| /* |
| * This file is part of the Chelsio T4 Ethernet driver for Linux. |
| * |
| * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include "cxgb4.h" |
| #include "t4_regs.h" |
| #include "t4fw_api.h" |
| |
| /** |
| * t4_wait_op_done_val - wait until an operation is completed |
| * @adapter: the adapter performing the operation |
| * @reg: the register to check for completion |
| * @mask: a single-bit field within @reg that indicates completion |
| * @polarity: the value of the field when the operation is completed |
| * @attempts: number of check iterations |
| * @delay: delay in usecs between iterations |
| * @valp: where to store the value of the register at completion time |
| * |
| * Wait until an operation is completed by checking a bit in a register |
| * up to @attempts times. If @valp is not NULL the value of the register |
| * at the time it indicated completion is stored there. Returns 0 if the |
| * operation completes and -EAGAIN otherwise. |
| */ |
| static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, |
| int polarity, int attempts, int delay, u32 *valp) |
| { |
| while (1) { |
| u32 val = t4_read_reg(adapter, reg); |
| |
| if (!!(val & mask) == polarity) { |
| if (valp) |
| *valp = val; |
| return 0; |
| } |
| if (--attempts == 0) |
| return -EAGAIN; |
| if (delay) |
| udelay(delay); |
| } |
| } |
| |
| static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, |
| int polarity, int attempts, int delay) |
| { |
| return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, |
| delay, NULL); |
| } |
| |
| /** |
| * t4_set_reg_field - set a register field to a value |
| * @adapter: the adapter to program |
| * @addr: the register address |
| * @mask: specifies the portion of the register to modify |
| * @val: the new value for the register field |
| * |
| * Sets a register field specified by the supplied mask to the |
| * given value. |
| */ |
| void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, |
| u32 val) |
| { |
| u32 v = t4_read_reg(adapter, addr) & ~mask; |
| |
| t4_write_reg(adapter, addr, v | val); |
| (void) t4_read_reg(adapter, addr); /* flush */ |
| } |
| |
| /** |
| * t4_read_indirect - read indirectly addressed registers |
| * @adap: the adapter |
| * @addr_reg: register holding the indirect address |
| * @data_reg: register holding the value of the indirect register |
| * @vals: where the read register values are stored |
| * @nregs: how many indirect registers to read |
| * @start_idx: index of first indirect register to read |
| * |
| * Reads registers that are accessed indirectly through an address/data |
| * register pair. |
| */ |
| static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, |
| unsigned int data_reg, u32 *vals, |
| unsigned int nregs, unsigned int start_idx) |
| { |
| while (nregs--) { |
| t4_write_reg(adap, addr_reg, start_idx); |
| *vals++ = t4_read_reg(adap, data_reg); |
| start_idx++; |
| } |
| } |
| |
| /** |
| * t4_write_indirect - write indirectly addressed registers |
| * @adap: the adapter |
| * @addr_reg: register holding the indirect addresses |
| * @data_reg: register holding the value for the indirect registers |
| * @vals: values to write |
| * @nregs: how many indirect registers to write |
| * @start_idx: address of first indirect register to write |
| * |
| * Writes a sequential block of registers that are accessed indirectly |
| * through an address/data register pair. |
| */ |
| void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, |
| unsigned int data_reg, const u32 *vals, |
| unsigned int nregs, unsigned int start_idx) |
| { |
| while (nregs--) { |
| t4_write_reg(adap, addr_reg, start_idx++); |
| t4_write_reg(adap, data_reg, *vals++); |
| } |
| } |
| |
| /* |
| * Get the reply to a mailbox command and store it in @rpl in big-endian order. |
| */ |
| static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, |
| u32 mbox_addr) |
| { |
| for ( ; nflit; nflit--, mbox_addr += 8) |
| *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); |
| } |
| |
| /* |
| * Handle a FW assertion reported in a mailbox. |
| */ |
| static void fw_asrt(struct adapter *adap, u32 mbox_addr) |
| { |
| struct fw_debug_cmd asrt; |
| |
| get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); |
| dev_alert(adap->pdev_dev, |
| "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", |
| asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line), |
| ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y)); |
| } |
| |
| static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg) |
| { |
| dev_err(adap->pdev_dev, |
| "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox, |
| (unsigned long long)t4_read_reg64(adap, data_reg), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 8), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 16), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 24), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 32), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 40), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 48), |
| (unsigned long long)t4_read_reg64(adap, data_reg + 56)); |
| } |
| |
| /** |
