (i = 0; i < pagevec_count(&pvec); i++) { |
| struct page *page = pvec.pages[i]; |
| size_t pg_offset, pg_len = 0; |
| |
| if (tindex == tlast) { |
| pg_offset = |
| i_size_read(inode) & (PAGE_CACHE_SIZE - 1); |
| if (!pg_offset) { |
| done = 1; |
| break; |
| } |
| } else |
| pg_offset = PAGE_CACHE_SIZE; |
| |
| if (page->index == tindex && trylock_page(page)) { |
| pg_len = xfs_probe_page(page, pg_offset, mapped); |
| unlock_page(page); |
| } |
| |
| if (!pg_len) { |
| done = 1; |
| break; |
| } |
| |
| total += pg_len; |
| tindex++; |
| } |
| |
| pagevec_release(&pvec); |
| cond_resched(); |
| } |
| |
| return total; |
| } |
| |
| /* |
| * Test if a given page is suitable for writing as part of an unwritten |
| * or delayed allocate extent. |
| */ |
| STATIC int |
| xfs_is_delayed_page( |
| struct page *page, |
| unsigned int type) |
| { |
| if (PageWriteback(page)) |
| return 0; |
| |
| if (page->mapping && page_has_buffers(page)) { |
| struct buffer_head *bh, *head; |
| int acceptable = 0; |
| |
| bh = head = page_buffers(page); |
| do { |
| if (buffer_unwritten(bh)) |
| acceptable = (type == IOMAP_UNWRITTEN); |
| else if (buffer_delay(bh)) |
| acceptable = (type == IOMAP_DELAY); |
| else if (buffer_dirty(bh) && buffer_mapped(bh)) |
| acceptable = (type == IOMAP_NEW); |
| else |
| break; |
| } while ((bh = bh->b_this_page) != head); |
| |
| if (acceptable) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Allocate & map buffers for page given the extent map. Write it out. |
| * except for the original page of a writepage, this is called on |
| * delalloc/unwritten pages only, for the original page it is possible |
| * that the page has no mapping at all. |
| */ |
| STATIC int |
| xfs_convert_page( |
| struct inode *inode, |
| struct page *page, |
| loff_t tindex, |
| xfs_iomap_t *mp, |
| xfs_ioend_t **ioendp, |
| struct writeback_control *wbc, |
| int startio, |
| int all_bh) |
| { |
| struct buffer_head *bh, *head; |
| xfs_off_t end_offset; |
| unsigned long p_offset; |
| unsigned int type; |
| int bbits = inode->i_blkbits; |
| int len, page_dirty; |
| int count = 0, done = 0, uptodate = 1; |
| xfs_off_t offset = page_offset(page); |
| |
| if (page->index != tindex) |
| goto fail; |
| if (!trylock_page(page)) |
| goto fail; |
| if (PageWriteback(page)) |
| goto fail_unlock_page; |
| if (page->mapping != inode->i_mapping) |
| goto fail_unlock_page; |
| if (!xfs_is_delayed_page(page, (*ioendp)->io_type)) |
| goto fail_unlock_page; |
| |
| /* |
| * page_dirty is initially a count of buffers on the page before |
| * EOF and is decremented as we move each into a cleanable state. |
| * |
| * Derivation: |
| * |
| * End offset is the highest offset that this page should represent. |
| * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) |
| * will evaluate non-zero and be less than PAGE_CACHE_SIZE and |
| * hence give us the correct page_dirty count. On any other page, |
| * it will be zero and in that case we need page_dirty to be the |
| * count of buffers on the page. |
| */ |
| end_offset = min_t(unsigned long long, |
| (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, |
| i_size_read(inode)); |
| |
| len = 1 << inode->i_blkbits; |
| p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), |
| PAGE_CACHE_SIZE); |
| p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; |
| page_dirty = p_offset / len; |
| |
| bh = head = page_buffers(page); |
| do { |
| if (offset >= end_offset) |
| break; |
| if (!buffer_uptodate(bh)) |
| uptodate = 0; |
| if (!(PageUptodate(page) || buffer_uptodate(bh))) { |
| done = 1; |
| continue; |
| } |
| |
| if (buffer_unwritten(bh) || buffer_delay(bh)) { |
| if (buffer_unwritten(bh)) |
