| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * fs/f2fs/super.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| */ |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/fs.h> |
| #include <linux/statfs.h> |
| #include <linux/buffer_head.h> |
| #include <linux/backing-dev.h> |
| #include <linux/kthread.h> |
| #include <linux/parser.h> |
| #include <linux/mount.h> |
| #include <linux/seq_file.h> |
| #include <linux/proc_fs.h> |
| #include <linux/random.h> |
| #include <linux/exportfs.h> |
| #include <linux/blkdev.h> |
| #include <linux/quotaops.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/sysfs.h> |
| #include <linux/quota.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| #include "segment.h" |
| #include "xattr.h" |
| #include "gc.h" |
| #include "trace.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/f2fs.h> |
| |
| static struct kmem_cache *f2fs_inode_cachep; |
| |
| #ifdef CONFIG_F2FS_FAULT_INJECTION |
| |
| const char *f2fs_fault_name[FAULT_MAX] = { |
| [FAULT_KMALLOC] = "kmalloc", |
| [FAULT_KVMALLOC] = "kvmalloc", |
| [FAULT_PAGE_ALLOC] = "page alloc", |
| [FAULT_PAGE_GET] = "page get", |
| [FAULT_ALLOC_BIO] = "alloc bio", |
| [FAULT_ALLOC_NID] = "alloc nid", |
| [FAULT_ORPHAN] = "orphan", |
| [FAULT_BLOCK] = "no more block", |
| [FAULT_DIR_DEPTH] = "too big dir depth", |
| [FAULT_EVICT_INODE] = "evict_inode fail", |
| [FAULT_TRUNCATE] = "truncate fail", |
| [FAULT_READ_IO] = "read IO error", |
| [FAULT_CHECKPOINT] = "checkpoint error", |
| [FAULT_DISCARD] = "discard error", |
| [FAULT_WRITE_IO] = "write IO error", |
| }; |
| |
| void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, |
| unsigned int type) |
| { |
| struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; |
| |
| if (rate) { |
| atomic_set(&ffi->inject_ops, 0); |
| ffi->inject_rate = rate; |
| } |
| |
| if (type) |
| ffi->inject_type = type; |
| |
| if (!rate && !type) |
| memset(ffi, 0, sizeof(struct f2fs_fault_info)); |
| } |
| #endif |
| |
| /* f2fs-wide shrinker description */ |
| static struct shrinker f2fs_shrinker_info = { |
| .scan_objects = f2fs_shrink_scan, |
| .count_objects = f2fs_shrink_count, |
| .seeks = DEFAULT_SEEKS, |
| }; |
| |
| enum { |
| Opt_gc_background, |
| Opt_disable_roll_forward, |
| Opt_norecovery, |
| Opt_discard, |
| Opt_nodiscard, |
| Opt_noheap, |
| Opt_heap, |
| Opt_user_xattr, |
| Opt_nouser_xattr, |
| Opt_acl, |
| Opt_noacl, |
| Opt_active_logs, |
| Opt_disable_ext_identify, |
| Opt_inline_xattr, |
| Opt_noinline_xattr, |
| Opt_inline_xattr_size, |
| Opt_inline_data, |
| Opt_inline_dentry, |
| Opt_noinline_dentry, |
| Opt_flush_merge, |
| Opt_noflush_merge, |
| Opt_nobarrier, |
| Opt_fastboot, |
| Opt_extent_cache, |
| Opt_noextent_cache, |
| Opt_noinline_data, |
| Opt_data_flush, |
| Opt_reserve_root, |
| Opt_resgid, |
| Opt_resuid, |
| Opt_mode, |
| Opt_io_size_bits, |
| Opt_fault_injection, |
| Opt_fault_type, |
| Opt_lazytime, |
| Opt_nolazytime, |
| Opt_quota, |
| Opt_noquota, |
| Opt_usrquota, |
| Opt_grpquota, |
| Opt_prjquota, |
| Opt_usrjquota, |
| Opt_grpjquota, |
| Opt_prjjquota, |
| Opt_offusrjquota, |
| Opt_offgrpjquota, |
| Opt_offprjjquota, |
| Opt_jqfmt_vfsold, |
| Opt_jqfmt_vfsv0, |
| Opt_jqfmt_vfsv1, |
| Opt_whint, |
| Opt_alloc, |
| Opt_fsync, |
| Opt_test_dummy_encryption, |
| Opt_checkpoint, |
| Opt_err, |
| }; |
| |
| static match_table_t f2fs_tokens = { |
| {Opt_gc_background, "background_gc=%s"}, |
| {Opt_disable_roll_forward, "disable_roll_forward"}, |
| {Opt_norecovery, "norecovery"}, |
| {Opt_discard, "discard"}, |
| {Opt_nodiscard, "nodiscard"}, |
| {Opt_noheap, "no_heap"}, |
| {Opt_heap, "heap"}, |
| {Opt_user_xattr, "user_xattr"}, |
| {Opt_nouser_xattr, "nouser_xattr"}, |
| {Opt_acl, "acl"}, |
| {Opt_noacl, "noacl"}, |
| {Opt_active_logs, "active_logs=%u"}, |
| {Opt_disable_ext_identify, "disable_ext_identify"}, |
| {Opt_inline_xattr, "inline_xattr"}, |
| {Opt_noinline_xattr, "noinline_xattr"}, |
| {Opt_inline_xattr_size, "inline_xattr_size=%u"}, |
| {Opt_inline_data, "inline_data"}, |
| {Opt_inline_dentry, "inline_dentry"}, |
| {Opt_noinline_dentry, "noinline_dentry"}, |
| {Opt_flush_merge, "flush_merge"}, |
| {Opt_noflush_merge, "noflush_merge"}, |
| {Opt_nobarrier, "nobarrier"}, |
| {Opt_fastboot, "fastboot"}, |
| {Opt_extent_cache, "extent_cache"}, |
| {Opt_noextent_cache, "noextent_cache"}, |
| {Opt_noinline_data, "noinline_data"}, |
| {Opt_data_flush, "data_flush"}, |
| {Opt_reserve_root, "reserve_root=%u"}, |
| {Opt_resgid, "resgid=%u"}, |
| {Opt_resuid, "resuid=%u"}, |
| {Opt_mode, "mode=%s"}, |
| {Opt_io_size_bits, "io_bits=%u"}, |
| {Opt_fault_injection, "fault_injection=%u"}, |
| {Opt_fault_type, "fault_type=%u"}, |
| {Opt_lazytime, "lazytime"}, |
| {Opt_nolazytime, "nolazytime"}, |
| {Opt_quota, "quota"}, |
| {Opt_noquota, "noquota"}, |
| {Opt_usrquota, "usrquota"}, |
| {Opt_grpquota, "grpquota"}, |
| {Opt_prjquota, "prjquota"}, |
| {Opt_usrjquota, "usrjquota=%s"}, |
| {Opt_grpjquota, "grpjquota=%s"}, |
| {Opt_prjjquota, "prjjquota=%s"}, |
| {Opt_offusrjquota, "usrjquota="}, |
| {Opt_offgrpjquota, "grpjquota="}, |
| {Opt_offprjjquota, "prjjquota="}, |
| {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, |
| {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, |
| {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, |
| {Opt_whint, "whint_mode=%s"}, |
| {Opt_alloc, "alloc_mode=%s"}, |
| {Opt_fsync, "fsync_mode=%s"}, |
| {Opt_test_dummy_encryption, "test_dummy_encryption"}, |
| {Opt_checkpoint, "checkpoint=%s"}, |
| {Opt_err, NULL}, |
| }; |
| |
| void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); |
| va_end(args); |
| } |
| |
| static inline void limit_reserve_root(struct f2fs_sb_info *sbi) |
| { |
| block_t limit = (sbi->user_block_count << 1) / 1000; |
| |
| /* limit is 0.2% */ |
| if (test_opt(sbi, RESERVE_ROOT) && |
| F2FS_OPTION(sbi).root_reserved_blocks > limit) { |
| F2FS_OPTION(sbi).root_reserved_blocks = limit; |
| f2fs_msg(sbi->sb, KERN_INFO, |
| "Reduce reserved blocks for root = %u", |
| F2FS_OPTION(sbi).root_reserved_blocks); |
| } |
| if (!test_opt(sbi, RESERVE_ROOT) && |
| (!uid_eq(F2FS_OPTION(sbi).s_resuid, |
| make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || |
| !gid_eq(F2FS_OPTION(sbi).s_resgid, |
| make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) |
| f2fs_msg(sbi->sb, KERN_INFO, |
| "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", |
| from_kuid_munged(&init_user_ns, |
| F2FS_OPTION(sbi).s_resuid), |
| from_kgid_munged(&init_user_ns, |
| F2FS_OPTION(sbi).s_resgid)); |
| } |
| |
| static void init_once(void *foo) |
| { |
| struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; |
| |
| inode_init_once(&fi->vfs_inode); |
| } |
| |
| #ifdef CONFIG_QUOTA |
| static const char * const quotatypes[] = INITQFNAMES; |
| #define QTYPE2NAME(t) (quotatypes[t]) |
| static int f2fs_set_qf_name(struct super_block *sb, int qtype, |
| substring_t *args) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| char *qname; |
| int ret = -EINVAL; |
| |
| if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { |
| f2fs_msg(sb, KERN_ERR, |
| "Cannot change journaled " |
| "quota options when quota turned on"); |
| return -EINVAL; |
| } |
| if (f2fs_sb_has_quota_ino(sbi)) { |
| f2fs_msg(sb, KERN_INFO, |
| "QUOTA feature is enabled, so ignore qf_name"); |
| return 0; |
| } |
| |
| qname = match_strdup(args); |
| if (!qname) { |
| f2fs_msg(sb, KERN_ERR, |
| "Not enough memory for storing quotafile name"); |
| return -ENOMEM; |
| } |
| if (F2FS_OPTION(sbi).s_qf_names[qtype]) { |
| if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) |
| ret = 0; |
| else |
| f2fs_msg(sb, KERN_ERR, |
| "%s quota file already specified", |
| QTYPE2NAME(qtype)); |
| goto errout; |
| } |
| if (strchr(qname, '/')) { |
| f2fs_msg(sb, KERN_ERR, |
| "quotafile must be on filesystem root"); |
| goto errout; |
| } |
| F2FS_OPTION(sbi).s_qf_names[qtype] = qname; |
| set_opt(sbi, QUOTA); |
| return 0; |
| errout: |
| kvfree(qname); |
| return ret; |
| } |
| |
| static int f2fs_clear_qf_name(struct super_block *sb, int qtype) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| |
| if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { |
| f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options" |
| " when quota turned on"); |
| return -EINVAL; |
| } |
| kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]); |
| F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; |
| return 0; |
| } |
| |
| static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) |
| { |
| /* |
| * We do the test below only for project quotas. 'usrquota' and |
| * 'grpquota' mount options are allowed even without quota feature |
| * to support legacy quotas in quota files. |
| */ |
| if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { |
| f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. " |
| "Cannot enable project quota enforcement."); |
| return -1; |
| } |
| if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || |
| F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || |
| F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { |
| if (test_opt(sbi, USRQUOTA) && |
| F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) |
| clear_opt(sbi, USRQUOTA); |
| |
| if (test_opt(sbi, GRPQUOTA) && |
| F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) |
| clear_opt(sbi, GRPQUOTA); |
| |
| if (test_opt(sbi, PRJQUOTA) && |
| F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) |
| clear_opt(sbi, PRJQUOTA); |
| |
| if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || |
| test_opt(sbi, PRJQUOTA)) { |
| f2fs_msg(sbi->sb, KERN_ERR, "old and new quota " |
| "format mixing"); |
| return -1; |
| } |
| |
| if (!F2FS_OPTION(sbi).s_jquota_fmt) { |
| f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format " |
| "not specified"); |
| return -1; |
| } |
| } |
| |
| if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { |
| f2fs_msg(sbi->sb, KERN_INFO, |
| "QUOTA feature is enabled, so ignore jquota_fmt"); |
| F2FS_OPTION(sbi).s_jquota_fmt = 0; |
| } |
| return 0; |
| } |
| #endif |
| |
| static int parse_options(struct super_block *sb, char *options) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| substring_t args[MAX_OPT_ARGS]; |
| char *p, *name; |
| int arg = 0; |
| kuid_t uid; |
| kgid_t gid; |
| #ifdef CONFIG_QUOTA |
| int ret; |
| #endif |
| |
| if (!options) |
| return 0; |
| |
| while ((p = strsep(&options, ",")) != NULL) { |
| int token; |
| if (!*p) |
| continue; |
| /* |
| * Initialize args struct so we know whether arg was |
| * found; some options take optional arguments. |
| */ |
| args[0].to = args[0].from = NULL; |
| token = match_token(p, f2fs_tokens, args); |
| |
| switch (token) { |
| case Opt_gc_background: |
| name = match_strdup(&args[0]); |
| |
| if (!name) |
| return -ENOMEM; |
| if (strlen(name) == 2 && !strncmp(name, "on", 2)) { |
| set_opt(sbi, BG_GC); |
| clear_opt(sbi, FORCE_FG_GC); |
| } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { |
| clear_opt(sbi, BG_GC); |
| clear_opt(sbi, FORCE_FG_GC); |
| } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { |
| set_opt(sbi, BG_GC); |
| set_opt(sbi, FORCE_FG_GC); |
| } else { |
| kvfree(name); |
| return -EINVAL; |
| } |
| kvfree(name); |
| break; |
| case Opt_disable_roll_forward: |
| set_opt(sbi, DISABLE_ROLL_FORWARD); |
| break; |
| case Opt_norecovery: |
| /* this option mounts f2fs with ro */ |
| set_opt(sbi, DISABLE_ROLL_FORWARD); |
| if (!f2fs_readonly(sb)) |
| return -EINVAL; |
| break; |
| case Opt_discard: |
| set_opt(sbi, DISCARD); |
| break; |
| case Opt_nodiscard: |
| if (f2fs_sb_has_blkzoned(sbi)) { |
| f2fs_msg(sb, KERN_WARNING, |
| "discard is required for zoned block devices"); |
| return -EINVAL; |
| } |
| clear_opt(sbi, DISCARD); |
| break; |
| case Opt_noheap: |
| set_opt(sbi, NOHEAP); |
| break; |
| case Opt_heap: |
| clear_opt(sbi, NOHEAP); |
| break; |
| #ifdef CONFIG_F2FS_FS_XATTR |
| case Opt_user_xattr: |
| set_opt(sbi, XATTR_USER); |
| break; |
| case Opt_nouser_xattr: |
| clear_opt(sbi, XATTR_USER); |
| break; |
| case Opt_inline_xattr: |
| set_opt(sbi, INLINE_XATTR); |
| break; |
| case Opt_noinline_xattr: |
| clear_opt(sbi, INLINE_XATTR); |
| break; |
| case Opt_inline_xattr_size: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| set_opt(sbi, INLINE_XATTR_SIZE); |
| F2FS_OPTION(sbi).inline_xattr_size = arg; |
| break; |
| #else |
| case Opt_user_xattr: |
| f2fs_msg(sb, KERN_INFO, |
| "user_xattr options not supported"); |
| break; |
| case Opt_nouser_xattr: |
| f2fs_msg(sb, KERN_INFO, |
| "nouser_xattr options not supported"); |
| break; |
| case Opt_inline_xattr: |
| f2fs_msg(sb, KERN_INFO, |
| "inline_xattr options not supported"); |
| break; |
| case Opt_noinline_xattr: |
| f2fs_msg(sb, KERN_INFO, |
| "noinline_xattr options not supported"); |
