| /* |
| * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com> |
| * |
| * Derived from: |
| * https://github.com/yuq/sunxi-nfc-mtd |
| * Copyright (C) 2013 Qiang Yu <yuq825@gmail.com> |
| * |
| * https://github.com/hno/Allwinner-Info |
| * Copyright (C) 2013 Henrik Nordström <Henrik Nordström> |
| * |
| * Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com> |
| * Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/platform_device.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_gpio.h> |
| #include <linux/of_mtd.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/gpio.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| |
| #define NFC_REG_CTL 0x0000 |
| #define NFC_REG_ST 0x0004 |
| #define NFC_REG_INT 0x0008 |
| #define NFC_REG_TIMING_CTL 0x000C |
| #define NFC_REG_TIMING_CFG 0x0010 |
| #define NFC_REG_ADDR_LOW 0x0014 |
| #define NFC_REG_ADDR_HIGH 0x0018 |
| #define NFC_REG_SECTOR_NUM 0x001C |
| #define NFC_REG_CNT 0x0020 |
| #define NFC_REG_CMD 0x0024 |
| #define NFC_REG_RCMD_SET 0x0028 |
| #define NFC_REG_WCMD_SET 0x002C |
| #define NFC_REG_IO_DATA 0x0030 |
| #define NFC_REG_ECC_CTL 0x0034 |
| #define NFC_REG_ECC_ST 0x0038 |
| #define NFC_REG_DEBUG 0x003C |
| #define NFC_REG_ECC_CNT0 0x0040 |
| #define NFC_REG_ECC_CNT1 0x0044 |
| #define NFC_REG_ECC_CNT2 0x0048 |
| #define NFC_REG_ECC_CNT3 0x004c |
| #define NFC_REG_USER_DATA_BASE 0x0050 |
| #define NFC_REG_SPARE_AREA 0x00A0 |
| #define NFC_RAM0_BASE 0x0400 |
| #define NFC_RAM1_BASE 0x0800 |
| |
| /* define bit use in NFC_CTL */ |
| #define NFC_EN BIT(0) |
| #define NFC_RESET BIT(1) |
| #define NFC_BUS_WIDYH BIT(2) |
| #define NFC_RB_SEL BIT(3) |
| #define NFC_CE_SEL GENMASK(26, 24) |
| #define NFC_CE_CTL BIT(6) |
| #define NFC_CE_CTL1 BIT(7) |
| #define NFC_PAGE_SIZE GENMASK(11, 8) |
| #define NFC_SAM BIT(12) |
| #define NFC_RAM_METHOD BIT(14) |
| #define NFC_DEBUG_CTL BIT(31) |
| |
| /* define bit use in NFC_ST */ |
| #define NFC_RB_B2R BIT(0) |
| #define NFC_CMD_INT_FLAG BIT(1) |
| #define NFC_DMA_INT_FLAG BIT(2) |
| #define NFC_CMD_FIFO_STATUS BIT(3) |
| #define NFC_STA BIT(4) |
| #define NFC_NATCH_INT_FLAG BIT(5) |
| #define NFC_RB_STATE0 BIT(8) |
| #define NFC_RB_STATE1 BIT(9) |
| #define NFC_RB_STATE2 BIT(10) |
| #define NFC_RB_STATE3 BIT(11) |
| |
| /* define bit use in NFC_INT */ |
| #define NFC_B2R_INT_ENABLE BIT(0) |
| #define NFC_CMD_INT_ENABLE BIT(1) |
| #define NFC_DMA_INT_ENABLE BIT(2) |
| #define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \ |
| NFC_CMD_INT_ENABLE | \ |
| NFC_DMA_INT_ENABLE) |
| |
| /* define bit use in NFC_TIMING_CTL */ |
| #define NFC_TIMING_CTL_EDO BIT(8) |
| |
| /* define NFC_TIMING_CFG register layout */ |
| #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \ |
| (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \ |
| (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \ |
| (((tCAD) & 0x7) << 8)) |
| |
| /* define bit use in NFC_CMD */ |
| #define NFC_CMD_LOW_BYTE GENMASK(7, 0) |
| #define NFC_CMD_HIGH_BYTE GENMASK(15, 8) |
| #define NFC_ADR_NUM GENMASK(18, 16) |
| #define NFC_SEND_ADR BIT(19) |
| #define NFC_ACCESS_DIR BIT(20) |
| #define NFC_DATA_TRANS BIT(21) |
| #define NFC_SEND_CMD1 BIT(22) |
| #define NFC_WAIT_FLAG BIT(23) |
| #define NFC_SEND_CMD2 BIT(24) |
| #define NFC_SEQ BIT(25) |
| #define NFC_DATA_SWAP_METHOD BIT(26) |
| #define NFC_ROW_AUTO_INC BIT(27) |
| #define NFC_SEND_CMD3 BIT(28) |
| #define NFC_SEND_CMD4 BIT(29) |
| #define NFC_CMD_TYPE GENMASK(31, 30) |
| |
| /* define bit use in NFC_RCMD_SET */ |
| #define NFC_READ_CMD GENMASK(7, 0) |
| #define NFC_RANDOM_READ_CMD0 GENMASK(15, 8) |
| #define NFC_RANDOM_READ_CMD1 GENMASK(23, 16) |
| |
| /* define bit use in NFC_WCMD_SET */ |
| #define NFC_PROGRAM_CMD GENMASK(7, 0) |
| #define NFC_RANDOM_WRITE_CMD GENMASK(15, 8) |
| #define NFC_READ_CMD0 GENMASK(23, 16) |
| #define NFC_READ_CMD1 GENMASK(31, 24) |
| |
| /* define bit use in NFC_ECC_CTL */ |
| #define NFC_ECC_EN BIT(0) |
| #define NFC_ECC_PIPELINE BIT(3) |
| #define NFC_ECC_EXCEPTION BIT(4) |
| #define NFC_ECC_BLOCK_SIZE BIT(5) |
| #define NFC_RANDOM_EN BIT(9) |
| #define NFC_RANDOM_DIRECTION BIT(10) |
| #define NFC_ECC_MODE_SHIFT 12 |
| #define NFC_ECC_MODE GENMASK(15, 12) |
| #define NFC_RANDOM_SEED GENMASK(30, 16) |
| |
| #define NFC_DEFAULT_TIMEOUT_MS 1000 |
| |
| #define NFC_SRAM_SIZE 1024 |
| |
| #define NFC_MAX_CS 7 |
| |
| /* |
| * Ready/Busy detection type: describes the Ready/Busy detection modes |
| * |
| * @RB_NONE: no external detection available, rely on STATUS command |
| * and software timeouts |
| * @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy |
| * pin of the NAND flash chip must be connected to one of the |
| * native NAND R/B pins (those which can be muxed to the NAND |
| * Controller) |
| * @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy |
| * pin of the NAND flash chip must be connected to a GPIO capable |
| * pin. |
| */ |
| enum sunxi_nand_rb_type { |
| RB_NONE, |
| RB_NATIVE, |
| RB_GPIO, |
| }; |
| |
| /* |
| * Ready/Busy structure: stores information related to Ready/Busy detection |
| * |
| * @type: the Ready/Busy detection mode |
| * @info: information related to the R/B detection mode. Either a gpio |
| * id or a native R/B id (those supported by the NAND controller). |
| */ |
| struct sunxi_nand_rb { |
| enum sunxi_nand_rb_type type; |
| union { |
| int gpio; |
| int nativeid; |
| } info; |
| }; |
| |
| /* |
| * Chip Select structure: stores information related to NAND Chip Select |
| * |
| * @cs: the NAND CS id used to communicate with a NAND Chip |
| * @rb: the Ready/Busy description |
| */ |
| struct sunxi_nand_chip_sel { |
| u8 cs; |
| struct sunxi_nand_rb rb; |
| }; |
| |
| /* |
| * sunxi HW ECC infos: stores information related to HW ECC support |
| * |
| * @mode: the sunxi ECC mode field deduced from ECC requirements |
| * @layout: the OOB layout depending on the ECC requirements and the |
| * selected ECC mode |
| */ |
| struct sunxi_nand_hw_ecc { |
| int mode; |
| struct nand_ecclayout layout; |
| }; |
| |
| /* |
| * NAND chip structure: stores NAND chip device related information |
| * |
| * @node: used to store NAND chips into a list |
| * @nand: base NAND chip structure |
| * @mtd: base MTD structure |
| * @clk_rate: clk_rate required for this NAND chip |
| * @timing_cfg TIMING_CFG register value for this NAND chip |
| * @selected: current active CS |
| * @nsels: number of CS lines required by the NAND chip |
| * @sels: array of CS lines descriptions |
| */ |
| struct sunxi_nand_chip { |
| struct list_head node; |
| struct nand_chip nand; |
| struct mtd_info mtd; |
| unsigned long clk_rate; |
| u32 timing_cfg; |
| u32 timing_ctl; |
| int selected; |
| int nsels; |
| struct sunxi_nand_chip_sel sels[0]; |
| }; |
| |
| static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand) |
| { |
| return container_of(nand, struct sunxi_nand_chip, nand); |
| } |
| |
| /* |
| * NAND Controller structure: stores sunxi NAND controller information |
| * |
| * @controller: base controller structure |
| * @dev: parent device (used to print error messages) |
| * @regs: NAND controller registers |
| * @ahb_clk: NAND Controller AHB clock |
| * @mod_clk: NAND Controller mod clock |
| * @assigned_cs: bitmask describing already assigned CS lines |
| * @clk_rate: NAND controller current clock rate |
| * @chips: a list containing all the NAND chips attached to |
| * this NAND controller |
| * @complete: a completion object used to wait for NAND |
| * controller events |
| */ |
| struct sunxi_nfc { |
| struct nand_hw_control controller; |
| struct device *dev; |
| void __iomem *regs; |
| struct clk *ahb_clk; |
| struct clk *mod_clk; |
| unsigned long assigned_cs; |
| unsigned long clk_rate; |
| struct list_head chips; |
| struct completion complete; |
| }; |
| |
| static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl) |
| { |
| return container_of(ctrl, struct sunxi_nfc, controller); |
| } |
| |
| static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id) |
| { |
| struct sunxi_nfc *nfc = dev_id; |
| u32 st = readl(nfc->regs + NFC_REG_ST); |
| u32 ien = readl(nfc->regs + NFC_REG_INT); |
| |
| if (!(ien & st)) |
| return IRQ_NONE; |
| |
| if ((ien & st) == ien) |
| complete(&nfc->complete); |
| |
| writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST); |
| writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags, |
| unsigned int timeout_ms) |
| { |
| init_completion(&nfc->complete); |
| |
| writel(flags, nfc->regs + NFC_REG_INT); |
| |
| if (!timeout_ms) |
| timeout_ms = NFC_DEFAULT_TIMEOUT_MS; |
| |
| if (!wait_for_completion_timeout(&nfc->complete, |
| msecs_to_jiffies(timeout_ms))) { |
| dev_err(nfc->dev, "wait interrupt timedout\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc) |
| { |
| unsigned long timeout = jiffies + |
| msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS); |
| |
| do { |
| if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS)) |
| return 0; |
| } while (time_before(jiffies, timeout)); |
| |
| dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n"); |
| return -ETIMEDOUT; |
| } |
| |
| static int sunxi_nfc_rst(struct sunxi_nfc *nfc) |
| { |
| unsigned long timeout = jiffies + |
| msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS); |
| |
| writel(0, nfc->regs + NFC_REG_ECC_CTL); |
| writel(NFC_RESET, nfc->regs + NFC_REG_CTL); |
| |
| do { |
| if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET)) |
| return 0; |
| } while (time_before(jiffies, timeout)); |
| |
| dev_err(nfc->dev, "wait for NAND controller reset timedout\n"); |