| type = IOMAP_UNWRITTEN; |
| else |
| type = IOMAP_DELAY; |
| |
| if (!xfs_iomap_valid(mp, offset)) { |
| done = 1; |
| continue; |
| } |
| |
| ASSERT(!(mp->iomap_flags & IOMAP_HOLE)); |
| ASSERT(!(mp->iomap_flags & IOMAP_DELAY)); |
| |
| xfs_map_at_offset(bh, offset, bbits, mp); |
| if (startio) { |
| xfs_add_to_ioend(inode, bh, offset, |
| type, ioendp, done); |
| } else { |
| set_buffer_dirty(bh); |
| unlock_buffer(bh); |
| mark_buffer_dirty(bh); |
| } |
| page_dirty--; |
| count++; |
| } else { |
| type = IOMAP_NEW; |
| if (buffer_mapped(bh) && all_bh && startio) { |
| lock_buffer(bh); |
| xfs_add_to_ioend(inode, bh, offset, |
| type, ioendp, done); |
| count++; |
| page_dirty--; |
| } else { |
| done = 1; |
| } |
| } |
| } while (offset += len, (bh = bh->b_this_page) != head); |
| |
| if (uptodate && bh == head) |
| SetPageUptodate(page); |
| |
| if (startio) { |
| if (count) { |
| struct backing_dev_info *bdi; |
| |
| bdi = inode->i_mapping->backing_dev_info; |
| wbc->nr_to_write--; |
| if (bdi_write_congested(bdi)) { |
| wbc->encountered_congestion = 1; |
| done = 1; |
| } else if (wbc->nr_to_write <= 0) { |
| done = 1; |
| } |
| } |
| xfs_start_page_writeback(page, !page_dirty, count); |
| } |
| |
| return done; |
| fail_unlock_page: |
| unlock_page(page); |
| fail: |
| return 1; |
| } |
| |
| /* |
| * Convert & write out a cluster of pages in the same extent as defined |
| * by mp and following the start page. |
| */ |
| STATIC void |
| xfs_cluster_write( |
| struct inode *inode, |
| pgoff_t tindex, |
| xfs_iomap_t *iomapp, |
| xfs_ioend_t **ioendp, |
| struct writeback_control *wbc, |
| int startio, |
| int all_bh, |
| pgoff_t tlast) |
| { |
| struct pagevec pvec; |
| int done = 0, i; |
| |
| pagevec_init(&pvec, 0); |
| while (!done && tindex <= tlast) { |
| unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); |
| |
| if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) |
| break; |
| |
| for (i = 0; i < pagevec_count(&pvec); i++) { |
| done = xfs_convert_page(inode, pvec.pages[i], tindex++, |
| iomapp, ioendp, wbc, startio, all_bh); |
| if (done) |
| break; |
| } |
| |
| pagevec_release(&pvec); |
| cond_resched(); |
| } |
| } |
| |
| /* |
| * Calling this without startio set means we are being asked to make a dirty |
| * page ready for freeing it's buffers. When called with startio set then |
| * we are coming from writepage. |
| * |
| * When called with startio set it is important that we write the WHOLE |
| * page if possible. |
| * The bh->b_state's cannot know if any of the blocks or which block for |
| * that matter are dirty due to mmap writes, and therefore bh uptodate is |
| * only valid if the page itself isn't completely uptodate. Some layers |
| * may clear the page dirty flag prior to calling write page, under the |
| * assumption the entire page will be written out; by not writing out the |
| * whole page the page can be reused before all valid dirty data is |
| * written out. Note: in the case of a page that has been dirty'd by |
| * mapwrite and but partially setup by block_prepare_write the |
| * bh->b_states's will not agree and only ones setup by BPW/BCW will have |
| * valid state, thus the whole page must be written out thing. |
| */ |
| |
| STATIC int |
| xfs_page_state_convert( |
| struct inode *inode, |
| struct page *page, |
| struct writeback_control *wbc, |
| int startio, |
| int unmapped) /* also implies page uptodate */ |
| { |
| struct buffer_head *bh, *head; |
| xfs_iomap_t iomap; |
| xfs_ioend_t *ioend = NULL, *iohead = NULL; |
| loff_t offset; |
| unsigned long p_offset = 0; |
| unsigned int type; |
| __uint64_t end_offset; |
| pgoff_t end_index, last_index, tlast; |