| break; |
| #endif |
| #ifdef CONFIG_F2FS_FS_POSIX_ACL |
| case Opt_acl: |
| set_opt(sbi, POSIX_ACL); |
| break; |
| case Opt_noacl: |
| clear_opt(sbi, POSIX_ACL); |
| break; |
| #else |
| case Opt_acl: |
| f2fs_msg(sb, KERN_INFO, "acl options not supported"); |
| break; |
| case Opt_noacl: |
| f2fs_msg(sb, KERN_INFO, "noacl options not supported"); |
| break; |
| #endif |
| case Opt_active_logs: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) |
| return -EINVAL; |
| F2FS_OPTION(sbi).active_logs = arg; |
| break; |
| case Opt_disable_ext_identify: |
| set_opt(sbi, DISABLE_EXT_IDENTIFY); |
| break; |
| case Opt_inline_data: |
| set_opt(sbi, INLINE_DATA); |
| break; |
| case Opt_inline_dentry: |
| set_opt(sbi, INLINE_DENTRY); |
| break; |
| case Opt_noinline_dentry: |
| clear_opt(sbi, INLINE_DENTRY); |
| break; |
| case Opt_flush_merge: |
| set_opt(sbi, FLUSH_MERGE); |
| break; |
| case Opt_noflush_merge: |
| clear_opt(sbi, FLUSH_MERGE); |
| break; |
| case Opt_nobarrier: |
| set_opt(sbi, NOBARRIER); |
| break; |
| case Opt_fastboot: |
| set_opt(sbi, FASTBOOT); |
| break; |
| case Opt_extent_cache: |
| set_opt(sbi, EXTENT_CACHE); |
| break; |
| case Opt_noextent_cache: |
| clear_opt(sbi, EXTENT_CACHE); |
| break; |
| case Opt_noinline_data: |
| clear_opt(sbi, INLINE_DATA); |
| break; |
| case Opt_data_flush: |
| set_opt(sbi, DATA_FLUSH); |
| break; |
| case Opt_reserve_root: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| if (test_opt(sbi, RESERVE_ROOT)) { |
| f2fs_msg(sb, KERN_INFO, |
| "Preserve previous reserve_root=%u", |
| F2FS_OPTION(sbi).root_reserved_blocks); |
| } else { |
| F2FS_OPTION(sbi).root_reserved_blocks = arg; |
| set_opt(sbi, RESERVE_ROOT); |
| } |
| break; |
| case Opt_resuid: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| uid = make_kuid(current_user_ns(), arg); |
| if (!uid_valid(uid)) { |
| f2fs_msg(sb, KERN_ERR, |
| "Invalid uid value %d", arg); |
| return -EINVAL; |
| } |
| F2FS_OPTION(sbi).s_resuid = uid; |
| break; |
| case Opt_resgid: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| gid = make_kgid(current_user_ns(), arg); |
| if (!gid_valid(gid)) { |
| f2fs_msg(sb, KERN_ERR, |
| "Invalid gid value %d", arg); |
| return -EINVAL; |
| } |
| F2FS_OPTION(sbi).s_resgid = gid; |
| break; |
| case Opt_mode: |
| name = match_strdup(&args[0]); |
| |
| if (!name) |
| return -ENOMEM; |
| if (strlen(name) == 8 && |
| !strncmp(name, "adaptive", 8)) { |
| if (f2fs_sb_has_blkzoned(sbi)) { |
| f2fs_msg(sb, KERN_WARNING, |
| "adaptive mode is not allowed with " |
| "zoned block device feature"); |
| kvfree(name); |
| return -EINVAL; |
| } |
| set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); |
| } else if (strlen(name) == 3 && |
| !strncmp(name, "lfs", 3)) { |
| set_opt_mode(sbi, F2FS_MOUNT_LFS); |
| } else { |
| kvfree(name); |
| return -EINVAL; |
| } |
| kvfree(name); |
| break; |
| case Opt_io_size_bits: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { |
| f2fs_msg(sb, KERN_WARNING, |
| "Not support %d, larger than %d", |
| 1 << arg, BIO_MAX_PAGES); |
| return -EINVAL; |
| } |
| F2FS_OPTION(sbi).write_io_size_bits = arg; |
| break; |
| #ifdef CONFIG_F2FS_FAULT_INJECTION |
| case Opt_fault_injection: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); |
| set_opt(sbi, FAULT_INJECTION); |
| break; |
| |
| case Opt_fault_type: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| f2fs_build_fault_attr(sbi, 0, arg); |
| set_opt(sbi, FAULT_INJECTION); |
| break; |
| #else |
| case Opt_fault_injection: |
| f2fs_msg(sb, KERN_INFO, |
| "fault_injection options not supported"); |
| break; |
| |
| case Opt_fault_type: |
| f2fs_msg(sb, KERN_INFO, |
| "fault_type options not supported"); |
| break; |
| #endif |
| case Opt_lazytime: |
| sb->s_flags |= MS_LAZYTIME; |
| break; |
| case Opt_nolazytime: |
| sb->s_flags &= ~MS_LAZYTIME; |
| break; |
| #ifdef CONFIG_QUOTA |
| case Opt_quota: |
| case Opt_usrquota: |
| set_opt(sbi, USRQUOTA); |
| break; |
| case Opt_grpquota: |
| set_opt(sbi, GRPQUOTA); |
| break; |
| case Opt_prjquota: |
| set_opt(sbi, PRJQUOTA); |
| break; |
| case Opt_usrjquota: |
| ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); |
| if (ret) |
| return ret; |
| break; |
| case Opt_grpjquota: |
| ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); |
| if (ret) |
| return ret; |
| break; |
| case Opt_prjjquota: |
| ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); |
| if (ret) |
| return ret; |
| break; |
| case Opt_offusrjquota: |
| ret = f2fs_clear_qf_name(sb, USRQUOTA); |
| if (ret) |
| return ret; |
| break; |
| case Opt_offgrpjquota: |
| ret = f2fs_clear_qf_name(sb, GRPQUOTA); |
| if (ret) |
| return ret; |
| break; |
| case Opt_offprjjquota: |
| ret = f2fs_clear_qf_name(sb, PRJQUOTA); |
| if (ret) |
| return ret; |
| break; |
| case Opt_jqfmt_vfsold: |
| F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; |
| break; |
| case Opt_jqfmt_vfsv0: |
| F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; |
| break; |
| case Opt_jqfmt_vfsv1: |
| F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; |
| break; |
| case Opt_noquota: |
| clear_opt(sbi, QUOTA); |
| clear_opt(sbi, USRQUOTA); |
| clear_opt(sbi, GRPQUOTA); |
| clear_opt(sbi, PRJQUOTA); |
| break; |
| #else |
| case Opt_quota: |
| case Opt_usrquota: |
| case Opt_grpquota: |
| case Opt_prjquota: |
| case Opt_usrjquota: |
| case Opt_grpjquota: |
| case Opt_prjjquota: |
| case Opt_offusrjquota: |
| case Opt_offgrpjquota: |
| case Opt_offprjjquota: |
| case Opt_jqfmt_vfsold: |
| case Opt_jqfmt_vfsv0: |
| case Opt_jqfmt_vfsv1: |
| case Opt_noquota: |
| f2fs_msg(sb, KERN_INFO, |
| "quota operations not supported"); |
| break; |
| #endif |
| case Opt_whint: |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| if (strlen(name) == 10 && |
| !strncmp(name, "user-based", 10)) { |
| F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; |
| } else if (strlen(name) == 3 && |
| !strncmp(name, "off", 3)) { |
| F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; |
| } else if (strlen(name) == 8 && |
| !strncmp(name, "fs-based", 8)) { |
| F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; |
| } else { |
| kvfree(name); |
| return -EINVAL; |
| } |
| kvfree(name); |
| break; |
| case Opt_alloc: |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| |
| if (strlen(name) == 7 && |
| !strncmp(name, "default", 7)) { |
| F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; |
| } else if (strlen(name) == 5 && |
| !strncmp(name, "reuse", 5)) { |
| F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; |
| } else { |
| kvfree(name); |
| return -EINVAL; |
| } |
| kvfree(name); |
| break; |
| case Opt_fsync: |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| if (strlen(name) == 5 && |
| !strncmp(name, "posix", 5)) { |
| F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; |
| } else if (strlen(name) == 6 && |
| !strncmp(name, "strict", 6)) { |
| F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; |
| } else if (strlen(name) == 9 && |
| !strncmp(name, "nobarrier", 9)) { |
| F2FS_OPTION(sbi).fsync_mode = |
| FSYNC_MODE_NOBARRIER; |
| } else { |
| kvfree(name); |
| return -EINVAL; |
| } |
| kvfree(name); |
| break; |
| case Opt_test_dummy_encryption: |
| #ifdef CONFIG_F2FS_FS_ENCRYPTION |
| if (!f2fs_sb_has_encrypt(sbi)) { |
| f2fs_msg(sb, KERN_ERR, "Encrypt feature is off"); |
| return -EINVAL; |
| } |
| |
| F2FS_OPTION(sbi).test_dummy_encryption = true; |
| f2fs_msg(sb, KERN_INFO, |
| "Test dummy encryption mode enabled"); |
| #else |
| f2fs_msg(sb, KERN_INFO, |
| "Test dummy encryption mount option ignored"); |
| #endif |
| break; |
| case Opt_checkpoint: |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| |
| if (strlen(name) == 6 && |
| !strncmp(name, "enable", 6)) { |
| clear_opt(sbi, DISABLE_CHECKPOINT); |
| } else if (strlen(name) == 7 && |
| !strncmp(name, "disable", 7)) { |
| set_opt(sbi, DISABLE_CHECKPOINT); |
| } else { |
| kvfree(name); |
| return -EINVAL; |
| } |
| kvfree(name); |
| break; |
| default: |
| f2fs_msg(sb, KERN_ERR, |
| "Unrecognized mount option \"%s\" or missing value", |
| p); |
| return -EINVAL; |
| } |
| } |
| #ifdef CONFIG_QUOTA |
| if (f2fs_check_quota_options(sbi)) |
| return -EINVAL; |
| #else |
| if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { |
| f2fs_msg(sbi->sb, KERN_INFO, |
| "Filesystem with quota feature cannot be mounted RDWR " |
| "without CONFIG_QUOTA"); |
| return -EINVAL; |
| } |
| if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { |
| f2fs_msg(sb, KERN_ERR, |
| "Filesystem with project quota feature cannot be " |
| "mounted RDWR without CONFIG_QUOTA"); |
| return -EINVAL; |
| } |
| #endif |
| |
| if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { |
| f2fs_msg(sb, KERN_ERR, |
| "Should set mode=lfs with %uKB-sized IO", |
| F2FS_IO_SIZE_KB(sbi)); |
| return -EINVAL; |
| } |
| |
| if (test_opt(sbi, INLINE_XATTR_SIZE)) { |
| int min_size, max_size; |
| |
| if (!f2fs_sb_has_extra_attr(sbi) || |
| !f2fs_sb_has_flexible_inline_xattr(sbi)) { |
| f2fs_msg(sb, KERN_ERR, |
| "extra_attr or flexible_inline_xattr " |
| "feature is off"); |
| return -EINVAL; |
| } |
| if (!test_opt(sbi, INLINE_XATTR)) { |
| f2fs_msg(sb, KERN_ERR, |
| "inline_xattr_size option should be " |
| "set with inline_xattr option"); |
| return -EINVAL; |
| } |
| |
| min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); |
| max_size = MAX_INLINE_XATTR_SIZE; |
| |
| if (F2FS_OPTION(sbi).inline_xattr_size < min_size || |
| F2FS_OPTION(sbi).inline_xattr_size > max_size) { |
| f2fs_msg(sb, KERN_ERR, |
| "inline xattr size is out of range: %d ~ %d", |
| min_size, max_size); |
| return -EINVAL; |
| } |
| } |
| |
| if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) { |
| f2fs_msg(sb, KERN_ERR, |
| "LFS not compatible with checkpoint=disable\n"); |
| return -EINVAL; |
| } |
| |
| /* Not pass down write hints if the number of active logs is lesser |
| * than NR_CURSEG_TYPE. |
| */ |
| if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) |
| F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; |
| return 0; |
| } |
| |
| static struct inode *f2fs_alloc_inode(struct super_block *sb) |
| { |
| struct f2fs_inode_info *fi; |
| |
| fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); |
| if (!fi) |
| return NULL; |
| |
| init_once((void *) fi); |
| |
| /* Initialize f2fs-specific inode info */ |
| atomic_set(&fi->dirty_pages, 0); |
| init_rwsem(&fi->i_sem); |
| INIT_LIST_HEAD(&fi->dirty_list); |
| INIT_LIST_HEAD(&fi->gdirty_list); |
| INIT_LIST_HEAD(&fi->inmem_ilist); |
| INIT_LIST_HEAD(&fi->inmem_pages); |
| mutex_init(&fi->inmem_lock); |
| init_rwsem(&fi->i_gc_rwsem[READ]); |
| init_rwsem(&fi->i_gc_rwsem[WRITE]); |
| init_rwsem(&fi->i_mmap_sem); |
| init_rwsem(&fi->i_xattr_sem); |
| |
| /* Will be used by directory only */ |
| fi->i_dir_level = F2FS_SB(sb)->dir_level; |
| |
| return &fi->vfs_inode; |
| } |
| |
| static int f2fs_drop_inode(struct inode *inode) |
| { |
| int ret; |
| /* |
| * This is to avoid a deadlock condition like below. |
| * writeback_single_inode(inode) |
| * - f2fs_write_data_page |
| * - f2fs_gc -> iput -> evict |
| * - inode_wait_for_writeback(inode) |
| */ |
| if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { |
| if (!inode->i_nlink && !is_bad_inode(inode)) { |
| /* to avoid evict_inode call simultaneously */ |
| atomic_inc(&inode->i_count); |
| spin_unlock(&inode->i_lock); |
| |
| /* some remained atomic pages should discarded */ |
| if (f2fs_is_atomic_file(inode)) |
| f2fs_drop_inmem_pages(inode); |
| |
| /* should remain fi->extent_tree for writepage */ |
| f2fs_destroy_extent_node(inode); |
| |
| sb_start_intwrite(inode->i_sb); |
| f2fs_i_size_write(inode, 0); |
| |
| f2fs_submit_merged_write_cond(F2FS_I_SB(inode), |
| inode, NULL, 0, DATA); |
| truncate_inode_pages_final(inode->i_mapping); |
| |
| if (F2FS_HAS_BLOCKS(inode)) |
| f2fs_truncate(inode); |
| |
| sb_end_intwrite(inode->i_sb); |
| |
| spin_lock(&inode->i_lock); |
| atomic_dec(&inode->i_count); |
| } |
| trace_f2fs_drop_inode(inode, 0); |
| return 0; |
| } |
| ret = generic_drop_inode(inode); |
| trace_f2fs_drop_inode(inode, ret); |
| return ret; |
| } |
| |
| int f2fs_inode_dirtied(struct inode *inode, bool sync) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| int ret = 0; |
| |
| spin_lock(&sbi->inode_lock[DIRTY_META]); |
| if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { |
| ret = 1; |
| } else { |
| set_inode_flag(inode, FI_DIRTY_INODE); |
| stat_inc_dirty_inode(sbi, DIRTY_META); |
| } |
| if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { |
| list_add_tail(&F2FS_I(inode)->gdirty_list, |
| &sbi->inode_list[DIRTY_META]); |
| inc_page_count(sbi, F2FS_DIRTY_IMETA); |
| } |
| spin_unlock(&sbi->inode_lock[DIRTY_META]); |
| return ret; |
| } |
| |