| return -ETIMEDOUT; |
| } |
| |
| static int sunxi_nfc_dev_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd->priv; |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| struct sunxi_nand_rb *rb; |
| unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20); |
| int ret; |
| |
| if (sunxi_nand->selected < 0) |
| return 0; |
| |
| rb = &sunxi_nand->sels[sunxi_nand->selected].rb; |
| |
| switch (rb->type) { |
| case RB_NATIVE: |
| ret = !!(readl(nfc->regs + NFC_REG_ST) & |
| (NFC_RB_STATE0 << rb->info.nativeid)); |
| if (ret) |
| break; |
| |
| sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo); |
| ret = !!(readl(nfc->regs + NFC_REG_ST) & |
| (NFC_RB_STATE0 << rb->info.nativeid)); |
| break; |
| case RB_GPIO: |
| ret = gpio_get_value(rb->info.gpio); |
| break; |
| case RB_NONE: |
| default: |
| ret = 0; |
| dev_err(nfc->dev, "cannot check R/B NAND status!\n"); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *nand = mtd->priv; |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| struct sunxi_nand_chip_sel *sel; |
| u32 ctl; |
| |
| if (chip > 0 && chip >= sunxi_nand->nsels) |
| return; |
| |
| if (chip == sunxi_nand->selected) |
| return; |
| |
| ctl = readl(nfc->regs + NFC_REG_CTL) & |
| ~(NFC_CE_SEL | NFC_RB_SEL | NFC_EN); |
| |
| if (chip >= 0) { |
| sel = &sunxi_nand->sels[chip]; |
| |
| ctl |= (sel->cs << 24) | NFC_EN | |
| (((nand->page_shift - 10) & 0xf) << 8); |
| if (sel->rb.type == RB_NONE) { |
| nand->dev_ready = NULL; |
| } else { |
| nand->dev_ready = sunxi_nfc_dev_ready; |
| if (sel->rb.type == RB_NATIVE) |
| ctl |= (sel->rb.info.nativeid << 3); |
| } |
| |
| writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA); |
| |
| if (nfc->clk_rate != sunxi_nand->clk_rate) { |
| clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate); |
| nfc->clk_rate = sunxi_nand->clk_rate; |
| } |
| } |
| |
| writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL); |
| writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG); |
| writel(ctl, nfc->regs + NFC_REG_CTL); |
| |
| sunxi_nand->selected = chip; |
| } |
| |
| static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct nand_chip *nand = mtd->priv; |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| int ret; |
| int cnt; |
| int offs = 0; |
| u32 tmp; |
| |
| while (len > offs) { |
| cnt = min(len - offs, NFC_SRAM_SIZE); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| break; |
| |
| writel(cnt, nfc->regs + NFC_REG_CNT); |
| tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; |
| writel(tmp, nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); |
| if (ret) |
| break; |
| |
| if (buf) |
| memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE, |
| cnt); |
| offs += cnt; |
| } |
| } |
| |
| static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, |
| int len) |
| { |
| struct nand_chip *nand = mtd->priv; |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| int ret; |
| int cnt; |
| int offs = 0; |
| u32 tmp; |
| |
| while (len > offs) { |
| cnt = min(len - offs, NFC_SRAM_SIZE); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| break; |
| |
| writel(cnt, nfc->regs + NFC_REG_CNT); |
| memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt); |
| tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | |
| NFC_ACCESS_DIR; |
| writel(tmp, nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); |
| if (ret) |
| break; |
| |
| offs += cnt; |
| } |
| } |
| |
| static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd) |
| { |
| uint8_t ret; |
| |
| sunxi_nfc_read_buf(mtd, &ret, 1); |
| |
| return ret; |
| } |
| |
| static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, |
| unsigned int ctrl) |
| { |
| struct nand_chip *nand = mtd->priv; |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| int ret; |
| u32 tmp; |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| return; |
| |
| if (ctrl & NAND_CTRL_CHANGE) { |
| tmp = readl(nfc->regs + NFC_REG_CTL); |
| if (ctrl & NAND_NCE) |
| tmp |= NFC_CE_CTL; |
| else |
| tmp &= ~NFC_CE_CTL; |
| writel(tmp, nfc->regs + NFC_REG_CTL); |
| } |
| |
| if (dat == NAND_CMD_NONE) |
| return; |
| |
| if (ctrl & NAND_CLE) { |
| writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD); |
| } else { |
| writel(dat, nfc->regs + NFC_REG_ADDR_LOW); |
| writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD); |
| } |
| |
| sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); |
| } |
| |
| static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| struct nand_ecclayout *layout = ecc->layout; |
| struct sunxi_nand_hw_ecc *data = ecc->priv; |
| unsigned int max_bitflips = 0; |
| int offset; |
| int ret; |
| u32 tmp; |
| int i; |
| int cnt; |
| |
| tmp = readl(nfc->regs + NFC_REG_ECC_CTL); |
| tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE); |
| tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) | |
| NFC_ECC_EXCEPTION; |
| |
| writel(tmp, nfc->regs + NFC_REG_ECC_CTL); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| if (i) |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i * ecc->size, -1); |
| |
| offset = mtd->writesize + layout->eccpos[i * ecc->bytes] - 4; |
| |
| chip->read_buf(mtd, NULL, ecc->size); |
| |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| return ret; |
| |
| tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30); |
| writel(tmp, nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); |
| if (ret) |
| return ret; |
| |
| memcpy_fromio(buf + (i * ecc->size), |
| nfc->regs + NFC_RAM0_BASE, ecc->size); |
| |
| if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) { |
| mtd->ecc_stats.failed++; |
| } else { |
| tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff; |
| mtd->ecc_stats.corrected += tmp; |
| max_bitflips = max_t(unsigned int, max_bitflips, tmp); |
| } |
| |
| if (oob_required) { |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| return ret; |
| |
| offset -= mtd->writesize; |
| chip->read_buf(mtd, chip->oob_poi + offset, |
| ecc->bytes + 4); |
| } |
| } |
| |
| if (oob_required) { |
| cnt = ecc->layout->oobfree[ecc->steps].length; |
| if (cnt > 0) { |
| offset = mtd->writesize + |
| ecc->layout->oobfree[ecc->steps].offset; |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); |
| offset -= mtd->writesize; |
| chip->read_buf(mtd, chip->oob_poi + offset, cnt); |
| } |
| } |
| |
| tmp = readl(nfc->regs + NFC_REG_ECC_CTL); |
| tmp &= ~NFC_ECC_EN; |
| |
| writel(tmp, nfc->regs + NFC_REG_ECC_CTL); |
| |
| return max_bitflips; |
| } |
| |
| static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf, int oob_required) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| struct nand_ecclayout *layout = ecc->layout; |
| struct sunxi_nand_hw_ecc *data = ecc->priv; |
| int offset; |
| int ret; |
| u32 tmp; |
| int i; |
| int cnt; |
| |
| tmp = readl(nfc->regs + NFC_REG_ECC_CTL); |
| tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE); |
| tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) | |
| NFC_ECC_EXCEPTION; |
| |
| writel(tmp, nfc->regs + NFC_REG_ECC_CTL); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| if (i) |
| chip->cmdfunc(mtd, NAND_CMD_RNDIN, i * ecc->size, -1); |
| |
| chip->write_buf(mtd, buf + (i * ecc->size), ecc->size); |
| |
| offset = layout->eccpos[i * ecc->bytes] - 4 + mtd->writesize; |
| |
| /* Fill OOB data in */ |
| if (oob_required) { |
| tmp = 0xffffffff; |
| memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp, |
| 4); |
| } else { |
| memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, |
| chip->oob_poi + offset - mtd->writesize, |
| 4); |
| } |
| |
| chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1); |
| |
| ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| if (ret) |
| return ret; |
| |
| tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR | |
| (1 << 30); |
| writel(tmp, nfc->regs + NFC_REG_CMD); |
| ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); |
| if (ret) |
| return ret; |
| } |
| |
| if (oob_required) { |
| cnt = ecc->layout->oobfree[i].length; |
| if (cnt > 0) { |
| offset = mtd->writesize + |
| ecc->layout->oobfree[i].offset; |
| chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1); |
| offset -= mtd->writesize; |
| chip->write_buf(mtd, chip->oob_poi + offset, cnt); |
| } |
| } |
| |
| tmp = readl(nfc->regs + NFC_REG_ECC_CTL); |
| tmp &= ~NFC_ECC_EN; |
| |
| writel(tmp, nfc->regs + NFC_REG_ECC_CTL); |
| |
| return 0; |
| } |
| |
| static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| uint8_t *buf, int oob_required, |
| int page) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| struct sunxi_nand_hw_ecc *data = ecc->priv; |
| unsigned int max_bitflips = 0; |
| uint8_t *oob = chip->oob_poi; |
| int offset = 0; |
| int ret; |
| int cnt; |
| u32 tmp; |
| int i; |
| |
| tmp = readl(nfc->regs + NFC_REG_ECC_CTL); |
| tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE); |
| tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) | |
| NFC_ECC_EXCEPTION; |
| |
| writel(tmp, nfc->regs + NFC_REG_ECC_CTL); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| chip->read_buf(mtd, NULL, ecc->size); |
| |
| tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30); |
| writel(tmp, nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); |
| if (ret) |
| return ret; |
| |
| memcpy_fromio(buf, nfc->regs + NFC_RAM0_BASE, ecc->size); |
| buf += ecc->size; |
| offset += ecc->size; |
| |
| if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) { |
| mtd->ecc_stats.failed++; |
| } else { |
| tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff; |
| mtd->ecc_stats.corrected += tmp; |