| ssize_t size, len; |
| int flags, err, iomap_valid = 0, uptodate = 1; |
| int page_dirty, count = 0; |
| int trylock = 0; |
| int all_bh = unmapped; |
| |
| if (startio) { |
| if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking) |
| trylock |= BMAPI_TRYLOCK; |
| } |
| |
| /* Is this page beyond the end of the file? */ |
| offset = i_size_read(inode); |
| end_index = offset >> PAGE_CACHE_SHIFT; |
| last_index = (offset - 1) >> PAGE_CACHE_SHIFT; |
| if (page->index >= end_index) { |
| if ((page->index >= end_index + 1) || |
| !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { |
| if (startio) |
| unlock_page(page); |
| return 0; |
| } |
| } |
| |
| /* |
| * page_dirty is initially a count of buffers on the page before |
| * EOF and is decremented as we move each into a cleanable state. |
| * |
| * Derivation: |
| * |
| * End offset is the highest offset that this page should represent. |
| * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) |
| * will evaluate non-zero and be less than PAGE_CACHE_SIZE and |
| * hence give us the correct page_dirty count. On any other page, |
| * it will be zero and in that case we need page_dirty to be the |
| * count of buffers on the page. |
| */ |
| end_offset = min_t(unsigned long long, |
| (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset); |
| len = 1 << inode->i_blkbits; |
| p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), |
| PAGE_CACHE_SIZE); |
| p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; |
| page_dirty = p_offset / len; |
| |
| bh = head = page_buffers(page); |
| offset = page_offset(page); |
| flags = BMAPI_READ; |
| type = IOMAP_NEW; |
| |
| /* TODO: cleanup count and page_dirty */ |
| |
| do { |
| if (offset >= end_offset) |
| break; |
| if (!buffer_uptodate(bh)) |
| uptodate = 0; |
| if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) { |
| /* |
| * the iomap is actually still valid, but the ioend |
| * isn't. shouldn't happen too often. |
| */ |
| iomap_valid = 0; |
| continue; |
| } |
| |
| if (iomap_valid) |
| iomap_valid = xfs_iomap_valid(&iomap, offset); |
| |
| /* |
| * First case, map an unwritten extent and prepare for |
| * extent state conversion transaction on completion. |
| * |
| * Second case, allocate space for a delalloc buffer. |
| * We can return EAGAIN here in the release page case. |
| * |
| * Third case, an unmapped buffer was found, and we are |
| * in a path where we need to write the whole page out. |
| */ |
| if (buffer_unwritten(bh) || buffer_delay(bh) || |
| ((buffer_uptodate(bh) || PageUptodate(page)) && |
| !buffer_mapped(bh) && (unmapped || startio))) { |
| int new_ioend = 0; |
| |
| /* |
| * Make sure we don't use a read-only iomap |
| */ |
| if (flags == BMAPI_READ) |
| iomap_valid = 0; |
| |
| if (buffer_unwritten(bh)) { |
| type = IOMAP_UNWRITTEN; |
| flags = BMAPI_WRITE | BMAPI_IGNSTATE; |
| } else if (buffer_delay(bh)) { |
| type = IOMAP_DELAY; |
| flags = BMAPI_ALLOCATE | trylock; |
| } else { |
| type = IOMAP_NEW; |
| flags = BMAPI_WRITE | BMAPI_MMAP; |
| } |
| |
| if (!iomap_valid) { |
| /* |
| * if we didn't have a valid mapping then we |
| * need to ensure that we put the new mapping |
| * in a new ioend structure. This needs to be |
| * done to ensure that the ioends correctly |
| * reflect the block mappings at io completion |
| * for unwritten extent conversion. |
| */ |
| new_ioend = 1; |
| if (type == IOMAP_NEW) { |
| size = xfs_probe_cluster(inode, |
| page, bh, head, 0); |
| } else { |
| size = len; |
| } |
| |
| err = xfs_map_blocks(inode, offset, size, |
| &iomap, flags); |
| if (err) |
| goto error; |
| iomap_valid = xfs_iomap_valid(&iomap, offset); |
| } |