| void f2fs_inode_synced(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| |
| spin_lock(&sbi->inode_lock[DIRTY_META]); |
| if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { |
| spin_unlock(&sbi->inode_lock[DIRTY_META]); |
| return; |
| } |
| if (!list_empty(&F2FS_I(inode)->gdirty_list)) { |
| list_del_init(&F2FS_I(inode)->gdirty_list); |
| dec_page_count(sbi, F2FS_DIRTY_IMETA); |
| } |
| clear_inode_flag(inode, FI_DIRTY_INODE); |
| clear_inode_flag(inode, FI_AUTO_RECOVER); |
| stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); |
| spin_unlock(&sbi->inode_lock[DIRTY_META]); |
| } |
| |
| /* |
| * f2fs_dirty_inode() is called from __mark_inode_dirty() |
| * |
| * We should call set_dirty_inode to write the dirty inode through write_inode. |
| */ |
| static void f2fs_dirty_inode(struct inode *inode, int flags) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| |
| if (inode->i_ino == F2FS_NODE_INO(sbi) || |
| inode->i_ino == F2FS_META_INO(sbi)) |
| return; |
| |
| if (flags == I_DIRTY_TIME) |
| return; |
| |
| if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) |
| clear_inode_flag(inode, FI_AUTO_RECOVER); |
| |
| f2fs_inode_dirtied(inode, false); |
| } |
| |
| static void f2fs_i_callback(struct rcu_head *head) |
| { |
| struct inode *inode = container_of(head, struct inode, i_rcu); |
| kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); |
| } |
| |
| static void f2fs_destroy_inode(struct inode *inode) |
| { |
| call_rcu(&inode->i_rcu, f2fs_i_callback); |
| } |
| |
| static void destroy_percpu_info(struct f2fs_sb_info *sbi) |
| { |
| percpu_counter_destroy(&sbi->alloc_valid_block_count); |
| percpu_counter_destroy(&sbi->total_valid_inode_count); |
| } |
| |
| static void destroy_device_list(struct f2fs_sb_info *sbi) |
| { |
| int i; |
| |
| for (i = 0; i < sbi->s_ndevs; i++) { |
| blkdev_put(FDEV(i).bdev, FMODE_EXCL); |
| #ifdef CONFIG_BLK_DEV_ZONED |
| kvfree(FDEV(i).blkz_type); |
| #endif |
| } |
| kvfree(sbi->devs); |
| } |
| |
| static void f2fs_put_super(struct super_block *sb) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| int i; |
| bool dropped; |
| |
| f2fs_quota_off_umount(sb); |
| |
| /* prevent remaining shrinker jobs */ |
| mutex_lock(&sbi->umount_mutex); |
| |
| /* |
| * We don't need to do checkpoint when superblock is clean. |
| * But, the previous checkpoint was not done by umount, it needs to do |
| * clean checkpoint again. |
| */ |
| if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || |
| !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { |
| struct cp_control cpc = { |
| .reason = CP_UMOUNT, |
| }; |
| f2fs_write_checkpoint(sbi, &cpc); |
| } |
| |
| /* be sure to wait for any on-going discard commands */ |
| dropped = f2fs_issue_discard_timeout(sbi); |
| |
| if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && |
| !sbi->discard_blks && !dropped) { |
| struct cp_control cpc = { |
| .reason = CP_UMOUNT | CP_TRIMMED, |
| }; |
| f2fs_write_checkpoint(sbi, &cpc); |
| } |
| |
| /* |
| * normally superblock is clean, so we need to release this. |
| * In addition, EIO will skip do checkpoint, we need this as well. |
| */ |
| f2fs_release_ino_entry(sbi, true); |
| |
| f2fs_leave_shrinker(sbi); |
| mutex_unlock(&sbi->umount_mutex); |
| |
| /* our cp_error case, we can wait for any writeback page */ |
| f2fs_flush_merged_writes(sbi); |
| |
| f2fs_wait_on_all_pages_writeback(sbi); |
| |
| f2fs_bug_on(sbi, sbi->fsync_node_num); |
| |
| iput(sbi->node_inode); |
| sbi->node_inode = NULL; |
| |
| iput(sbi->meta_inode); |
| sbi->meta_inode = NULL; |
| |
| /* |
| * iput() can update stat information, if f2fs_write_checkpoint() |
| * above failed with error. |
| */ |
| f2fs_destroy_stats(sbi); |
| |
| /* destroy f2fs internal modules */ |
| f2fs_destroy_node_manager(sbi); |
| f2fs_destroy_segment_manager(sbi); |
| |
| kvfree(sbi->ckpt); |
| |
| f2fs_unregister_sysfs(sbi); |
| |
| sb->s_fs_info = NULL; |
| if (sbi->s_chksum_driver) |
| crypto_free_shash(sbi->s_chksum_driver); |
| kvfree(sbi->raw_super); |
| |
| destroy_device_list(sbi); |
| mempool_destroy(sbi->write_io_dummy); |
| #ifdef CONFIG_QUOTA |
| for (i = 0; i < MAXQUOTAS; i++) |
| kvfree(F2FS_OPTION(sbi).s_qf_names[i]); |
| #endif |
| destroy_percpu_info(sbi); |
| for (i = 0; i < NR_PAGE_TYPE; i++) |
| kvfree(sbi->write_io[i]); |
| kvfree(sbi); |
| } |
| |
| int f2fs_sync_fs(struct super_block *sb, int sync) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| int err = 0; |
| |
| if (unlikely(f2fs_cp_error(sbi))) |
| return 0; |
| if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) |
| return 0; |
| |
| trace_f2fs_sync_fs(sb, sync); |
| |
| if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| return -EAGAIN; |
| |
| if (sync) { |
| struct cp_control cpc; |
| |
| cpc.reason = __get_cp_reason(sbi); |
| |
| mutex_lock(&sbi->gc_mutex); |
| err = f2fs_write_checkpoint(sbi, &cpc); |
| mutex_unlock(&sbi->gc_mutex); |
| } |
| f2fs_trace_ios(NULL, 1); |
| |
| return err; |
| } |
| |
| static int f2fs_freeze(struct super_block *sb) |
| { |
| if (f2fs_readonly(sb)) |
| return 0; |
| |
| /* IO error happened before */ |
| if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) |
| return -EIO; |
| |
| /* must be clean, since sync_filesystem() was already called */ |
| if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int f2fs_unfreeze(struct super_block *sb) |
| { |
| return 0; |
| } |
| |
| #ifdef CONFIG_QUOTA |
| static int f2fs_statfs_project(struct super_block *sb, |
| kprojid_t projid, struct kstatfs *buf) |
| { |
| struct kqid qid; |
| struct dquot *dquot; |
| u64 limit; |
| u64 curblock; |
| |
| qid = make_kqid_projid(projid); |
| dquot = dqget(sb, qid); |
| if (IS_ERR(dquot)) |
| return PTR_ERR(dquot); |
| spin_lock(&dq_data_lock); |
| |
| limit = (dquot->dq_dqb.dqb_bsoftlimit ? |
| dquot->dq_dqb.dqb_bsoftlimit : |
| dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; |
| if (limit && buf->f_blocks > limit) { |
| curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; |
| buf->f_blocks = limit; |
| buf->f_bfree = buf->f_bavail = |
| (buf->f_blocks > curblock) ? |
| (buf->f_blocks - curblock) : 0; |
| } |
| |
| limit = dquot->dq_dqb.dqb_isoftlimit ? |
| dquot->dq_dqb.dqb_isoftlimit : |
| dquot->dq_dqb.dqb_ihardlimit; |
| if (limit && buf->f_files > limit) { |
| buf->f_files = limit; |
| buf->f_ffree = |
| (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? |
| (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; |
| } |
| |
| spin_unlock(&dq_data_lock); |
| dqput(dquot); |
| return 0; |
| } |
| #endif |
| |
| static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) |
| { |
| struct super_block *sb = dentry->d_sb; |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| u64 id = huge_encode_dev(sb->s_bdev->bd_dev); |
| block_t total_count, user_block_count, start_count; |
| u64 avail_node_count; |
| |
| total_count = le64_to_cpu(sbi->raw_super->block_count); |
| user_block_count = sbi->user_block_count; |
| start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); |
| buf->f_type = F2FS_SUPER_MAGIC; |
| buf->f_bsize = sbi->blocksize; |
| |
| buf->f_blocks = total_count - start_count; |
| buf->f_bfree = user_block_count - valid_user_blocks(sbi) - |
| sbi->current_reserved_blocks; |
| if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) |
| buf->f_bfree = 0; |
| else |
| buf->f_bfree -= sbi->unusable_block_count; |
| |
| if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) |
| buf->f_bavail = buf->f_bfree - |
| F2FS_OPTION(sbi).root_reserved_blocks; |
| else |
| buf->f_bavail = 0; |
| |
| avail_node_count = sbi->total_node_count - sbi->nquota_files - |
| F2FS_RESERVED_NODE_NUM; |
| |
| if (avail_node_count > user_block_count) { |
| buf->f_files = user_block_count; |
| buf->f_ffree = buf->f_bavail; |
| } else { |
| buf->f_files = avail_node_count; |
| buf->f_ffree = min(avail_node_count - valid_node_count(sbi), |
| buf->f_bavail); |
| } |
| |
| buf->f_namelen = F2FS_NAME_LEN; |
| buf->f_fsid.val[0] = (u32)id; |
| buf->f_fsid.val[1] = (u32)(id >> 32); |
| |
| #ifdef CONFIG_QUOTA |
| if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && |
| sb_has_quota_limits_enabled(sb, PRJQUOTA)) { |
| f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); |
| } |
| #endif |
| return 0; |
| } |
| |
| static inline void f2fs_show_quota_options(struct seq_file *seq, |
| struct super_block *sb) |
| { |
| #ifdef CONFIG_QUOTA |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| |
| if (F2FS_OPTION(sbi).s_jquota_fmt) { |
| char *fmtname = ""; |
| |
| switch (F2FS_OPTION(sbi).s_jquota_fmt) { |
| case QFMT_VFS_OLD: |
| fmtname = "vfsold"; |
| break; |
| case QFMT_VFS_V0: |
| fmtname = "vfsv0"; |
| break; |
| case QFMT_VFS_V1: |
| fmtname = "vfsv1"; |
| break; |
| } |
| seq_printf(seq, ",jqfmt=%s", fmtname); |
| } |
| |
| if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) |
| seq_show_option(seq, "usrjquota", |
| F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); |
| |
| if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) |
| seq_show_option(seq, "grpjquota", |
| F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); |
| |
| if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) |
| seq_show_option(seq, "prjjquota", |
| F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); |
| #endif |
| } |
| |
| static int f2fs_show_options(struct seq_file *seq, struct dentry *root) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); |
| |
| if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { |
| if (test_opt(sbi, FORCE_FG_GC)) |
| seq_printf(seq, ",background_gc=%s", "sync"); |
| else |
| seq_printf(seq, ",background_gc=%s", "on"); |
| } else { |
| seq_printf(seq, ",background_gc=%s", "off"); |
| } |
| if (test_opt(sbi, DISABLE_ROLL_FORWARD)) |
| seq_puts(seq, ",disable_roll_forward"); |
| if (test_opt(sbi, DISCARD)) |
| seq_puts(seq, ",discard"); |
| if (test_opt(sbi, NOHEAP)) |
| seq_puts(seq, ",no_heap"); |
| else |
| seq_puts(seq, ",heap"); |
| #ifdef CONFIG_F2FS_FS_XATTR |
| if (test_opt(sbi, XATTR_USER)) |
| seq_puts(seq, ",user_xattr"); |
| else |
| seq_puts(seq, ",nouser_xattr"); |
| if (test_opt(sbi, INLINE_XATTR)) |
| seq_puts(seq, ",inline_xattr"); |
| else |
| seq_puts(seq, ",noinline_xattr"); |
| if (test_opt(sbi, INLINE_XATTR_SIZE)) |
| seq_printf(seq, ",inline_xattr_size=%u", |
| F2FS_OPTION(sbi).inline_xattr_size); |
| #endif |
| #ifdef CONFIG_F2FS_FS_POSIX_ACL |
| if (test_opt(sbi, POSIX_ACL)) |
| seq_puts(seq, ",acl"); |
| else |
| seq_puts(seq, ",noacl"); |
| #endif |
| if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) |
| seq_puts(seq, ",disable_ext_identify"); |
| if (test_opt(sbi, INLINE_DATA)) |
| seq_puts(seq, ",inline_data"); |
| else |
| seq_puts(seq, ",noinline_data"); |
| if (test_opt(sbi, INLINE_DENTRY)) |
| seq_puts(seq, ",inline_dentry"); |
| else |
| seq_puts(seq, ",noinline_dentry"); |
| if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) |
| seq_puts(seq, ",flush_merge"); |
| if (test_opt(sbi, NOBARRIER)) |
| seq_puts(seq, ",nobarrier"); |
| if (test_opt(sbi, FASTBOOT)) |
| seq_puts(seq, ",fastboot"); |
| if (test_opt(sbi, EXTENT_CACHE)) |
| seq_puts(seq, ",extent_cache"); |
| else |
| seq_puts(seq, ",noextent_cache"); |
| if (test_opt(sbi, DATA_FLUSH)) |
| seq_puts(seq, ",data_flush"); |
| |
| seq_puts(seq, ",mode="); |
| if (test_opt(sbi, ADAPTIVE)) |
| seq_puts(seq, "adaptive"); |
| else if (test_opt(sbi, LFS)) |
| seq_puts(seq, "lfs"); |
| seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); |
| if (test_opt(sbi, RESERVE_ROOT)) |
| seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", |
| F2FS_OPTION(sbi).root_reserved_blocks, |
| from_kuid_munged(&init_user_ns, |
| F2FS_OPTION(sbi).s_resuid), |
| from_kgid_munged(&init_user_ns, |
| F2FS_OPTION(sbi).s_resgid)); |
| if (F2FS_IO_SIZE_BITS(sbi)) |
| seq_printf(seq, ",io_bits=%u", |
| F2FS_OPTION(sbi).write_io_size_bits); |
| #ifdef CONFIG_F2FS_FAULT_INJECTION |
| if (test_opt(sbi, FAULT_INJECTION)) { |
| seq_printf(seq, ",fault_injection=%u", |
| F2FS_OPTION(sbi).fault_info.inject_rate); |
| seq_printf(seq, ",fault_type=%u", |
| F2FS_OPTION(sbi).fault_info.inject_type); |
| } |
| #endif |
| #ifdef CONFIG_QUOTA |
| if (test_opt(sbi, QUOTA)) |
| seq_puts(seq, ",quota"); |
| if (test_opt(sbi, USRQUOTA)) |
| seq_puts(seq, ",usrquota"); |
| if (test_opt(sbi, GRPQUOTA)) |
| seq_puts(seq, ",grpquota"); |
| if (test_opt(sbi, PRJQUOTA)) |
| seq_puts(seq, ",prjquota"); |
| #endif |
| f2fs_show_quota_options(seq, sbi->sb); |
| if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) |
| seq_printf(seq, ",whint_mode=%s", "user-based"); |
| else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) |
| seq_printf(seq, ",whint_mode=%s", "fs-based"); |
| #ifdef CONFIG_F2FS_FS_ENCRYPTION |
| if (F2FS_OPTION(sbi).test_dummy_encryption) |