| max_bitflips = max_t(unsigned int, max_bitflips, tmp); |
| } |
| |
| if (oob_required) { |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); |
| chip->read_buf(mtd, oob, ecc->bytes + ecc->prepad); |
| oob += ecc->bytes + ecc->prepad; |
| } |
| |
| offset += ecc->bytes + ecc->prepad; |
| } |
| |
| if (oob_required) { |
| cnt = mtd->oobsize - (oob - chip->oob_poi); |
| if (cnt > 0) { |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); |
| chip->read_buf(mtd, oob, cnt); |
| } |
| } |
| |
| writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN, |
| nfc->regs + NFC_REG_ECC_CTL); |
| |
| return max_bitflips; |
| } |
| |
| static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf, |
| int oob_required) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| struct sunxi_nand_hw_ecc *data = ecc->priv; |
| uint8_t *oob = chip->oob_poi; |
| int offset = 0; |
| int ret; |
| int cnt; |
| u32 tmp; |
| int i; |
| |
| tmp = readl(nfc->regs + NFC_REG_ECC_CTL); |
| tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE); |
| tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) | |
| NFC_ECC_EXCEPTION; |
| |
| writel(tmp, nfc->regs + NFC_REG_ECC_CTL); |
| |
| for (i = 0; i < ecc->steps; i++) { |
| chip->write_buf(mtd, buf + (i * ecc->size), ecc->size); |
| offset += ecc->size; |
| |
| /* Fill OOB data in */ |
| if (oob_required) { |
| tmp = 0xffffffff; |
| memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp, |
| 4); |
| } else { |
| memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, oob, |
| 4); |
| } |
| |
| tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR | |
| (1 << 30); |
| writel(tmp, nfc->regs + NFC_REG_CMD); |
| |
| ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); |
| if (ret) |
| return ret; |
| |
| offset += ecc->bytes + ecc->prepad; |
| oob += ecc->bytes + ecc->prepad; |
| } |
| |
| if (oob_required) { |
| cnt = mtd->oobsize - (oob - chip->oob_poi); |
| if (cnt > 0) { |
| chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1); |
| chip->write_buf(mtd, oob, cnt); |
| } |
| } |
| |
| tmp = readl(nfc->regs + NFC_REG_ECC_CTL); |
| tmp &= ~NFC_ECC_EN; |
| |
| writel(tmp, nfc->regs + NFC_REG_ECC_CTL); |
| |
| return 0; |
| } |
| |
| static const s32 tWB_lut[] = {6, 12, 16, 20}; |
| static const s32 tRHW_lut[] = {4, 8, 12, 20}; |
| |
| static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration, |
| u32 clk_period) |
| { |
| u32 clk_cycles = DIV_ROUND_UP(duration, clk_period); |
| int i; |
| |
| for (i = 0; i < lut_size; i++) { |
| if (clk_cycles <= lut[i]) |
| return i; |
| } |
| |
| /* Doesn't fit */ |
| return -EINVAL; |
| } |
| |
| #define sunxi_nand_lookup_timing(l, p, c) \ |
| _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c) |
| |
| static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip, |
| const struct nand_sdr_timings *timings) |
| { |
| struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller); |
| u32 min_clk_period = 0; |
| s32 tWB, tADL, tWHR, tRHW, tCAD; |
| |
| /* T1 <=> tCLS */ |
| if (timings->tCLS_min > min_clk_period) |
| min_clk_period = timings->tCLS_min; |
| |
| /* T2 <=> tCLH */ |
| if (timings->tCLH_min > min_clk_period) |
| min_clk_period = timings->tCLH_min; |
| |
| /* T3 <=> tCS */ |
| if (timings->tCS_min > min_clk_period) |
| min_clk_period = timings->tCS_min; |
| |
| /* T4 <=> tCH */ |
| if (timings->tCH_min > min_clk_period) |
| min_clk_period = timings->tCH_min; |
| |
| /* T5 <=> tWP */ |
| if (timings->tWP_min > min_clk_period) |
| min_clk_period = timings->tWP_min; |
| |
| /* T6 <=> tWH */ |
| if (timings->tWH_min > min_clk_period) |
| min_clk_period = timings->tWH_min; |
| |
| /* T7 <=> tALS */ |
| if (timings->tALS_min > min_clk_period) |
| min_clk_period = timings->tALS_min; |
| |
| /* T8 <=> tDS */ |
| if (timings->tDS_min > min_clk_period) |
| min_clk_period = timings->tDS_min; |
| |
| /* T9 <=> tDH */ |
| if (timings->tDH_min > min_clk_period) |
| min_clk_period = timings->tDH_min; |
| |
| /* T10 <=> tRR */ |
| if (timings->tRR_min > (min_clk_period * 3)) |
| min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3); |
| |
| /* T11 <=> tALH */ |
| if (timings->tALH_min > min_clk_period) |
| min_clk_period = timings->tALH_min; |
| |
| /* T12 <=> tRP */ |
| if (timings->tRP_min > min_clk_period) |
| min_clk_period = timings->tRP_min; |
| |
| /* T13 <=> tREH */ |
| if (timings->tREH_min > min_clk_period) |
| min_clk_period = timings->tREH_min; |
| |
| /* T14 <=> tRC */ |
| if (timings->tRC_min > (min_clk_period * 2)) |
| min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2); |
| |
| /* T15 <=> tWC */ |
| if (timings->tWC_min > (min_clk_period * 2)) |
| min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2); |
| |
| /* T16 - T19 + tCAD */ |
| tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max, |