| if (iomap_valid) { |
| xfs_map_at_offset(bh, offset, |
| inode->i_blkbits, &iomap); |
| if (startio) { |
| xfs_add_to_ioend(inode, bh, offset, |
| type, &ioend, |
| new_ioend); |
| } else { |
| set_buffer_dirty(bh); |
| unlock_buffer(bh); |
| mark_buffer_dirty(bh); |
| } |
| page_dirty--; |
| count++; |
| } |
| } else if (buffer_uptodate(bh) && startio) { |
| /* |
| * we got here because the buffer is already mapped. |
| * That means it must already have extents allocated |
| * underneath it. Map the extent by reading it. |
| */ |
| if (!iomap_valid || flags != BMAPI_READ) { |
| flags = BMAPI_READ; |
| size = xfs_probe_cluster(inode, page, bh, |
| head, 1); |
| err = xfs_map_blocks(inode, offset, size, |
| &iomap, flags); |
| if (err) |
| goto error; |
| iomap_valid = xfs_iomap_valid(&iomap, offset); |
| } |
| |
| /* |
| * We set the type to IOMAP_NEW in case we are doing a |
| * small write at EOF that is extending the file but |
| * without needing an allocation. We need to update the |
| * file size on I/O completion in this case so it is |
| * the same case as having just allocated a new extent |
| * that we are writing into for the first time. |
| */ |
| type = IOMAP_NEW; |
| if (trylock_buffer(bh)) { |
| ASSERT(buffer_mapped(bh)); |
| if (iomap_valid) |
| all_bh = 1; |
| xfs_add_to_ioend(inode, bh, offset, type, |
| &ioend, !iomap_valid); |
| page_dirty--; |
| count++; |
| } else { |
| iomap_valid = 0; |
| } |
| } else if ((buffer_uptodate(bh) || PageUptodate(page)) && |
| (unmapped || startio)) { |
| iomap_valid = 0; |
| } |
| |
| if (!iohead) |
| iohead = ioend; |
| |
| } while (offset += len, ((bh = bh->b_this_page) != head)); |
| |
| if (uptodate && bh == head) |
| SetPageUptodate(page); |
| |
| if (startio) |
| xfs_start_page_writeback(page, 1, count); |
| |
| if (ioend && iomap_valid) { |
| offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >> |
| PAGE_CACHE_SHIFT; |
| tlast = min_t(pgoff_t, offset, last_index); |
| xfs_cluster_write(inode, page->index + 1, &iomap, &ioend, |
| wbc, startio, all_bh, tlast); |
| } |
| |
| if (iohead) |
| xfs_submit_ioend(iohead); |
| |
| return page_dirty; |
| |
| error: |
| if (iohead) |
| xfs_cancel_ioend(iohead); |
| |
| /* |
| * If it's delalloc and we have nowhere to put it, |
| * throw it away, unless the lower layers told |
| * us to try again. |
| */ |
| if (err != -EAGAIN) { |
| if (!unmapped) |
| block_invalidatepage(page, 0); |
| ClearPageUptodate(page); |
| } |
| return err; |
| } |
| |
| /* |
| * writepage: Called from one of two places: |
| * |
| * 1. we are flushing a delalloc buffer head. |
| * |
| * 2. we are writing out a dirty page. Typically the page dirty |
| * state is cleared before we get here. In this case is it |
| * conceivable we have no buffer heads. |
| * |
| * For delalloc space on the page we need to allocate space and |
| * flush it. For unmapped buffer heads on the page we should |
| * allocate space if the page is uptodate. For any other dirty |
| * buffer heads on the page we should flush them. |
| * |
| * If we detect that a transaction would be required to flush |
| * the page, we have to check the process flags first, if we |
| * are already in a transaction or disk I/O during allocations |
| * is off, we need to fail the writepage and redirty the page. |
| */ |
| |
| STATIC int |
| xfs_vm_writepage( |
| struct page *page, |
| struct writeback_control *wbc) |
| { |
| int error; |
| int need_trans; |
| int delalloc, unmapped, unwritten; |
| struct inode *inode = page->mapping->host; |
| |
| xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0); |
| |
| /* |
| * We need a transaction if: |
| * 1. There are delalloc buffers on the page |