| seq_puts(seq, ",test_dummy_encryption"); |
| #endif |
| |
| if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) |
| seq_printf(seq, ",alloc_mode=%s", "default"); |
| else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) |
| seq_printf(seq, ",alloc_mode=%s", "reuse"); |
| |
| if (test_opt(sbi, DISABLE_CHECKPOINT)) |
| seq_puts(seq, ",checkpoint=disable"); |
| |
| if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) |
| seq_printf(seq, ",fsync_mode=%s", "posix"); |
| else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) |
| seq_printf(seq, ",fsync_mode=%s", "strict"); |
| else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) |
| seq_printf(seq, ",fsync_mode=%s", "nobarrier"); |
| return 0; |
| } |
| |
| static void default_options(struct f2fs_sb_info *sbi) |
| { |
| /* init some FS parameters */ |
| F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; |
| F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; |
| F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; |
| F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; |
| F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; |
| F2FS_OPTION(sbi).test_dummy_encryption = false; |
| F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); |
| F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); |
| |
| set_opt(sbi, BG_GC); |
| set_opt(sbi, INLINE_XATTR); |
| set_opt(sbi, INLINE_DATA); |
| set_opt(sbi, INLINE_DENTRY); |
| set_opt(sbi, EXTENT_CACHE); |
| set_opt(sbi, NOHEAP); |
| sbi->sb->s_flags |= MS_LAZYTIME; |
| clear_opt(sbi, DISABLE_CHECKPOINT); |
| set_opt(sbi, FLUSH_MERGE); |
| set_opt(sbi, DISCARD); |
| if (f2fs_sb_has_blkzoned(sbi)) |
| set_opt_mode(sbi, F2FS_MOUNT_LFS); |
| else |
| set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); |
| |
| #ifdef CONFIG_F2FS_FS_XATTR |
| set_opt(sbi, XATTR_USER); |
| #endif |
| #ifdef CONFIG_F2FS_FS_POSIX_ACL |
| set_opt(sbi, POSIX_ACL); |
| #endif |
| |
| f2fs_build_fault_attr(sbi, 0, 0); |
| } |
| |
| #ifdef CONFIG_QUOTA |
| static int f2fs_enable_quotas(struct super_block *sb); |
| #endif |
| |
| static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) |
| { |
| unsigned int s_flags = sbi->sb->s_flags; |
| struct cp_control cpc; |
| int err = 0; |
| int ret; |
| |
| if (s_flags & MS_RDONLY) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "checkpoint=disable on readonly fs"); |
| return -EINVAL; |
| } |
| sbi->sb->s_flags |= MS_ACTIVE; |
| |
| f2fs_update_time(sbi, DISABLE_TIME); |
| |
| while (!f2fs_time_over(sbi, DISABLE_TIME)) { |
| mutex_lock(&sbi->gc_mutex); |
| err = f2fs_gc(sbi, true, false, NULL_SEGNO); |
| if (err == -ENODATA) { |
| err = 0; |
| break; |
| } |
| if (err && err != -EAGAIN) |
| break; |
| } |
| |
| ret = sync_filesystem(sbi->sb); |
| if (ret || err) { |
| err = ret ? ret: err; |
| goto restore_flag; |
| } |
| |
| if (f2fs_disable_cp_again(sbi)) { |
| err = -EAGAIN; |
| goto restore_flag; |
| } |
| |
| mutex_lock(&sbi->gc_mutex); |
| cpc.reason = CP_PAUSE; |
| set_sbi_flag(sbi, SBI_CP_DISABLED); |
| f2fs_write_checkpoint(sbi, &cpc); |
| |
| sbi->unusable_block_count = 0; |
| mutex_unlock(&sbi->gc_mutex); |
| restore_flag: |
| sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */ |
| return err; |
| } |
| |
| static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) |
| { |
| mutex_lock(&sbi->gc_mutex); |
| f2fs_dirty_to_prefree(sbi); |
| |
| clear_sbi_flag(sbi, SBI_CP_DISABLED); |
| set_sbi_flag(sbi, SBI_IS_DIRTY); |
| mutex_unlock(&sbi->gc_mutex); |
| |
| f2fs_sync_fs(sbi->sb, 1); |
| } |
| |
| static int f2fs_remount(struct super_block *sb, int *flags, char *data) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| struct f2fs_mount_info org_mount_opt; |
| unsigned long old_sb_flags; |
| int err; |
| bool need_restart_gc = false; |
| bool need_stop_gc = false; |
| bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); |
| bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); |
| bool checkpoint_changed; |
| #ifdef CONFIG_QUOTA |
| int i, j; |
| #endif |
| |
| /* |
| * Save the old mount options in case we |
| * need to restore them. |
| */ |
| org_mount_opt = sbi->mount_opt; |
| old_sb_flags = sb->s_flags; |
| |
| #ifdef CONFIG_QUOTA |
| org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; |
| for (i = 0; i < MAXQUOTAS; i++) { |
| if (F2FS_OPTION(sbi).s_qf_names[i]) { |
| org_mount_opt.s_qf_names[i] = |
| kstrdup(F2FS_OPTION(sbi).s_qf_names[i], |
| GFP_KERNEL); |
| if (!org_mount_opt.s_qf_names[i]) { |
| for (j = 0; j < i; j++) |
| kvfree(org_mount_opt.s_qf_names[j]); |
| return -ENOMEM; |
| } |
| } else { |
| org_mount_opt.s_qf_names[i] = NULL; |
| } |
| } |
| #endif |
| |
| /* recover superblocks we couldn't write due to previous RO mount */ |
| if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { |
| err = f2fs_commit_super(sbi, false); |
| f2fs_msg(sb, KERN_INFO, |
| "Try to recover all the superblocks, ret: %d", err); |
| if (!err) |
| clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); |
| } |
| |
| default_options(sbi); |
| |
| /* parse mount options */ |
| err = parse_options(sb, data); |
| if (err) |
| goto restore_opts; |
| checkpoint_changed = |
| disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); |
| |
| /* |
| * Previous and new state of filesystem is RO, |
| * so skip checking GC and FLUSH_MERGE conditions. |
| */ |
| if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) |
| goto skip; |
| |
| #ifdef CONFIG_QUOTA |
| if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) { |
| err = dquot_suspend(sb, -1); |
| if (err < 0) |
| goto restore_opts; |
| } else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) { |
| /* dquot_resume needs RW */ |
| sb->s_flags &= ~MS_RDONLY; |
| if (sb_any_quota_suspended(sb)) { |
| dquot_resume(sb, -1); |
| } else if (f2fs_sb_has_quota_ino(sbi)) { |
| err = f2fs_enable_quotas(sb); |
| if (err) |
| goto restore_opts; |
| } |
| } |
| #endif |
| /* disallow enable/disable extent_cache dynamically */ |
| if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { |
| err = -EINVAL; |
| f2fs_msg(sbi->sb, KERN_WARNING, |
| "switch extent_cache option is not allowed"); |
| goto restore_opts; |
| } |
| |
| if ((*flags & MS_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { |
| err = -EINVAL; |
| f2fs_msg(sbi->sb, KERN_WARNING, |
| "disabling checkpoint not compatible with read-only"); |
| goto restore_opts; |
| } |
| |
| /* |
| * We stop the GC thread if FS is mounted as RO |
| * or if background_gc = off is passed in mount |
| * option. Also sync the filesystem. |
| */ |
| if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { |
| if (sbi->gc_thread) { |
| f2fs_stop_gc_thread(sbi); |
| need_restart_gc = true; |
| } |
| } else if (!sbi->gc_thread) { |
| err = f2fs_start_gc_thread(sbi); |
| if (err) |
| goto restore_opts; |
| need_stop_gc = true; |
| } |
| |
| if (*flags & MS_RDONLY || |
| F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { |
| writeback_inodes_sb(sb, WB_REASON_SYNC); |
| sync_inodes_sb(sb); |
| |
| set_sbi_flag(sbi, SBI_IS_DIRTY); |
| set_sbi_flag(sbi, SBI_IS_CLOSE); |
| f2fs_sync_fs(sb, 1); |
| clear_sbi_flag(sbi, SBI_IS_CLOSE); |
| } |
| |
| if (checkpoint_changed) { |
| if (test_opt(sbi, DISABLE_CHECKPOINT)) { |
| err = f2fs_disable_checkpoint(sbi); |
| if (err) |
| goto restore_gc; |
| } else { |
| f2fs_enable_checkpoint(sbi); |
| } |
| } |
| |
| /* |
| * We stop issue flush thread if FS is mounted as RO |
| * or if flush_merge is not passed in mount option. |
| */ |
| if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { |
| clear_opt(sbi, FLUSH_MERGE); |
| f2fs_destroy_flush_cmd_control(sbi, false); |
| } else { |
| err = f2fs_create_flush_cmd_control(sbi); |
| if (err) |
| goto restore_gc; |
| } |
| skip: |
| #ifdef CONFIG_QUOTA |
| /* Release old quota file names */ |
| for (i = 0; i < MAXQUOTAS; i++) |
| kvfree(org_mount_opt.s_qf_names[i]); |
| #endif |
| /* Update the POSIXACL Flag */ |
| sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | |
| (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); |
| |
| limit_reserve_root(sbi); |
| *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); |
| return 0; |
| restore_gc: |
| if (need_restart_gc) { |
| if (f2fs_start_gc_thread(sbi)) |
| f2fs_msg(sbi->sb, KERN_WARNING, |
| "background gc thread has stopped"); |
| } else if (need_stop_gc) { |
| f2fs_stop_gc_thread(sbi); |
| } |
| restore_opts: |
| #ifdef CONFIG_QUOTA |
| F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; |
| for (i = 0; i < MAXQUOTAS; i++) { |
| kvfree(F2FS_OPTION(sbi).s_qf_names[i]); |
| F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; |
| } |
| #endif |
| sbi->mount_opt = org_mount_opt; |
| sb->s_flags = old_sb_flags; |
| return err; |
| } |
| |
| #ifdef CONFIG_QUOTA |
| /* Read data from quotafile */ |
| static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, |
| size_t len, loff_t off) |
| { |
| struct inode *inode = sb_dqopt(sb)->files[type]; |
| struct address_space *mapping = inode->i_mapping; |
| block_t blkidx = F2FS_BYTES_TO_BLK(off); |
| int offset = off & (sb->s_blocksize - 1); |
| int tocopy; |
| size_t toread; |
| loff_t i_size = i_size_read(inode); |
| struct page *page; |
| char *kaddr; |
| |
| if (off > i_size) |
| return 0; |
| |
| if (off + len > i_size) |
| len = i_size - off; |
| toread = len; |
| while (toread > 0) { |
| tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); |
| repeat: |
| page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); |
| if (IS_ERR(page)) { |
| if (PTR_ERR(page) == -ENOMEM) { |
| congestion_wait(BLK_RW_ASYNC, HZ/50); |
| goto repeat; |
| } |
| set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); |
| return PTR_ERR(page); |
| } |
| |
| lock_page(page); |
| |
| if (unlikely(page->mapping != mapping)) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| if (unlikely(!PageUptodate(page))) { |
| f2fs_put_page(page, 1); |
| set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); |
| return -EIO; |
| } |
| |
| kaddr = kmap_atomic(page); |
| memcpy(data, kaddr + offset, tocopy); |
| kunmap_atomic(kaddr); |
| f2fs_put_page(page, 1); |
| |
| offset = 0; |
| toread -= tocopy; |
| data += tocopy; |
| blkidx++; |
| } |
| return len; |
| } |
| |
| /* Write to quotafile */ |
| static ssize_t f2fs_quota_write(struct super_block *sb, int type, |
| const char *data, size_t len, loff_t off) |
| { |
| struct inode *inode = sb_dqopt(sb)->files[type]; |
| struct address_space *mapping = inode->i_mapping; |
| const struct address_space_operations *a_ops = mapping->a_ops; |
| int offset = off & (sb->s_blocksize - 1); |
| size_t towrite = len; |
| struct page *page; |
| char *kaddr; |
| int err = 0; |
| int tocopy; |
| |
| while (towrite > 0) { |
| tocopy = min_t(unsigned long, sb->s_blocksize - offset, |
| towrite); |
| retry: |
| err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, |
| &page, NULL); |
| if (unlikely(err)) { |
| if (err == -ENOMEM) { |
| congestion_wait(BLK_RW_ASYNC, HZ/50); |
| goto retry; |
| } |
| set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); |
| break; |
| } |
| |
| kaddr = kmap_atomic(page); |
| memcpy(kaddr + offset, data, tocopy); |
| kunmap_atomic(kaddr); |
| flush_dcache_page(page); |
| |
| a_ops->write_end(NULL, mapping, off, tocopy, tocopy, |
| page, NULL); |
| offset = 0; |
| towrite -= tocopy; |
| off += tocopy; |
| data += tocopy; |
| cond_resched(); |
| } |
| |
| if (len == towrite) |
| return err; |
| inode->i_mtime = inode->i_ctime = current_time(inode); |
| f2fs_mark_inode_dirty_sync(inode, false); |
| return len - towrite; |
| } |
| |
| static struct dquot **f2fs_get_dquots(struct inode *inode) |
| { |
| return F2FS_I(inode)->i_dquot; |
| } |
| |
| static qsize_t *f2fs_get_reserved_space(struct inode *inode) |
| { |
| return &F2FS_I(inode)->i_reserved_quota; |
| } |
| |
| static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) |
| { |
| if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "quota sysfile may be corrupted, skip loading it"); |
| return 0; |
| } |
| |
| return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], |
| F2FS_OPTION(sbi).s_jquota_fmt, type); |
| } |
| |
| int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) |
| { |
| int enabled = 0; |
| int i, err; |
| |
| if (f2fs_sb_has_quota_ino(sbi) && rdonly) { |
| err = f2fs_enable_quotas(sbi->sb); |
| if (err) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Cannot turn on quota_ino: %d", err); |
| return 0; |
| } |
| return 1; |
| } |
| |
| for (i = 0; i < MAXQUOTAS; i++) { |
| if (F2FS_OPTION(sbi).s_qf_names[i]) { |
| err = f2fs_quota_on_mount(sbi, i); |
| if (!err) { |
| enabled = 1; |
| continue; |
| } |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Cannot turn on quotas: %d on %d", err, i); |
| } |
| } |
| return enabled; |
| } |
| |