| min_clk_period); |
| if (tWB < 0) { |
| dev_err(nfc->dev, "unsupported tWB\n"); |
| return tWB; |
| } |
| |
| tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3; |
| if (tADL > 3) { |
| dev_err(nfc->dev, "unsupported tADL\n"); |
| return -EINVAL; |
| } |
| |
| tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3; |
| if (tWHR > 3) { |
| dev_err(nfc->dev, "unsupported tWHR\n"); |
| return -EINVAL; |
| } |
| |
| tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min, |
| min_clk_period); |
| if (tRHW < 0) { |
| dev_err(nfc->dev, "unsupported tRHW\n"); |
| return tRHW; |
| } |
| |
| /* |
| * TODO: according to ONFI specs this value only applies for DDR NAND, |
| * but Allwinner seems to set this to 0x7. Mimic them for now. |
| */ |
| tCAD = 0x7; |
| |
| /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */ |
| chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD); |
| |
| /* |
| * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data |
| * output cycle timings shall be used if the host drives tRC less than |
| * 30 ns. |
| */ |
| chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0; |
| |
| /* Convert min_clk_period from picoseconds to nanoseconds */ |
| min_clk_period = DIV_ROUND_UP(min_clk_period, 1000); |
| |
| /* |
| * Convert min_clk_period into a clk frequency, then get the |
| * appropriate rate for the NAND controller IP given this formula |
| * (specified in the datasheet): |
| * nand clk_rate = 2 * min_clk_rate |
| */ |
| chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period; |
| |
| return 0; |
| } |
| |
| static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip, |
| struct device_node *np) |
| { |
| const struct nand_sdr_timings *timings; |
| int ret; |
| int mode; |
| |
| mode = onfi_get_async_timing_mode(&chip->nand); |
| if (mode == ONFI_TIMING_MODE_UNKNOWN) { |
| mode = chip->nand.onfi_timing_mode_default; |
| } else { |
| uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {}; |
| |
| mode = fls(mode) - 1; |
| if (mode < 0) |
| mode = 0; |
| |
| feature[0] = mode; |
| ret = chip->nand.onfi_set_features(&chip->mtd, &chip->nand, |
| ONFI_FEATURE_ADDR_TIMING_MODE, |
| feature); |
| if (ret) |
| return ret; |
| } |
| |
| timings = onfi_async_timing_mode_to_sdr_timings(mode); |
| if (IS_ERR(timings)) |
| return PTR_ERR(timings); |
| |
| return sunxi_nand_chip_set_timings(chip, timings); |
| } |
| |
| static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd, |
| struct nand_ecc_ctrl *ecc, |
| struct device_node *np) |
| { |
| static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; |
| struct nand_chip *nand = mtd->priv; |
| struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| struct sunxi_nand_hw_ecc *data; |
| struct nand_ecclayout *layout; |
| int nsectors; |
| int ret; |
| int i; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| /* Add ECC info retrieval from DT */ |
| for (i = 0; i < ARRAY_SIZE(strengths); i++) { |
| if (ecc->strength <= strengths[i]) |
| break; |
| } |
| |
| if (i >= ARRAY_SIZE(strengths)) { |
| dev_err(nfc->dev, "unsupported strength\n"); |
| ret = -ENOTSUPP; |
| goto err; |
| } |
| |
| data->mode = i; |
| |
| /* HW ECC always request ECC bytes for 1024 bytes blocks */ |
| ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); |
| |
| /* HW ECC always work with even numbers of ECC bytes */ |
| ecc->bytes = ALIGN(ecc->bytes, 2); |
| |
| layout = &data->layout; |
| nsectors = mtd->writesize / ecc->size; |
| |
| if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| layout->eccbytes = (ecc->bytes * nsectors); |
| |
| ecc->layout = layout; |
| ecc->priv = data; |
| |
| return 0; |
| |
| err: |
| kfree(data); |
| |
| return ret; |
| } |
| |
| static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc) |
| { |
| kfree(ecc->priv); |
| } |
| |
| static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, |
| struct nand_ecc_ctrl *ecc, |
| struct device_node *np) |
| { |
| struct nand_ecclayout *layout; |
| int nsectors; |
| int i, j; |
| int ret; |
| |
| ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); |
| if (ret) |
| return ret; |
| |
| ecc->read_page = sunxi_nfc_hw_ecc_read_page; |
| ecc->write_page = sunxi_nfc_hw_ecc_write_page; |
| layout = ecc->layout; |
| nsectors = mtd->writesize / ecc->size; |
| |
| for (i = 0; i < nsectors; i++) { |
| if (i) { |
| layout->oobfree[i].offset = |
| layout->oobfree[i - 1].offset + |
| layout->oobfree[i - 1].length + |
| ecc->bytes; |
| layout->oobfree[i].length = 4; |
| } else { |
| /* |
| * The first 2 bytes are used for BB markers, hence we |
| * only have 2 bytes available in the first user data |
| * section. |
| */ |
| layout->oobfree[i].length = 2; |
| layout->oobfree[i].offset = 2; |
| } |
| |
| for (j = 0; j < ecc->bytes; j++) |