| * 2. The page is uptodate and we have unmapped buffers |
| * 3. The page is uptodate and we have no buffers |
| * 4. There are unwritten buffers on the page |
| */ |
| |
| if (!page_has_buffers(page)) { |
| unmapped = 1; |
| need_trans = 1; |
| } else { |
| xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); |
| if (!PageUptodate(page)) |
| unmapped = 0; |
| need_trans = delalloc + unmapped + unwritten; |
| } |
| |
| /* |
| * If we need a transaction and the process flags say |
| * we are already in a transaction, or no IO is allowed |
| * then mark the page dirty again and leave the page |
| * as is. |
| */ |
| if (current_test_flags(PF_FSTRANS) && need_trans) |
| goto out_fail; |
| |
| /* |
| * Delay hooking up buffer heads until we have |
| * made our go/no-go decision. |
| */ |
| if (!page_has_buffers(page)) |
| create_empty_buffers(page, 1 << inode->i_blkbits, 0); |
| |
| /* |
| * Convert delayed allocate, unwritten or unmapped space |
| * to real space and flush out to disk. |
| */ |
| error = xfs_page_state_convert(inode, page, wbc, 1, unmapped); |
| if (error == -EAGAIN) |
| goto out_fail; |
| if (unlikely(error < 0)) |
| goto out_unlock; |
| |
| return 0; |
| |
| out_fail: |
| redirty_page_for_writepage(wbc, page); |
| unlock_page(page); |
| return 0; |
| out_unlock: |
| unlock_page(page); |
| return error; |
| } |
| |
| STATIC int |
| xfs_vm_writepages( |
| struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); |
| return generic_writepages(mapping, wbc); |
| } |
| |
| /* |
| * Called to move a page into cleanable state - and from there |
| * to be released. Possibly the page is already clean. We always |
| * have buffer heads in this call. |
| * |
| * Returns 0 if the page is ok to release, 1 otherwise. |
| * |
| * Possible scenarios are: |
| * |
| * 1. We are being called to release a page which has been written |
| * to via regular I/O. buffer heads will be dirty and possibly |
| * delalloc. If no delalloc buffer heads in this case then we |
| * can just return zero. |
| * |
| * 2. We are called to release a page which has been written via |
| * mmap, all we need to do is ensure there is no delalloc |
| * state in the buffer heads, if not we can let the caller |
| * free them and we should come back later via writepage. |
| */ |
| STATIC int |
| xfs_vm_releasepage( |
| struct page *page, |
| gfp_t gfp_mask) |
| { |
| struct inode *inode = page->mapping->host; |
| int dirty, delalloc, unmapped, unwritten; |
| struct writeback_control wbc = { |
| .sync_mode = WB_SYNC_ALL, |
| .nr_to_write = 1, |
| }; |
| |
| xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0); |
| |
| if (!page_has_buffers(page)) |
| return 0; |
| |
| xfs_count_page_state(page, &delalloc, &unmapped, &unwritten); |
| if (!delalloc && !unwritten) |
| goto free_buffers; |
| |
| if (!(gfp_mask & __GFP_FS)) |
| return 0; |
| |
| /* If we are already inside a transaction or the thread cannot |
| * do I/O, we cannot release this page. |
| */ |
| if (current_test_flags(PF_FSTRANS)) |
| return 0; |
| |
| /* |
| * Convert delalloc space to real space, do not flush the |
| * data out to disk, that will be done by the caller. |
| * Never need to allocate space here - we will always |
| * come back to writepage in that case. |
| */ |
| dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0); |
| if (dirty == 0 && !unwritten) |
| goto free_buffers; |
| return 0; |
| |
| free_buffers: |
| return try_to_free_buffers(page); |
| } |
| |
| STATIC int |
| __xfs_get_blocks( |
| struct inode *inode, |
| sector_t iblock, |
| struct buffer_head *bh_result, |
| int create, |
| int direct, |
| bmapi_flags_t flags) |
| { |
| xfs_iomap_t iomap; |