| static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, |
| unsigned int flags) |
| { |
| struct inode *qf_inode; |
| unsigned long qf_inum; |
| int err; |
| |
| BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); |
| |
| qf_inum = f2fs_qf_ino(sb, type); |
| if (!qf_inum) |
| return -EPERM; |
| |
| qf_inode = f2fs_iget(sb, qf_inum); |
| if (IS_ERR(qf_inode)) { |
| f2fs_msg(sb, KERN_ERR, |
| "Bad quota inode %u:%lu", type, qf_inum); |
| return PTR_ERR(qf_inode); |
| } |
| |
| /* Don't account quota for quota files to avoid recursion */ |
| qf_inode->i_flags |= S_NOQUOTA; |
| err = dquot_enable(qf_inode, type, format_id, flags); |
| iput(qf_inode); |
| return err; |
| } |
| |
| static int f2fs_enable_quotas(struct super_block *sb) |
| { |
| int type, err = 0; |
| unsigned long qf_inum; |
| bool quota_mopt[MAXQUOTAS] = { |
| test_opt(F2FS_SB(sb), USRQUOTA), |
| test_opt(F2FS_SB(sb), GRPQUOTA), |
| test_opt(F2FS_SB(sb), PRJQUOTA), |
| }; |
| |
| if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { |
| f2fs_msg(sb, KERN_ERR, |
| "quota file may be corrupted, skip loading it"); |
| return 0; |
| } |
| |
| sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; |
| |
| for (type = 0; type < MAXQUOTAS; type++) { |
| qf_inum = f2fs_qf_ino(sb, type); |
| if (qf_inum) { |
| err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, |
| DQUOT_USAGE_ENABLED | |
| (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); |
| if (err) { |
| f2fs_msg(sb, KERN_ERR, |
| "Failed to enable quota tracking " |
| "(type=%d, err=%d). Please run " |
| "fsck to fix.", type, err); |
| for (type--; type >= 0; type--) |
| dquot_quota_off(sb, type); |
| set_sbi_flag(F2FS_SB(sb), |
| SBI_QUOTA_NEED_REPAIR); |
| return err; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| int f2fs_quota_sync(struct super_block *sb, int type) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| struct quota_info *dqopt = sb_dqopt(sb); |
| int cnt; |
| int ret; |
| |
| ret = dquot_writeback_dquots(sb, type); |
| if (ret) |
| goto out; |
| |
| /* |
| * Now when everything is written we can discard the pagecache so |
| * that userspace sees the changes. |
| */ |
| for (cnt = 0; cnt < MAXQUOTAS; cnt++) { |
| struct address_space *mapping; |
| |
| if (type != -1 && cnt != type) |
| continue; |
| if (!sb_has_quota_active(sb, cnt)) |
| continue; |
| |
| mapping = dqopt->files[cnt]->i_mapping; |
| |
| ret = filemap_fdatawrite(mapping); |
| if (ret) |
| goto out; |
| |
| /* if we are using journalled quota */ |
| if (is_journalled_quota(sbi)) |
| continue; |
| |
| ret = filemap_fdatawait(mapping); |
| if (ret) |
| set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); |
| |
| inode_lock(dqopt->files[cnt]); |
| truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); |
| inode_unlock(dqopt->files[cnt]); |
| } |
| out: |
| if (ret) |
| set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); |
| return ret; |
| } |
| |
| static int f2fs_quota_on(struct super_block *sb, int type, int format_id, |
| struct path *path) |
| { |
| struct inode *inode; |
| int err; |
| |
| err = f2fs_quota_sync(sb, type); |
| if (err) |
| return err; |
| |
| err = dquot_quota_on(sb, type, format_id, path); |
| if (err) |
| return err; |
| |
| inode = d_inode(path->dentry); |
| |
| inode_lock(inode); |
| F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; |
| f2fs_set_inode_flags(inode); |
| inode_unlock(inode); |
| f2fs_mark_inode_dirty_sync(inode, false); |
| |
| return 0; |
| } |
| |
| static int f2fs_quota_off(struct super_block *sb, int type) |
| { |
| struct inode *inode = sb_dqopt(sb)->files[type]; |
| int err; |
| |
| if (!inode || !igrab(inode)) |
| return dquot_quota_off(sb, type); |
| |
| err = f2fs_quota_sync(sb, type); |
| if (err) |
| goto out_put; |
| |
| err = dquot_quota_off(sb, type); |
| if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) |
| goto out_put; |
| |
| inode_lock(inode); |
| F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); |
| f2fs_set_inode_flags(inode); |
| inode_unlock(inode); |
| f2fs_mark_inode_dirty_sync(inode, false); |
| out_put: |
| iput(inode); |
| return err; |
| } |
| |
| void f2fs_quota_off_umount(struct super_block *sb) |
| { |
| int type; |
| int err; |
| |
| for (type = 0; type < MAXQUOTAS; type++) { |
| err = f2fs_quota_off(sb, type); |
| if (err) { |
| int ret = dquot_quota_off(sb, type); |
| |
| f2fs_msg(sb, KERN_ERR, |
| "Fail to turn off disk quota " |
| "(type: %d, err: %d, ret:%d), Please " |
| "run fsck to fix it.", type, err, ret); |
| set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); |
| } |
| } |
| /* |
| * In case of checkpoint=disable, we must flush quota blocks. |
| * This can cause NULL exception for node_inode in end_io, since |
| * put_super already dropped it. |
| */ |
| sync_filesystem(sb); |
| } |
| |
| static void f2fs_truncate_quota_inode_pages(struct super_block *sb) |
| { |
| struct quota_info *dqopt = sb_dqopt(sb); |
| int type; |
| |
| for (type = 0; type < MAXQUOTAS; type++) { |
| if (!dqopt->files[type]) |
| continue; |
| f2fs_inode_synced(dqopt->files[type]); |
| } |
| } |
| |
| static int f2fs_dquot_commit(struct dquot *dquot) |
| { |
| int ret; |
| |
| ret = dquot_commit(dquot); |
| if (ret < 0) |
| set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); |
| return ret; |
| } |
| |
| static int f2fs_dquot_acquire(struct dquot *dquot) |
| { |
| int ret; |
| |
| ret = dquot_acquire(dquot); |
| if (ret < 0) |
| set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); |
| |
| return ret; |
| } |
| |
| static int f2fs_dquot_release(struct dquot *dquot) |
| { |
| int ret; |
| |
| ret = dquot_release(dquot); |
| if (ret < 0) |
| set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); |
| return ret; |
| } |
| |
| static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) |
| { |
| struct super_block *sb = dquot->dq_sb; |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| int ret; |
| |
| ret = dquot_mark_dquot_dirty(dquot); |
| |
| /* if we are using journalled quota */ |
| if (is_journalled_quota(sbi)) |
| set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); |
| |
| return ret; |
| } |
| |
| static int f2fs_dquot_commit_info(struct super_block *sb, int type) |
| { |
| int ret; |
| |
| ret = dquot_commit_info(sb, type); |
| if (ret < 0) |
| set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); |
| return ret; |
| } |
| |
| static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) |
| { |
| *projid = F2FS_I(inode)->i_projid; |
| return 0; |
| } |
| |
| static const struct dquot_operations f2fs_quota_operations = { |
| .get_reserved_space = f2fs_get_reserved_space, |
| .write_dquot = f2fs_dquot_commit, |
| .acquire_dquot = f2fs_dquot_acquire, |
| .release_dquot = f2fs_dquot_release, |
| .mark_dirty = f2fs_dquot_mark_dquot_dirty, |
| .write_info = f2fs_dquot_commit_info, |
| .alloc_dquot = dquot_alloc, |
| .destroy_dquot = dquot_destroy, |
| .get_projid = f2fs_get_projid, |
| .get_next_id = dquot_get_next_id, |
| }; |
| |
| static const struct quotactl_ops f2fs_quotactl_ops = { |
| .quota_on = f2fs_quota_on, |
| .quota_off = f2fs_quota_off, |
| .quota_sync = f2fs_quota_sync, |
| .get_state = dquot_get_state, |
| .set_info = dquot_set_dqinfo, |
| .get_dqblk = dquot_get_dqblk, |
| .set_dqblk = dquot_set_dqblk, |
| .get_nextdqblk = dquot_get_next_dqblk, |
| }; |
| #else |
| int f2fs_quota_sync(struct super_block *sb, int type) |
| { |
| return 0; |
| } |
| |
| void f2fs_quota_off_umount(struct super_block *sb) |
| { |
| } |
| #endif |
| |
| static const struct super_operations f2fs_sops = { |
| .alloc_inode = f2fs_alloc_inode, |
| .drop_inode = f2fs_drop_inode, |
| .destroy_inode = f2fs_destroy_inode, |
| .write_inode = f2fs_write_inode, |
| .dirty_inode = f2fs_dirty_inode, |
| .show_options = f2fs_show_options, |
| #ifdef CONFIG_QUOTA |
| .quota_read = f2fs_quota_read, |
| .quota_write = f2fs_quota_write, |
| .get_dquots = f2fs_get_dquots, |
| #endif |
| .evict_inode = f2fs_evict_inode, |
| .put_super = f2fs_put_super, |
| .sync_fs = f2fs_sync_fs, |
| .freeze_fs = f2fs_freeze, |
| .unfreeze_fs = f2fs_unfreeze, |
| .statfs = f2fs_statfs, |
| .remount_fs = f2fs_remount, |
| }; |
| |
| #ifdef CONFIG_F2FS_FS_ENCRYPTION |
| static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) |
| { |
| return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, |
| F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, |
| ctx, len, NULL); |
| } |
| |
| static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, |
| void *fs_data) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| |
| /* |
| * Encrypting the root directory is not allowed because fsck |
| * expects lost+found directory to exist and remain unencrypted |
| * if LOST_FOUND feature is enabled. |
| * |
| */ |
| if (f2fs_sb_has_lost_found(sbi) && |
| inode->i_ino == F2FS_ROOT_INO(sbi)) |
| return -EPERM; |
| |
| return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, |
| F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, |
| ctx, len, fs_data, XATTR_CREATE); |
| } |
| |
| static bool f2fs_dummy_context(struct inode *inode) |
| { |
| return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); |
| } |
| |
| static const struct fscrypt_operations f2fs_cryptops = { |
| .key_prefix = "f2fs:", |
| .get_context = f2fs_get_context, |
| .set_context = f2fs_set_context, |
| .dummy_context = f2fs_dummy_context, |
| .empty_dir = f2fs_empty_dir, |
| .max_namelen = F2FS_NAME_LEN, |
| }; |
| #endif |
| |
| static struct inode *f2fs_nfs_get_inode(struct super_block *sb, |
| u64 ino, u32 generation) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| struct inode *inode; |
| |
| if (f2fs_check_nid_range(sbi, ino)) |
| return ERR_PTR(-ESTALE); |
| |
| /* |
| * f2fs_iget isn't quite right if the inode is currently unallocated! |
| * However f2fs_iget currently does appropriate checks to handle stale |
| * inodes so everything is OK. |
| */ |
| inode = f2fs_iget(sb, ino); |
| if (IS_ERR(inode)) |
| return ERR_CAST(inode); |
| if (unlikely(generation && inode->i_generation != generation)) { |
| /* we didn't find the right inode.. */ |
| iput(inode); |
| return ERR_PTR(-ESTALE); |
| } |
| return inode; |
| } |
| |
| static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, |
| int fh_len, int fh_type) |
| { |
| return generic_fh_to_dentry(sb, fid, fh_len, fh_type, |
| f2fs_nfs_get_inode); |
| } |
| |
| static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, |
| int fh_len, int fh_type) |
| { |
| return generic_fh_to_parent(sb, fid, fh_len, fh_type, |
| f2fs_nfs_get_inode); |
| } |
| |
| static const struct export_operations f2fs_export_ops = { |
| .fh_to_dentry = f2fs_fh_to_dentry, |
| .fh_to_parent = f2fs_fh_to_parent, |
| .get_parent = f2fs_get_parent, |
| }; |
| |
| static loff_t max_file_blocks(void) |
| { |
| loff_t result = 0; |
| loff_t leaf_count = ADDRS_PER_BLOCK; |
| |
| /* |
| * note: previously, result is equal to (DEF_ADDRS_PER_INODE - |
| * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more |
| * space in inode.i_addr, it will be more safe to reassign |
| * result as zero. |
| */ |
| |
| /* two direct node blocks */ |
| result += (leaf_count * 2); |
| |
| /* two indirect node blocks */ |
| leaf_count *= NIDS_PER_BLOCK; |
| result += (leaf_count * 2); |
| |
| /* one double indirect node block */ |
| leaf_count *= NIDS_PER_BLOCK; |
| result += leaf_count; |
| |
| return result; |
| } |
| |
| static int __f2fs_commit_super(struct buffer_head *bh, |
| struct f2fs_super_block *super) |
| { |
| lock_buffer(bh); |
| if (super) |
| memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); |
| set_buffer_dirty(bh); |
| unlock_buffer(bh); |
| |
| /* it's rare case, we can do fua all the time */ |
| return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); |
| } |
| |
| static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, |
| struct buffer_head *bh) |
| { |
| struct f2fs_super_block *raw_super = (struct f2fs_super_block *) |
| (bh->b_data + F2FS_SUPER_OFFSET); |
| struct super_block *sb = sbi->sb; |
| u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); |
| u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); |
| u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); |
| u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); |
| u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); |
| u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); |
| u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); |
| u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); |
| u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); |
| u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); |
| u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); |
| u32 segment_count = le32_to_cpu(raw_super->segment_count); |
| u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); |