| layout->eccpos[(ecc->bytes * i) + j] = |
| layout->oobfree[i].offset + |
| layout->oobfree[i].length + j; |
| } |
| |
| if (mtd->oobsize > (ecc->bytes + 4) * nsectors) { |
| layout->oobfree[nsectors].offset = |
| layout->oobfree[nsectors - 1].offset + |
| layout->oobfree[nsectors - 1].length + |
| ecc->bytes; |
| layout->oobfree[nsectors].length = mtd->oobsize - |
| ((ecc->bytes + 4) * nsectors); |
| } |
| |
| return 0; |
| } |
| |
| static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd, |
| struct nand_ecc_ctrl *ecc, |
| struct device_node *np) |
| { |
| struct nand_ecclayout *layout; |
| int nsectors; |
| int i; |
| int ret; |
| |
| ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); |
| if (ret) |
| return ret; |
| |
| ecc->prepad = 4; |
| ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page; |
| ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page; |
| |
| layout = ecc->layout; |
| nsectors = mtd->writesize / ecc->size; |
| |
| for (i = 0; i < (ecc->bytes * nsectors); i++) |
| layout->eccpos[i] = i; |
| |
| layout->oobfree[0].length = mtd->oobsize - i; |
| layout->oobfree[0].offset = i; |
| |
| return 0; |
| } |
| |
| static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc) |
| { |
| switch (ecc->mode) { |
| case NAND_ECC_HW: |
| case NAND_ECC_HW_SYNDROME: |
| sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc); |
| break; |
| case NAND_ECC_NONE: |
| kfree(ecc->layout); |
| default: |
| break; |
| } |
| } |
| |
| static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, |
| struct device_node *np) |
| { |
| struct nand_chip *nand = mtd->priv; |
| int strength; |
| int blk_size; |
| int ret; |
| |
| blk_size = of_get_nand_ecc_step_size(np); |
| strength = of_get_nand_ecc_strength(np); |
| if (blk_size > 0 && strength > 0) { |
| ecc->size = blk_size; |
| ecc->strength = strength; |
| } else { |
| ecc->size = nand->ecc_step_ds; |
| ecc->strength = nand->ecc_strength_ds; |
| } |
| |
| if (!ecc->size || !ecc->strength) |
| return -EINVAL; |
| |
| ecc->mode = NAND_ECC_HW; |
| |
| ret = of_get_nand_ecc_mode(np); |
| if (ret >= 0) |
| ecc->mode = ret; |
| |
| switch (ecc->mode) { |
| case NAND_ECC_SOFT_BCH: |
| break; |
| case NAND_ECC_HW: |
| ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np); |
| if (ret) |
| return ret; |
| break; |
| case NAND_ECC_HW_SYNDROME: |
| ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np); |
| if (ret) |
| return ret; |
| break; |
| case NAND_ECC_NONE: |
| ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL); |
| if (!ecc->layout) |
| return -ENOMEM; |
| ecc->layout->oobfree[0].length = mtd->oobsize; |
| case NAND_ECC_SOFT: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc, |
| struct device_node *np) |
| { |
| const struct nand_sdr_timings *timings; |
| struct sunxi_nand_chip *chip; |
| struct mtd_part_parser_data ppdata; |
| struct mtd_info *mtd; |
| struct nand_chip *nand; |
| int nsels; |
| int ret; |
| int i; |
| u32 tmp; |
| |
| if (!of_get_property(np, "reg", &nsels)) |
| return -EINVAL; |
| |
| nsels /= sizeof(u32); |
| if (!nsels) { |
| dev_err(dev, "invalid reg property size\n"); |
| return -EINVAL; |
| } |
| |
| chip = devm_kzalloc(dev, |
| sizeof(*chip) + |
| (nsels * sizeof(struct sunxi_nand_chip_sel)), |
| GFP_KERNEL); |
| if (!chip) { |
| dev_err(dev, "could not allocate chip\n"); |
| return -ENOMEM; |
| } |
| |
| chip->nsels = nsels; |
| chip->selected = -1; |
| |
| for (i = 0; i < nsels; i++) { |
| ret = of_property_read_u32_index(np, "reg", i, &tmp); |
| if (ret) { |
| dev_err(dev, "could not retrieve reg property: %d\n", |
| ret); |
| return ret; |
| } |
| |
| if (tmp > NFC_MAX_CS) { |
| dev_err(dev, |
| "invalid reg value: %u (max CS = 7)\n", |
| tmp); |
| return -EINVAL; |
| } |
| |
| if (test_and_set_bit(tmp, &nfc->assigned_cs)) { |
| dev_err(dev, "CS %d already assigned\n", tmp); |
| return -EINVAL; |
| } |
| |
| chip->sels[i].cs = tmp; |
| |
| if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) && |
| tmp < 2) { |
| chip->sels[i].rb.type = RB_NATIVE; |
| chip->sels[i].rb.info.nativeid = tmp; |
| } else { |
| ret = of_get_named_gpio(np, "rb-gpios", i); |
| if (ret >= 0) { |
| tmp = ret; |
| chip->sels[i].rb.type = RB_GPIO; |
| chip->sels[i].rb.info.gpio = tmp; |
| ret = devm_gpio_request(dev, tmp, "nand-rb"); |
| if (ret) |
| return ret; |
| |
| ret = gpio_direction_input(tmp); |
| if (ret) |
| return ret; |
| } else { |
| chip->sels[i].rb.type = RB_NONE; |
| } |
| } |
| } |
| |
| timings = onfi_async_timing_mode_to_sdr_timings(0); |
| if (IS_ERR(timings)) { |
| ret = PTR_ERR(timings); |
| dev_err(dev, |
| "could not retrieve timings for ONFI mode 0: %d\n", |
| ret); |
| return ret; |
| } |
| |
| ret = sunxi_nand_chip_set_timings(chip, timings); |
| if (ret) { |
| dev_err(dev, "could not configure chip timings: %d\n", ret); |