| xfs_off_t offset; |
| ssize_t size; |
| int niomap = 1; |
| int error; |
| |
| offset = (xfs_off_t)iblock << inode->i_blkbits; |
| ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); |
| size = bh_result->b_size; |
| |
| if (!create && direct && offset >= i_size_read(inode)) |
| return 0; |
| |
| error = xfs_iomap(XFS_I(inode), offset, size, |
| create ? flags : BMAPI_READ, &iomap, &niomap); |
| if (error) |
| return -error; |
| if (niomap == 0) |
| return 0; |
| |
| if (iomap.iomap_bn != IOMAP_DADDR_NULL) { |
| /* |
| * For unwritten extents do not report a disk address on |
| * the read case (treat as if we're reading into a hole). |
| */ |
| if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) { |
| xfs_map_buffer(bh_result, &iomap, offset, |
| inode->i_blkbits); |
| } |
| if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) { |
| if (direct) |
| bh_result->b_private = inode; |
| set_buffer_unwritten(bh_result); |
| } |
| } |
| |
| /* |
| * If this is a realtime file, data may be on a different device. |
| * to that pointed to from the buffer_head b_bdev currently. |
| */ |
| bh_result->b_bdev = iomap.iomap_target->bt_bdev; |
| |
| /* |
| * If we previously allocated a block out beyond eof and we are now |
| * coming back to use it then we will need to flag it as new even if it |
| * has a disk address. |
| * |
| * With sub-block writes into unwritten extents we also need to mark |
| * the buffer as new so that the unwritten parts of the buffer gets |
| * correctly zeroed. |
| */ |
| if (create && |
| ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || |
| (offset >= i_size_read(inode)) || |
| (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN)))) |
| set_buffer_new(bh_result); |
| |
| if (iomap.iomap_flags & IOMAP_DELAY) { |
| BUG_ON(direct); |
| if (create) { |
| set_buffer_uptodate(bh_result); |
| set_buffer_mapped(bh_result); |
| set_buffer_delay(bh_result); |
| } |
| } |
| |
| if (direct || size > (1 << inode->i_blkbits)) { |
| ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0); |
| offset = min_t(xfs_off_t, |
| iomap.iomap_bsize - iomap.iomap_delta, size); |
| bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset); |
| } |
| |
| return 0; |
| } |
| |
| int |
| xfs_get_blocks( |
| struct inode *inode, |
| sector_t iblock, |
| struct buffer_head *bh_result, |
| int create) |
| { |
| return __xfs_get_blocks(inode, iblock, |
| bh_result, create, 0, BMAPI_WRITE); |
| } |
| |
| STATIC int |
| xfs_get_blocks_direct( |
| struct inode *inode, |
| sector_t iblock, |
| struct buffer_head *bh_result, |
| int create) |
| { |
| return __xfs_get_blocks(inode, iblock, |
| bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT); |
| } |
| |
| STATIC void |
| xfs_end_io_direct( |
| struct kiocb *iocb, |
| loff_t offset, |
| ssize_t size, |
| void *private) |
| { |
| xfs_ioend_t *ioend = iocb->private; |
| |
| /* |
| * Non-NULL private data means we need to issue a transaction to |
| * convert a range from unwritten to written extents. This needs |
| * to happen from process context but aio+dio I/O completion |
| * happens from irq context so we need to defer it to a workqueue. |
| * This is not necessary for synchronous direct I/O, but we do |
| * it anyway to keep the code uniform and simpler. |
| * |
| * Well, if only it were that simple. Because synchronous direct I/O |
| * requires extent conversion to occur *before* we return to userspace, |
| * we have to wait for extent conversion to complete. Look at the |
| * iocb that has been passed to us to determine if this is AIO or |
| * not. If it is synchronous, tell xfs_finish_ioend() to kick the |
| * workqueue and wait for it to complete. |
| * |