| u64 main_end_blkaddr = main_blkaddr + |
| (segment_count_main << log_blocks_per_seg); |
| u64 seg_end_blkaddr = segment0_blkaddr + |
| (segment_count << log_blocks_per_seg); |
| |
| if (segment0_blkaddr != cp_blkaddr) { |
| f2fs_msg(sb, KERN_INFO, |
| "Mismatch start address, segment0(%u) cp_blkaddr(%u)", |
| segment0_blkaddr, cp_blkaddr); |
| return true; |
| } |
| |
| if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != |
| sit_blkaddr) { |
| f2fs_msg(sb, KERN_INFO, |
| "Wrong CP boundary, start(%u) end(%u) blocks(%u)", |
| cp_blkaddr, sit_blkaddr, |
| segment_count_ckpt << log_blocks_per_seg); |
| return true; |
| } |
| |
| if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != |
| nat_blkaddr) { |
| f2fs_msg(sb, KERN_INFO, |
| "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", |
| sit_blkaddr, nat_blkaddr, |
| segment_count_sit << log_blocks_per_seg); |
| return true; |
| } |
| |
| if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != |
| ssa_blkaddr) { |
| f2fs_msg(sb, KERN_INFO, |
| "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", |
| nat_blkaddr, ssa_blkaddr, |
| segment_count_nat << log_blocks_per_seg); |
| return true; |
| } |
| |
| if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != |
| main_blkaddr) { |
| f2fs_msg(sb, KERN_INFO, |
| "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", |
| ssa_blkaddr, main_blkaddr, |
| segment_count_ssa << log_blocks_per_seg); |
| return true; |
| } |
| |
| if (main_end_blkaddr > seg_end_blkaddr) { |
| f2fs_msg(sb, KERN_INFO, |
| "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", |
| main_blkaddr, |
| segment0_blkaddr + |
| (segment_count << log_blocks_per_seg), |
| segment_count_main << log_blocks_per_seg); |
| return true; |
| } else if (main_end_blkaddr < seg_end_blkaddr) { |
| int err = 0; |
| char *res; |
| |
| /* fix in-memory information all the time */ |
| raw_super->segment_count = cpu_to_le32((main_end_blkaddr - |
| segment0_blkaddr) >> log_blocks_per_seg); |
| |
| if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { |
| set_sbi_flag(sbi, SBI_NEED_SB_WRITE); |
| res = "internally"; |
| } else { |
| err = __f2fs_commit_super(bh, NULL); |
| res = err ? "failed" : "done"; |
| } |
| f2fs_msg(sb, KERN_INFO, |
| "Fix alignment : %s, start(%u) end(%u) block(%u)", |
| res, main_blkaddr, |
| segment0_blkaddr + |
| (segment_count << log_blocks_per_seg), |
| segment_count_main << log_blocks_per_seg); |
| if (err) |
| return true; |
| } |
| return false; |
| } |
| |
| static int sanity_check_raw_super(struct f2fs_sb_info *sbi, |
| struct buffer_head *bh) |
| { |
| block_t segment_count, segs_per_sec, secs_per_zone; |
| block_t total_sections, blocks_per_seg; |
| struct f2fs_super_block *raw_super = (struct f2fs_super_block *) |
| (bh->b_data + F2FS_SUPER_OFFSET); |
| struct super_block *sb = sbi->sb; |
| unsigned int blocksize; |
| size_t crc_offset = 0; |
| __u32 crc = 0; |
| |
| /* Check checksum_offset and crc in superblock */ |
| if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { |
| crc_offset = le32_to_cpu(raw_super->checksum_offset); |
| if (crc_offset != |
| offsetof(struct f2fs_super_block, crc)) { |
| f2fs_msg(sb, KERN_INFO, |
| "Invalid SB checksum offset: %zu", |
| crc_offset); |
| return 1; |
| } |
| crc = le32_to_cpu(raw_super->crc); |
| if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { |
| f2fs_msg(sb, KERN_INFO, |
| "Invalid SB checksum value: %u", crc); |
| return 1; |
| } |
| } |
| |
| if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { |
| f2fs_msg(sb, KERN_INFO, |
| "Magic Mismatch, valid(0x%x) - read(0x%x)", |
| F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); |
| return 1; |
| } |
| |
| /* Currently, support only 4KB page cache size */ |
| if (F2FS_BLKSIZE != PAGE_SIZE) { |
| f2fs_msg(sb, KERN_INFO, |
| "Invalid page_cache_size (%lu), supports only 4KB\n", |
| PAGE_SIZE); |
| return 1; |
| } |
| |
| /* Currently, support only 4KB block size */ |
| blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); |
| if (blocksize != F2FS_BLKSIZE) { |
| f2fs_msg(sb, KERN_INFO, |
| "Invalid blocksize (%u), supports only 4KB\n", |
| blocksize); |
| return 1; |
| } |
| |
| /* check log blocks per segment */ |
| if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { |
| f2fs_msg(sb, KERN_INFO, |
| "Invalid log blocks per segment (%u)\n", |
| le32_to_cpu(raw_super->log_blocks_per_seg)); |
| return 1; |
| } |
| |
| /* Currently, support 512/1024/2048/4096 bytes sector size */ |
| if (le32_to_cpu(raw_super->log_sectorsize) > |
| F2FS_MAX_LOG_SECTOR_SIZE || |
| le32_to_cpu(raw_super->log_sectorsize) < |
| F2FS_MIN_LOG_SECTOR_SIZE) { |
| f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", |
| le32_to_cpu(raw_super->log_sectorsize)); |
| return 1; |
| } |
| if (le32_to_cpu(raw_super->log_sectors_per_block) + |
| le32_to_cpu(raw_super->log_sectorsize) != |
| F2FS_MAX_LOG_SECTOR_SIZE) { |
| f2fs_msg(sb, KERN_INFO, |
| "Invalid log sectors per block(%u) log sectorsize(%u)", |
| le32_to_cpu(raw_super->log_sectors_per_block), |
| le32_to_cpu(raw_super->log_sectorsize)); |
| return 1; |
| } |
| |
| segment_count = le32_to_cpu(raw_super->segment_count); |
| segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); |
| secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); |
| total_sections = le32_to_cpu(raw_super->section_count); |
| |
| /* blocks_per_seg should be 512, given the above check */ |
| blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); |
| |
| if (segment_count > F2FS_MAX_SEGMENT || |
| segment_count < F2FS_MIN_SEGMENTS) { |
| f2fs_msg(sb, KERN_INFO, |
| "Invalid segment count (%u)", |
| segment_count); |
| return 1; |
| } |
| |
| if (total_sections > segment_count || |
| total_sections < F2FS_MIN_SEGMENTS || |
| segs_per_sec > segment_count || !segs_per_sec) { |
| f2fs_msg(sb, KERN_INFO, |
| "Invalid segment/section count (%u, %u x %u)", |
| segment_count, total_sections, segs_per_sec); |
| return 1; |
| } |
| |
| if ((segment_count / segs_per_sec) < total_sections) { |
| f2fs_msg(sb, KERN_INFO, |
| "Small segment_count (%u < %u * %u)", |
| segment_count, segs_per_sec, total_sections); |
| return 1; |
| } |
| |
| if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { |
| f2fs_msg(sb, KERN_INFO, |
| "Wrong segment_count / block_count (%u > %llu)", |
| segment_count, le64_to_cpu(raw_super->block_count)); |
| return 1; |
| } |
| |
| if (secs_per_zone > total_sections || !secs_per_zone) { |
| f2fs_msg(sb, KERN_INFO, |
| "Wrong secs_per_zone / total_sections (%u, %u)", |
| secs_per_zone, total_sections); |
| return 1; |
| } |
| if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || |
| raw_super->hot_ext_count > F2FS_MAX_EXTENSION || |
| (le32_to_cpu(raw_super->extension_count) + |
| raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { |
| f2fs_msg(sb, KERN_INFO, |
| "Corrupted extension count (%u + %u > %u)", |
| le32_to_cpu(raw_super->extension_count), |
| raw_super->hot_ext_count, |
| F2FS_MAX_EXTENSION); |
| return 1; |
| } |
| |
| if (le32_to_cpu(raw_super->cp_payload) > |
| (blocks_per_seg - F2FS_CP_PACKS)) { |
| f2fs_msg(sb, KERN_INFO, |
| "Insane cp_payload (%u > %u)", |
| le32_to_cpu(raw_super->cp_payload), |
| blocks_per_seg - F2FS_CP_PACKS); |
| return 1; |
| } |
| |
| /* check reserved ino info */ |
| if (le32_to_cpu(raw_super->node_ino) != 1 || |
| le32_to_cpu(raw_super->meta_ino) != 2 || |
| le32_to_cpu(raw_super->root_ino) != 3) { |
| f2fs_msg(sb, KERN_INFO, |
| "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", |
| le32_to_cpu(raw_super->node_ino), |
| le32_to_cpu(raw_super->meta_ino), |
| le32_to_cpu(raw_super->root_ino)); |
| return 1; |
| } |
| |
| /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ |
| if (sanity_check_area_boundary(sbi, bh)) |
| return 1; |
| |
| return 0; |
| } |
| |
| int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) |
| { |
| unsigned int total, fsmeta; |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| unsigned int ovp_segments, reserved_segments; |
| unsigned int main_segs, blocks_per_seg; |
| unsigned int sit_segs, nat_segs; |
| unsigned int sit_bitmap_size, nat_bitmap_size; |
| unsigned int log_blocks_per_seg; |
| unsigned int segment_count_main; |
| unsigned int cp_pack_start_sum, cp_payload; |
| block_t user_block_count; |
| int i, j; |
| |
| total = le32_to_cpu(raw_super->segment_count); |
| fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); |
| sit_segs = le32_to_cpu(raw_super->segment_count_sit); |
| fsmeta += sit_segs; |
| nat_segs = le32_to_cpu(raw_super->segment_count_nat); |
| fsmeta += nat_segs; |
| fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); |
| fsmeta += le32_to_cpu(raw_super->segment_count_ssa); |
| |
| if (unlikely(fsmeta >= total)) |
| return 1; |
| |
| ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); |
| reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); |
| |
| if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || |
| ovp_segments == 0 || reserved_segments == 0)) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Wrong layout: check mkfs.f2fs version"); |
| return 1; |
| } |
| |
| user_block_count = le64_to_cpu(ckpt->user_block_count); |
| segment_count_main = le32_to_cpu(raw_super->segment_count_main); |
| log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); |
| if (!user_block_count || user_block_count >= |
| segment_count_main << log_blocks_per_seg) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Wrong user_block_count: %u", user_block_count); |
| return 1; |
| } |
| |
| main_segs = le32_to_cpu(raw_super->segment_count_main); |
| blocks_per_seg = sbi->blocks_per_seg; |
| |
| for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { |
| if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || |
| le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) |
| return 1; |
| for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { |
| if (le32_to_cpu(ckpt->cur_node_segno[i]) == |
| le32_to_cpu(ckpt->cur_node_segno[j])) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Node segment (%u, %u) has the same " |
| "segno: %u", i, j, |
| le32_to_cpu(ckpt->cur_node_segno[i])); |
| return 1; |
| } |
| } |
| } |
| for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { |
| if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || |
| le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) |
| return 1; |
| for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { |
| if (le32_to_cpu(ckpt->cur_data_segno[i]) == |
| le32_to_cpu(ckpt->cur_data_segno[j])) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Data segment (%u, %u) has the same " |
| "segno: %u", i, j, |
| le32_to_cpu(ckpt->cur_data_segno[i])); |
| return 1; |
| } |
| } |
| } |
| for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { |
| for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { |
| if (le32_to_cpu(ckpt->cur_node_segno[i]) == |
| le32_to_cpu(ckpt->cur_data_segno[j])) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Node segment (%u) and Data segment (%u)" |
| " has the same segno: %u", i, j, |
| le32_to_cpu(ckpt->cur_node_segno[i])); |
| return 1; |
| } |
| } |
| } |
| |
| sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); |
| nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); |
| |
| if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || |
| nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Wrong bitmap size: sit: %u, nat:%u", |
| sit_bitmap_size, nat_bitmap_size); |
| return 1; |
| } |
| |
| cp_pack_start_sum = __start_sum_addr(sbi); |
| cp_payload = __cp_payload(sbi); |
| if (cp_pack_start_sum < cp_payload + 1 || |
| cp_pack_start_sum > blocks_per_seg - 1 - |
| NR_CURSEG_TYPE) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Wrong cp_pack_start_sum: %u", |
| cp_pack_start_sum); |
| return 1; |
| } |
| |
| if (unlikely(f2fs_cp_error(sbi))) { |
| f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void init_sb_info(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = sbi->raw_super; |
| int i; |
| |
| sbi->log_sectors_per_block = |
| le32_to_cpu(raw_super->log_sectors_per_block); |
| sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); |
| sbi->blocksize = 1 << sbi->log_blocksize; |
| sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); |
| sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; |
| sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); |
| sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); |
| sbi->total_sections = le32_to_cpu(raw_super->section_count); |
| sbi->total_node_count = |
| (le32_to_cpu(raw_super->segment_count_nat) / 2) |
| * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; |
| sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); |
| sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); |
| sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); |
| sbi->cur_victim_sec = NULL_SECNO; |
| sbi->next_victim_seg[BG_GC] = NULL_SEGNO; |
| sbi->next_victim_seg[FG_GC] = NULL_SEGNO; |
| sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; |
| sbi->migration_granularity = sbi->segs_per_sec; |
| |
| sbi->dir_level = DEF_DIR_LEVEL; |
| sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; |
| sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; |
| sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; |
| sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; |
| sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; |
| sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = |
| DEF_UMOUNT_DISCARD_TIMEOUT; |
| clear_sbi_flag(sbi, SBI_NEED_FSCK); |
| |
| for (i = 0; i < NR_COUNT_TYPE; i++) |
| atomic_set(&sbi->nr_pages[i], 0); |
| |
| for (i = 0; i < META; i++) |
| atomic_set(&sbi->wb_sync_req[i], 0); |
| |
| INIT_LIST_HEAD(&sbi->s_list); |
| mutex_init(&sbi->umount_mutex); |
| init_rwsem(&sbi->io_order_lock); |
| spin_lock_init(&sbi->cp_lock); |
| |
| sbi->dirty_device = 0; |
| spin_lock_init(&sbi->dev_lock); |
| |
| init_rwsem(&sbi->sb_lock); |
| } |
| |
| static int init_percpu_info(struct f2fs_sb_info *sbi) |
| { |
| int err; |
| |
| err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); |
| if (err) |
| return err; |
| |
| err = percpu_counter_init(&sbi->total_valid_inode_count, 0, |
| GFP_KERNEL); |
| if (err) |
| percpu_counter_destroy(&sbi->alloc_valid_block_count); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_BLK_DEV_ZONED |
| static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) |
| { |
| struct block_device *bdev = FDEV(devi).bdev; |
| sector_t nr_sectors = bdev->bd_part->nr_sects; |
| sector_t sector = 0; |
| struct blk_zone *zones; |
| unsigned int i, nr_zones; |
| unsigned int n = 0; |
| int err = -EIO; |
| |
| if (!f2fs_sb_has_blkzoned(sbi)) |
| return 0; |
| |
| if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != |
| SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) |
| return -EINVAL; |
| sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); |
| if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != |
| __ilog2_u32(sbi->blocks_per_blkz)) |
| return -EINVAL; |
| sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); |
| FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> |
| sbi->log_blocks_per_blkz; |
| if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) |
| FDEV(devi).nr_blkz++; |
| |
| FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz, |
| GFP_KERNEL); |
| if (!FDEV(devi).blkz_type) |
| return -ENOMEM; |
| |
| #define F2FS_REPORT_NR_ZONES 4096 |
| |
| zones = f2fs_kzalloc(sbi, |
| array_size(F2FS_REPORT_NR_ZONES, |
| sizeof(struct blk_zone)), |
| GFP_KERNEL); |
| if (!zones) |
| return -ENOMEM; |
| |
| /* Get block zones type */ |
| while (zones && sector < nr_sectors) { |
| |
| nr_zones = F2FS_REPORT_NR_ZONES; |
| err = blkdev_report_zones(bdev, sector, |
| zones, &nr_zones, |
| GFP_KERNEL); |
| if (err) |
| break; |
| if (!nr_zones) { |
| err = -EIO; |
| break; |
| } |
| |
| for (i = 0; i < nr_zones; i++) { |
| FDEV(devi).blkz_type[n] = zones[i].type; |
| sector += zones[i].len; |
| n++; |
| } |
| } |
| |
| kvfree(zones); |
| |
| return err; |
| } |
| #endif |
| |
| /* |
| * Read f2fs raw super block. |
| * Because we have two copies of super block, so read both of them |
| * to get the first valid one. If any one of them is broken, we pass |
| * them recovery flag back to the caller. |
| */ |
| static int read_raw_super_block(struct f2fs_sb_info *sbi, |
| struct f2fs_super_block **raw_super, |
| int *valid_super_block, int *recovery) |
| { |
| struct super_block *sb = sbi->sb; |
| int block; |
| struct buffer_head *bh; |
| struct f2fs_super_block *super; |
| int err = 0; |
| |
| super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); |
| if (!super) |
| return -ENOMEM; |
| |
| for (block = 0; block < 2; block++) { |
| bh = sb_bread(sb, block); |
| if (!bh) { |
| f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", |
| block + 1); |
| err = -EIO; |
| continue; |
| } |
| |
| /* sanity checking of raw super */ |
| if (sanity_check_raw_super(sbi, bh)) { |
| f2fs_msg(sb, KERN_ERR, |
| "Can't find valid F2FS filesystem in %dth superblock", |
| block + 1); |
| err = -EINVAL; |
| brelse(bh); |
| continue; |
| } |
| |
| if (!*raw_super) { |
| memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, |
| sizeof(*super)); |
| *valid_super_block = block; |
| *raw_super = super; |
| } |
| brelse(bh); |
| } |
| |
| /* Fail to read any one of the superblocks*/ |
| if (err < 0) |
| *recovery = 1; |
| |
| /* No valid superblock */ |
| if (!*raw_super) |
| kvfree(super); |
| else |
| err = 0; |
| |
| return err; |
| } |
| |
| int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) |
| { |
| struct buffer_head *bh; |
| __u32 crc = 0; |
| int err; |
| |
| if ((recover && f2fs_readonly(sbi->sb)) || |
| bdev_read_only(sbi->sb->s_bdev)) { |
| set_sbi_flag(sbi, SBI_NEED_SB_WRITE); |
| return -EROFS; |
| } |
| |
| /* we should update superblock crc here */ |
| if (!recover && f2fs_sb_has_sb_chksum(sbi)) { |
| crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), |
| offsetof(struct f2fs_super_block, crc)); |
| F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); |
| } |
| |
| /* write back-up superblock first */ |
| bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); |
| if (!bh) |
| return -EIO; |
| err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); |
| brelse(bh); |
| |
| /* if we are in recovery path, skip writing valid superblock */ |
| if (recover || err) |
| return err; |
| |
| /* write current valid superblock */ |
| bh = sb_bread(sbi->sb, sbi->valid_super_block); |
| if (!bh) |
| return -EIO; |
| err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); |
| brelse(bh); |
| return err; |
| } |
| |
| static int f2fs_scan_devices(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| unsigned int max_devices = MAX_DEVICES; |
| int i; |
| |
| /* Initialize single device information */ |
| if (!RDEV(0).path[0]) { |
| #ifdef CONFIG_BLK_DEV_ZONED |
| if (!bdev_is_zoned(sbi->sb->s_bdev)) |
| return 0; |
| max_devices = 1; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| * Initialize multiple devices information, or single |
| * zoned block device information. |
| */ |
| sbi->devs = f2fs_kzalloc(sbi, |
| array_size(max_devices, |
| sizeof(struct f2fs_dev_info)), |
| GFP_KERNEL); |
| if (!sbi->devs) |
| return -ENOMEM; |
| |
| for (i = 0; i < max_devices; i++) { |
| |
| if (i > 0 && !RDEV(i).path[0]) |
| break; |
| |
| if (max_devices == 1) { |
| /* Single zoned block device mount */ |
| FDEV(0).bdev = |
| blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, |
| sbi->sb->s_mode, sbi->sb->s_type); |
| } else { |
| /* Multi-device mount */ |
| memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); |
| FDEV(i).total_segments = |
| le32_to_cpu(RDEV(i).total_segments); |
| if (i == 0) { |
| FDEV(i).start_blk = 0; |
| FDEV(i).end_blk = FDEV(i).start_blk + |
| (FDEV(i).total_segments << |
| sbi->log_blocks_per_seg) - 1 + |
| le32_to_cpu(raw_super->segment0_blkaddr); |
| } else { |
| FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; |
| FDEV(i).end_blk = FDEV(i).start_blk + |
| (FDEV(i).total_segments << |
| sbi->log_blocks_per_seg) - 1; |
| } |
| FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, |
| sbi->sb->s_mode, sbi->sb->s_type); |
| } |
| if (IS_ERR(FDEV(i).bdev)) |
| return PTR_ERR(FDEV(i).bdev); |
| |
| /* to release errored devices */ |
| sbi->s_ndevs = i + 1; |
| |
| #ifdef CONFIG_BLK_DEV_ZONED |
| if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && |
| !f2fs_sb_has_blkzoned(sbi)) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Zoned block device feature not enabled\n"); |
| return -EINVAL; |
| } |
| if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { |
| if (init_blkz_info(sbi, i)) { |
| f2fs_msg(sbi->sb, KERN_ERR, |
| "Failed to initialize F2FS blkzone information"); |
| return -EINVAL; |
| } |
| if (max_devices == 1) |
| break; |
| f2fs_msg(sbi->sb, KERN_INFO, |
| "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", |
| i, FDEV(i).path, |
| FDEV(i).total_segments, |
| FDEV(i).start_blk, FDEV(i).end_blk, |
| bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? |
| "Host-aware" : "Host-managed"); |
| continue; |
| } |
| #endif |
| f2fs_msg(sbi->sb, KERN_INFO, |
| "Mount Device [%2d]: %20s, %8u, %8x - %8x", |
| i, FDEV(i).path, |
| FDEV(i).total_segments, |
| FDEV(i).start_blk, FDEV(i).end_blk); |
| } |
| f2fs_msg(sbi->sb, KERN_INFO, |
| "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); |
| return 0; |
| } |
| |
| static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_sm_info *sm_i = SM_I(sbi); |
| |
| /* adjust parameters according to the volume size */ |
| if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { |
| F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; |
| sm_i->dcc_info->discard_granularity = 1; |
| sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; |
| } |
| |
| sbi->readdir_ra = 1; |
| } |
| |
| static int f2fs_fill_super(struct super_block *sb, void *data, int silent) |
| { |
| struct f2fs_sb_info *sbi; |
| struct f2fs_super_block *raw_super; |
| struct inode *root; |
| int err; |
| bool skip_recovery = false, need_fsck = false; |
| char *options = NULL; |
| int recovery, i, valid_super_block; |
| struct curseg_info *seg_i; |
| int retry_cnt = 1; |
| |
| try_onemore: |
| err = -EINVAL; |
| raw_super = NULL; |
| valid_super_block = -1; |
| recovery = 0; |
| |
| /* allocate memory for f2fs-specific super block info */ |
| sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); |
| if (!sbi) |
| return -ENOMEM; |
| |
| sbi->sb = sb; |
| |
| /* Load the checksum driver */ |
| sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); |
| if (IS_ERR(sbi->s_chksum_driver)) { |
| f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); |
| err = PTR_ERR(sbi->s_chksum_driver); |
| sbi->s_chksum_driver = NULL; |
| goto free_sbi; |
| } |
| |
| /* set a block size */ |
| if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { |
| f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); |
| goto free_sbi; |
| } |
| |
| err = read_raw_super_block(sbi, &raw_super, &valid_super_block, |
| &recovery); |
| if (err) |
| goto free_sbi; |
| |
| sb->s_fs_info = sbi; |
| sbi->raw_super = raw_super; |
| |
| /* precompute checksum seed for metadata */ |
| if (f2fs_sb_has_inode_chksum(sbi)) |
| sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, |
| sizeof(raw_super->uuid)); |
| |
| /* |
| * The BLKZONED feature indicates that the drive was formatted with |
| * zone alignment optimization. This is optional for host-aware |
| * devices, but mandatory for host-managed zoned block devices. |
| */ |
| #ifndef CONFIG_BLK_DEV_ZONED |
| if (f2fs_sb_has_blkzoned(sbi)) { |
| f2fs_msg(sb, KERN_ERR, |
| "Zoned block device support is not enabled\n"); |
| err = -EOPNOTSUPP; |
| goto free_sb_buf; |
| } |
| #endif |
| default_options(sbi); |
| /* parse mount options */ |
| options = kstrdup((const char *)data, GFP_KERNEL); |
| if (data && !options) { |
| err = -ENOMEM; |
| goto free_sb_buf; |
| } |
| |
| err = parse_options(sb, options); |
| if (err) |
| goto free_options; |
| |
| sbi->max_file_blocks = max_file_blocks(); |
| sb->s_maxbytes = sbi->max_file_blocks << |
| le32_to_cpu(raw_super->log_blocksize); |
| sb->s_max_links = F2FS_LINK_MAX; |
| |
| #ifdef CONFIG_QUOTA |
| sb->dq_op = &f2fs_quota_operations; |
| if (f2fs_sb_has_quota_ino(sbi)) |
| sb->s_qcop = &dquot_quotactl_sysfile_ops; |
| else |
| sb->s_qcop = &f2fs_quotactl_ops; |
| sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; |
| |
| if (f2fs_sb_has_quota_ino(sbi)) { |
| for (i = 0; i < MAXQUOTAS; i++) { |
| if (f2fs_qf_ino(sbi->sb, i)) |
| sbi->nquota_files++; |
| } |
| } |
| #endif |
| |
| sb->s_op = &f2fs_sops; |
| #ifdef CONFIG_F2FS_FS_ENCRYPTION |
| sb->s_cop = &f2fs_cryptops; |
| #endif |
| sb->s_xattr = f2fs_xattr_handlers; |
| sb->s_export_op = &f2fs_export_ops; |
| sb->s_magic = F2FS_SUPER_MAGIC; |
| sb->s_time_gran = 1; |
| sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | |
| (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); |
| memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); |
| sb->s_iflags |= SB_I_CGROUPWB; |
| |
| /* init f2fs-specific super block info */ |
| sbi->valid_super_block = valid_super_block; |
| mutex_init(&sbi->gc_mutex); |
| mutex_init(&sbi->writepages); |
| mutex_init(&sbi->cp_mutex); |
| init_rwsem(&sbi->node_write); |
| init_rwsem(&sbi->node_change); |
| |
| /* disallow all the data/node/meta page writes */ |
| set_sbi_flag(sbi, SBI_POR_DOING); |
| spin_lock_init(&sbi->stat_lock); |
| |
| /* init iostat info */ |