| return ret; |
| } |
| |
| nand = &chip->nand; |
| /* Default tR value specified in the ONFI spec (chapter 4.15.1) */ |
| nand->chip_delay = 200; |
| nand->controller = &nfc->controller; |
| nand->select_chip = sunxi_nfc_select_chip; |
| nand->cmd_ctrl = sunxi_nfc_cmd_ctrl; |
| nand->read_buf = sunxi_nfc_read_buf; |
| nand->write_buf = sunxi_nfc_write_buf; |
| nand->read_byte = sunxi_nfc_read_byte; |
| |
| if (of_get_nand_on_flash_bbt(np)) |
| nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; |
| |
| mtd = &chip->mtd; |
| mtd->dev.parent = dev; |
| mtd->priv = nand; |
| mtd->owner = THIS_MODULE; |
| |
| ret = nand_scan_ident(mtd, nsels, NULL); |
| if (ret) |
| return ret; |
| |
| ret = sunxi_nand_chip_init_timings(chip, np); |
| if (ret) { |
| dev_err(dev, "could not configure chip timings: %d\n", ret); |
| return ret; |
| } |
| |
| ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np); |
| if (ret) { |
| dev_err(dev, "ECC init failed: %d\n", ret); |
| return ret; |
| } |
| |
| ret = nand_scan_tail(mtd); |
| if (ret) { |
| dev_err(dev, "nand_scan_tail failed: %d\n", ret); |
| return ret; |
| } |
| |
| ppdata.of_node = np; |
| ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); |
| if (ret) { |
| dev_err(dev, "failed to register mtd device: %d\n", ret); |
| nand_release(mtd); |
| return ret; |
| } |
| |
| list_add_tail(&chip->node, &nfc->chips); |
| |
| return 0; |
| } |
| |
| static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc) |
| { |
| struct device_node *np = dev->of_node; |
| struct device_node *nand_np; |
| int nchips = of_get_child_count(np); |
| int ret; |
| |
| if (nchips > 8) { |
| dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips); |
| return -EINVAL; |
| } |
| |
| for_each_child_of_node(np, nand_np) { |
| ret = sunxi_nand_chip_init(dev, nfc, nand_np); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc) |
| { |
| struct sunxi_nand_chip *chip; |
| |
| while (!list_empty(&nfc->chips)) { |
| chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip, |
| node); |
| nand_release(&chip->mtd); |
| sunxi_nand_ecc_cleanup(&chip->nand.ecc); |
| } |
| } |
| |
| static int sunxi_nfc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct resource *r; |
| struct sunxi_nfc *nfc; |
| int irq; |
| int ret; |
| |
| nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); |
| if (!nfc) |
| return -ENOMEM; |
| |
| nfc->dev = dev; |
| spin_lock_init(&nfc->controller.lock); |
| init_waitqueue_head(&nfc->controller.wq); |
| INIT_LIST_HEAD(&nfc->chips); |
| |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| nfc->regs = devm_ioremap_resource(dev, r); |
| if (IS_ERR(nfc->regs)) |
| return PTR_ERR(nfc->regs); |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| dev_err(dev, "failed to retrieve irq\n"); |
| return irq; |
| } |
| |
| nfc->ahb_clk = devm_clk_get(dev, "ahb"); |
| if (IS_ERR(nfc->ahb_clk)) { |
| dev_err(dev, "failed to retrieve ahb clk\n"); |
| return PTR_ERR(nfc->ahb_clk); |
| } |
| |
| ret = clk_prepare_enable(nfc->ahb_clk); |
| if (ret) |
| return ret; |
| |
| nfc->mod_clk = devm_clk_get(dev, "mod"); |
| if (IS_ERR(nfc->mod_clk)) { |
| dev_err(dev, "failed to retrieve mod clk\n"); |
| ret = PTR_ERR(nfc->mod_clk); |
| goto out_ahb_clk_unprepare; |
| } |
| |
| ret = clk_prepare_enable(nfc->mod_clk); |
| if (ret) |
| goto out_ahb_clk_unprepare; |
| |
| ret = sunxi_nfc_rst(nfc); |
| if (ret) |
| goto out_mod_clk_unprepare; |
| |
| writel(0, nfc->regs + NFC_REG_INT); |
| ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt, |
| 0, "sunxi-nand", nfc); |
| if (ret) |
| goto out_mod_clk_unprepare; |
| |
| platform_set_drvdata(pdev, nfc); |
| |
| ret = sunxi_nand_chips_init(dev, nfc); |
| if (ret) { |
| dev_err(dev, "failed to init nand chips\n"); |
| goto out_mod_clk_unprepare; |
| } |
| |
| return 0; |
| |
| out_mod_clk_unprepare: |
| clk_disable_unprepare(nfc->mod_clk); |
| out_ahb_clk_unprepare: |
| clk_disable_unprepare(nfc->ahb_clk); |
| |
| return ret; |
| } |
| |
| static int sunxi_nfc_remove(struct platform_device *pdev) |
| { |
| struct sunxi_nfc *nfc = platform_get_drvdata(pdev); |
| |
| sunxi_nand_chips_cleanup(nfc); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id sunxi_nfc_ids[] = { |
| { .compatible = "allwinner,sun4i-a10-nand" }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, sunxi_nfc_ids); |
| |
| static struct platform_driver sunxi_nfc_driver = { |
| .driver = { |
| .name = "sunxi_nand", |
| .of_match_table = sunxi_nfc_ids, |
| }, |
| .probe = sunxi_nfc_probe, |
| .remove = sunxi_nfc_remove, |
| }; |
| module_platform_driver(sunxi_nfc_driver); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Boris BREZILLON"); |
| MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver"); |
| MODULE_ALIAS("platform:sunxi_nand"); |