| * The core direct I/O code might be changed to always call the |
| * completion handler in the future, in which case all this can |
| * go away. |
| */ |
| ioend->io_offset = offset; |
| ioend->io_size = size; |
| if (ioend->io_type == IOMAP_READ) { |
| xfs_finish_ioend(ioend, 0); |
| } else if (private && size > 0) { |
| xfs_finish_ioend(ioend, is_sync_kiocb(iocb)); |
| } else { |
| /* |
| * A direct I/O write ioend starts it's life in unwritten |
| * state in case they map an unwritten extent. This write |
| * didn't map an unwritten extent so switch it's completion |
| * handler. |
| */ |
| INIT_WORK(&ioend->io_work, xfs_end_bio_written); |
| xfs_finish_ioend(ioend, 0); |
| } |
| |
| /* |
| * blockdev_direct_IO can return an error even after the I/O |
| * completion handler was called. Thus we need to protect |
| * against double-freeing. |
| */ |
| iocb->private = NULL; |
| } |
| |
| STATIC ssize_t |
| xfs_vm_direct_IO( |
| int rw, |
| struct kiocb *iocb, |
| const struct iovec *iov, |
| loff_t offset, |
| unsigned long nr_segs) |
| { |
| struct file *file = iocb->ki_filp; |
| struct inode *inode = file->f_mapping->host; |
| struct block_device *bdev; |
| ssize_t ret; |
| |
| bdev = xfs_find_bdev_for_inode(XFS_I(inode)); |
| |
| if (rw == WRITE) { |
| iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN); |
| ret = blockdev_direct_IO_own_locking(rw, iocb, inode, |
| bdev, iov, offset, nr_segs, |
| xfs_get_blocks_direct, |
| xfs_end_io_direct); |
| } else { |
| iocb->private = xfs_alloc_ioend(inode, IOMAP_READ); |
| ret = blockdev_direct_IO_no_locking(rw, iocb, inode, |
| bdev, iov, offset, nr_segs, |
| xfs_get_blocks_direct, |
| xfs_end_io_direct); |
| } |
| |
| if (unlikely(ret != -EIOCBQUEUED && iocb->private)) |
| xfs_destroy_ioend(iocb->private); |
| return ret; |
| } |
| |
| STATIC int |
| xfs_vm_write_begin( |
| struct file *file, |
| struct address_space *mapping, |
| loff_t pos, |
| unsigned len, |
| unsigned flags, |
| struct page **pagep, |
| void **fsdata) |
| { |
| *pagep = NULL; |
| return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, |
| xfs_get_blocks); |
| } |
| |
| STATIC sector_t |
| xfs_vm_bmap( |
| struct address_space *mapping, |
| sector_t block) |
| { |
| struct inode *inode = (struct inode *)mapping->host; |
| struct xfs_inode *ip = XFS_I(inode); |
| |
| xfs_itrace_entry(XFS_I(inode)); |
| xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF); |
| xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| return generic_block_bmap(mapping, block, xfs_get_blocks); |
| } |
| |
| STATIC int |
| xfs_vm_readpage( |
| struct file *unused, |
| struct page *page) |
| { |
| return mpage_readpage(page, xfs_get_blocks); |
| } |
| |
| STATIC int |
| xfs_vm_readpages( |
| struct file *unused, |
| struct address_space *mapping, |
| struct list_head *pages, |
| unsigned nr_pages) |
| { |
| return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); |
| } |
| |
| STATIC void |
| xfs_vm_invalidatepage( |
| struct page *page, |
| unsigned long offset) |
| { |
| xfs_page_trace(XFS_INVALIDPAGE_ENTER, |
| page->mapping->host, page, offset); |
| block_invalidatepage(page, offset); |
| } |
| |
| const struct address_space_operations xfs_address_space_operations = { |
| .readpage = xfs_vm_readpage, |
| .readpages = xfs_vm_readpages, |
| .writepage = xfs_vm_writepage, |
| .writepages = xfs_vm_writepages, |
| .sync_page = block_sync_page, |
| .releasepage = xfs_vm_releasepage, |
| .invalidatepage = xfs_vm_invalidatepage, |
| .write_begin = xfs_vm_write_begin, |
| .write_end = generic_write_end, |
| .bmap = xfs_vm_bmap, |
| .direct_IO = xfs_vm_direct_IO, |
| .migratepage = buffer_migrate_page, |
| }; |