| spin_lock_init(&sbi->iostat_lock); |
| sbi->iostat_enable = false; |
| |
| for (i = 0; i < NR_PAGE_TYPE; i++) { |
| int n = (i == META) ? 1: NR_TEMP_TYPE; |
| int j; |
| |
| sbi->write_io[i] = |
| f2fs_kmalloc(sbi, |
| array_size(n, |
| sizeof(struct f2fs_bio_info)), |
| GFP_KERNEL); |
| if (!sbi->write_io[i]) { |
| err = -ENOMEM; |
| goto free_bio_info; |
| } |
| |
| for (j = HOT; j < n; j++) { |
| init_rwsem(&sbi->write_io[i][j].io_rwsem); |
| sbi->write_io[i][j].sbi = sbi; |
| sbi->write_io[i][j].bio = NULL; |
| spin_lock_init(&sbi->write_io[i][j].io_lock); |
| INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); |
| } |
| } |
| |
| init_rwsem(&sbi->cp_rwsem); |
| init_waitqueue_head(&sbi->cp_wait); |
| init_sb_info(sbi); |
| |
| err = init_percpu_info(sbi); |
| if (err) |
| goto free_bio_info; |
| |
| if (F2FS_IO_SIZE(sbi) > 1) { |
| sbi->write_io_dummy = |
| mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); |
| if (!sbi->write_io_dummy) { |
| err = -ENOMEM; |
| goto free_percpu; |
| } |
| } |
| |
| /* get an inode for meta space */ |
| sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); |
| if (IS_ERR(sbi->meta_inode)) { |
| f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); |
| err = PTR_ERR(sbi->meta_inode); |
| goto free_io_dummy; |
| } |
| |
| err = f2fs_get_valid_checkpoint(sbi); |
| if (err) { |
| f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); |
| goto free_meta_inode; |
| } |
| |
| if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) |
| set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); |
| if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { |
| set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); |
| sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; |
| } |
| |
| /* Initialize device list */ |
| err = f2fs_scan_devices(sbi); |
| if (err) { |
| f2fs_msg(sb, KERN_ERR, "Failed to find devices"); |
| goto free_devices; |
| } |
| |
| sbi->total_valid_node_count = |
| le32_to_cpu(sbi->ckpt->valid_node_count); |
| percpu_counter_set(&sbi->total_valid_inode_count, |
| le32_to_cpu(sbi->ckpt->valid_inode_count)); |
| sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); |
| sbi->total_valid_block_count = |
| le64_to_cpu(sbi->ckpt->valid_block_count); |
| sbi->last_valid_block_count = sbi->total_valid_block_count; |
| sbi->reserved_blocks = 0; |
| sbi->current_reserved_blocks = 0; |
| limit_reserve_root(sbi); |
| |
| for (i = 0; i < NR_INODE_TYPE; i++) { |
| INIT_LIST_HEAD(&sbi->inode_list[i]); |
| spin_lock_init(&sbi->inode_lock[i]); |
| } |
| |
| f2fs_init_extent_cache_info(sbi); |
| |
| f2fs_init_ino_entry_info(sbi); |
| |
| f2fs_init_fsync_node_info(sbi); |
| |
| /* setup f2fs internal modules */ |
| err = f2fs_build_segment_manager(sbi); |
| if (err) { |
| f2fs_msg(sb, KERN_ERR, |
| "Failed to initialize F2FS segment manager"); |
| goto free_sm; |
| } |
| err = f2fs_build_node_manager(sbi); |
| if (err) { |
| f2fs_msg(sb, KERN_ERR, |
| "Failed to initialize F2FS node manager"); |
| goto free_nm; |
| } |
| |
| /* For write statistics */ |
| if (sb->s_bdev->bd_part) |
| sbi->sectors_written_start = |
| (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); |
| |
| /* Read accumulated write IO statistics if exists */ |
| seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); |
| if (__exist_node_summaries(sbi)) |
| sbi->kbytes_written = |
| le64_to_cpu(seg_i->journal->info.kbytes_written); |
| |
| f2fs_build_gc_manager(sbi); |
| |
| err = f2fs_build_stats(sbi); |
| if (err) |
| goto free_nm; |
| |
| /* get an inode for node space */ |
| sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); |
| if (IS_ERR(sbi->node_inode)) { |
| f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); |
| err = PTR_ERR(sbi->node_inode); |
| goto free_stats; |
| } |
| |
| /* read root inode and dentry */ |
| root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); |
| if (IS_ERR(root)) { |
| f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); |
| err = PTR_ERR(root); |
| goto free_node_inode; |
| } |
| if (!S_ISDIR(root->i_mode) || !root->i_blocks || |
| !root->i_size || !root->i_nlink) { |
| iput(root); |
| err = -EINVAL; |
| goto free_node_inode; |
| } |
| |
| sb->s_root = d_make_root(root); /* allocate root dentry */ |
| if (!sb->s_root) { |
| err = -ENOMEM; |
| goto free_node_inode; |
| } |
| |
| err = f2fs_register_sysfs(sbi); |
| if (err) |
| goto free_root_inode; |
| |
| #ifdef CONFIG_QUOTA |
| /* Enable quota usage during mount */ |
| if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { |
| err = f2fs_enable_quotas(sb); |
| if (err) |
| f2fs_msg(sb, KERN_ERR, |
| "Cannot turn on quotas: error %d", err); |
| } |
| #endif |
| /* if there are nt orphan nodes free them */ |
| err = f2fs_recover_orphan_inodes(sbi); |
| if (err) |
| goto free_meta; |
| |
| if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) |
| goto reset_checkpoint; |
| |
| /* recover fsynced data */ |
| if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { |
| /* |
| * mount should be failed, when device has readonly mode, and |
| * previous checkpoint was not done by clean system shutdown. |
| */ |
| if (bdev_read_only(sb->s_bdev) && |
| !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { |
| err = -EROFS; |
| goto free_meta; |
| } |
| |
| if (need_fsck) |
| set_sbi_flag(sbi, SBI_NEED_FSCK); |
| |
| if (skip_recovery) |
| goto reset_checkpoint; |
| |
| err = f2fs_recover_fsync_data(sbi, false); |
| if (err < 0) { |
| if (err != -ENOMEM) |
| skip_recovery = true; |
| need_fsck = true; |
| f2fs_msg(sb, KERN_ERR, |
| "Cannot recover all fsync data errno=%d", err); |
| goto free_meta; |
| } |
| } else { |
| err = f2fs_recover_fsync_data(sbi, true); |
| |
| if (!f2fs_readonly(sb) && err > 0) { |
| err = -EINVAL; |
| f2fs_msg(sb, KERN_ERR, |
| "Need to recover fsync data"); |
| goto free_meta; |
| } |
| } |
| reset_checkpoint: |
| /* f2fs_recover_fsync_data() cleared this already */ |
| clear_sbi_flag(sbi, SBI_POR_DOING); |
| |
| if (test_opt(sbi, DISABLE_CHECKPOINT)) { |
| err = f2fs_disable_checkpoint(sbi); |
| if (err) |
| goto sync_free_meta; |
| } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { |
| f2fs_enable_checkpoint(sbi); |
| } |
| |
| /* |
| * If filesystem is not mounted as read-only then |
| * do start the gc_thread. |
| */ |
| if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { |
| /* After POR, we can run background GC thread.*/ |
| err = f2fs_start_gc_thread(sbi); |
| if (err) |
| goto sync_free_meta; |
| } |
| kvfree(options); |
| |
| /* recover broken superblock */ |
| if (recovery) { |
| err = f2fs_commit_super(sbi, true); |
| f2fs_msg(sb, KERN_INFO, |
| "Try to recover %dth superblock, ret: %d", |
| sbi->valid_super_block ? 1 : 2, err); |
| } |
| |
| f2fs_join_shrinker(sbi); |
| |
| f2fs_tuning_parameters(sbi); |
| |
| f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx", |
| cur_cp_version(F2FS_CKPT(sbi))); |
| f2fs_update_time(sbi, CP_TIME); |
| f2fs_update_time(sbi, REQ_TIME); |
| clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); |
| return 0; |
| |
| sync_free_meta: |
| /* safe to flush all the data */ |
| sync_filesystem(sbi->sb); |
| retry_cnt = 0; |
| |
| free_meta: |
| #ifdef CONFIG_QUOTA |
| f2fs_truncate_quota_inode_pages(sb); |
| if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) |
| f2fs_quota_off_umount(sbi->sb); |
| #endif |
| /* |
| * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() |
| * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() |
| * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which |
| * falls into an infinite loop in f2fs_sync_meta_pages(). |
| */ |
| truncate_inode_pages_final(META_MAPPING(sbi)); |
| /* evict some inodes being cached by GC */ |
| evict_inodes(sb); |
| f2fs_unregister_sysfs(sbi); |
| free_root_inode: |
| dput(sb->s_root); |
| sb->s_root = NULL; |
| free_node_inode: |
| f2fs_release_ino_entry(sbi, true); |
| truncate_inode_pages_final(NODE_MAPPING(sbi)); |
| iput(sbi->node_inode); |
| sbi->node_inode = NULL; |
| free_stats: |
| f2fs_destroy_stats(sbi); |
| free_nm: |
| f2fs_destroy_node_manager(sbi); |
| free_sm: |
| f2fs_destroy_segment_manager(sbi); |
| free_devices: |
| destroy_device_list(sbi); |
| kvfree(sbi->ckpt); |
| free_meta_inode: |
| make_bad_inode(sbi->meta_inode); |
| iput(sbi->meta_inode); |
| sbi->meta_inode = NULL; |
| free_io_dummy: |
| mempool_destroy(sbi->write_io_dummy); |
| free_percpu: |
| destroy_percpu_info(sbi); |
| free_bio_info: |
| for (i = 0; i < NR_PAGE_TYPE; i++) |
| kvfree(sbi->write_io[i]); |
| free_options: |
| #ifdef CONFIG_QUOTA |
| for (i = 0; i < MAXQUOTAS; i++) |
| kvfree(F2FS_OPTION(sbi).s_qf_names[i]); |
| #endif |
| kvfree(options); |
| free_sb_buf: |
| kvfree(raw_super); |
| free_sbi: |
| if (sbi->s_chksum_driver) |
| crypto_free_shash(sbi->s_chksum_driver); |
| kvfree(sbi); |
| |
| /* give only one another chance */ |
| if (retry_cnt > 0 && skip_recovery) { |
| retry_cnt--; |
| shrink_dcache_sb(sb); |
| goto try_onemore; |
| } |
| return err; |
| } |
| |
| static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, |
| const char *dev_name, void *data) |
| { |
| return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); |
| } |
| |
| static void kill_f2fs_super(struct super_block *sb) |
| { |
| if (sb->s_root) { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| |
| set_sbi_flag(sbi, SBI_IS_CLOSE); |
| f2fs_stop_gc_thread(sbi); |
| f2fs_stop_discard_thread(sbi); |
| |
| if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || |
| !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { |
| struct cp_control cpc = { |
| .reason = CP_UMOUNT, |
| }; |
| f2fs_write_checkpoint(sbi, &cpc); |
| } |
| |
| if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) |
| sb->s_flags &= ~MS_RDONLY; |
| } |
| kill_block_super(sb); |
| } |
| |
| static struct file_system_type f2fs_fs_type = { |
| .owner = THIS_MODULE, |
| .name = "f2fs", |
| .mount = f2fs_mount, |
| .kill_sb = kill_f2fs_super, |
| .fs_flags = FS_REQUIRES_DEV, |
| }; |
| MODULE_ALIAS_FS("f2fs"); |
| |
| static int __init init_inodecache(void) |
| { |
| f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", |
| sizeof(struct f2fs_inode_info), 0, |
| SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); |
| if (!f2fs_inode_cachep) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void destroy_inodecache(void) |
| { |
| /* |
| * Make sure all delayed rcu free inodes are flushed before we |
| * destroy cache. |
| */ |
| rcu_barrier(); |
| kmem_cache_destroy(f2fs_inode_cachep); |
| } |
| |
| static int __init init_f2fs_fs(void) |
| { |
| int err; |
| |
| if (PAGE_SIZE != F2FS_BLKSIZE) { |
| printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", |
| PAGE_SIZE, F2FS_BLKSIZE); |
| return -EINVAL; |
| } |
| |
| f2fs_build_trace_ios(); |
| |
| err = init_inodecache(); |
| if (err) |
| goto fail; |
| err = f2fs_create_node_manager_caches(); |
| if (err) |
| goto free_inodecache; |
| err = f2fs_create_segment_manager_caches(); |
| if (err) |
| goto free_node_manager_caches; |
| err = f2fs_create_checkpoint_caches(); |
| if (err) |
| goto free_segment_manager_caches; |
| err = f2fs_create_extent_cache(); |
| if (err) |
| goto free_checkpoint_caches; |
| err = f2fs_init_sysfs(); |
| if (err) |
| goto free_extent_cache; |
| err = register_shrinker(&f2fs_shrinker_info); |
| if (err) |
| goto free_sysfs; |
| err = register_filesystem(&f2fs_fs_type); |
| if (err) |
| goto free_shrinker; |
| f2fs_create_root_stats(); |
| err = f2fs_init_post_read_processing(); |
| if (err) |
| goto free_root_stats; |
| return 0; |
| |
| free_root_stats: |
| f2fs_destroy_root_stats(); |
| unregister_filesystem(&f2fs_fs_type); |
| free_shrinker: |
| unregister_shrinker(&f2fs_shrinker_info); |
| free_sysfs: |
| f2fs_exit_sysfs(); |
| free_extent_cache: |
| f2fs_destroy_extent_cache(); |
| free_checkpoint_caches: |
| f2fs_destroy_checkpoint_caches(); |
| free_segment_manager_caches: |
| f2fs_destroy_segment_manager_caches(); |
| free_node_manager_caches: |
| f2fs_destroy_node_manager_caches(); |
| free_inodecache: |
| destroy_inodecache(); |
| fail: |
| return err; |
| } |
| |
| static void __exit exit_f2fs_fs(void) |
| { |
| f2fs_destroy_post_read_processing(); |
| f2fs_destroy_root_stats(); |
| unregister_filesystem(&f2fs_fs_type); |
| unregister_shrinker(&f2fs_shrinker_info); |
| f2fs_exit_sysfs(); |
| f2fs_destroy_extent_cache(); |
| f2fs_destroy_checkpoint_caches(); |
| f2fs_destroy_segment_manager_caches(); |
| f2fs_destroy_node_manager_caches(); |
| destroy_inodecache(); |
| f2fs_destroy_trace_ios(); |
| } |
| |
| module_init(init_f2fs_fs) |
| module_exit(exit_f2fs_fs) |
| |
| MODULE_AUTHOR("Samsung Electronics's Praesto Team"); |
| MODULE_DESCRIPTION("Flash Friendly File System"); |
| MODULE_LICENSE("GPL"); |
| |