| * t4_wr_mbox_meat - send a command to FW through the given mailbox |
| * @adap: the adapter |
| * @mbox: index of the mailbox to use |
| * @cmd: the command to write |
| * @size: command length in bytes |
| * @rpl: where to optionally store the reply |
| * @sleep_ok: if true we may sleep while awaiting command completion |
| * |
| * Sends the given command to FW through the selected mailbox and waits |
| * for the FW to execute the command. If @rpl is not %NULL it is used to |
| * store the FW's reply to the command. The command and its optional |
| * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms |
| * to respond. @sleep_ok determines whether we may sleep while awaiting |
| * the response. If sleeping is allowed we use progressive backoff |
| * otherwise we spin. |
| * |
| * The return value is 0 on success or a negative errno on failure. A |
| * failure can happen either because we are not able to execute the |
| * command or FW executes it but signals an error. In the latter case |
| * the return value is the error code indicated by FW (negated). |
| */ |
| int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, |
| void *rpl, bool sleep_ok) |
| { |
| static const int delay[] = { |
| 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 |
| }; |
| |
| u32 v; |
| u64 res; |
| int i, ms, delay_idx; |
| const __be64 *p = cmd; |
| u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA); |
| u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL); |
| |
| if ((size & 15) || size > MBOX_LEN) |
| return -EINVAL; |
| |
| /* |
| * If the device is off-line, as in EEH, commands will time out. |
| * Fail them early so we don't waste time waiting. |
| */ |
| if (adap->pdev->error_state != pci_channel_io_normal) |
| return -EIO; |
| |
| v = MBOWNER_GET(t4_read_reg(adap, ctl_reg)); |
| for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) |
| v = MBOWNER_GET(t4_read_reg(adap, ctl_reg)); |
| |
| if (v != MBOX_OWNER_DRV) |
| return v ? -EBUSY : -ETIMEDOUT; |
| |
| for (i = 0; i < size; i += 8) |
| t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); |
| |
| t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW)); |
| t4_read_reg(adap, ctl_reg); /* flush write */ |
| |
| delay_idx = 0; |
| ms = delay[0]; |
| |
| for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { |
| if (sleep_ok) { |
| ms = delay[delay_idx]; /* last element may repeat */ |
| if (delay_idx < ARRAY_SIZE(delay) - 1) |
| delay_idx++; |
| msleep(ms); |
| } else |
| mdelay(ms); |
| |
| v = t4_read_reg(adap, ctl_reg); |
| if (MBOWNER_GET(v) == MBOX_OWNER_DRV) { |
| if (!(v & MBMSGVALID)) { |
| t4_write_reg(adap, ctl_reg, 0); |
| continue; |
| } |
| |
| res = t4_read_reg64(adap, data_reg); |
| if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) { |
| fw_asrt(adap, data_reg); |
| res = FW_CMD_RETVAL(EIO); |
| } else if (rpl) |
| get_mbox_rpl(adap, rpl, size / 8, data_reg); |
| |
| if (FW_CMD_RETVAL_GET((int)res)) |
| dump_mbox(adap, mbox, data_reg); |
| t4_write_reg(adap, ctl_reg, 0); |
| return -FW_CMD_RETVAL_GET((int)res); |
| } |
| } |
| |
| dump_mbox(adap, mbox, data_reg); |
| dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", |
| *(const u8 *)cmd, mbox); |
| return -ETIMEDOUT; |
| } |
| |
| /** |
| * t4_mc_read - read from MC through backdoor accesses |
| * @adap: the adapter |
| * @addr: address of first byte requested |
| * @data: 64 bytes of data containing the requested address |
| * @ecc: where to store the corresponding 64-bit ECC word |
| * |
| * Read 64 bytes of data from MC starting at a 64-byte-aligned address |
| * that covers the requested address @addr. If @parity is not %NULL it |
| * is assigned the 64-bit ECC word for the read data. |
| */ |
| int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc) |
| { |
| int i; |
| |
| if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST) |
| return -EBUSY; |
| t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU); |
| t4_write_reg(adap, MC_BIST_CMD_LEN, 64); |
| t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc); |
| t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST | |
| BIST_CMD_GAP(1)); |
| i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1); |
| if (i) |
| return i; |
| |
| #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i) |
| |
| for (i = 15; i >= 0; i--) |
| *data++ = htonl(t4_read_reg(adap, MC_DATA(i))); |
| if (ecc) |
| *ecc = t4_read_reg64(adap, MC_DATA(16)); |
| #undef MC_DATA |
| return 0; |
| } |
| |
| /** |
| * t4_edc_read - read from EDC through backdoor accesses |
| * @adap: the adapter |
| * @idx: which EDC to access |
| * @addr: address of first byte requested |
| * @data: 64 bytes of data containing the requested address |
| * @ecc: where to store the corresponding 64-bit ECC word |
| * |
| * Read 64 bytes of data from EDC starting at a 64-byte-aligned address |
| * that covers the requested address @addr. If @parity is not %NULL it |
| * is assigned the 64-bit ECC word for the read data. |
| */ |
| int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) |
| { |
| int i; |
| |
| idx *= EDC_STRIDE; |
| if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST) |
| return -EBUSY; |
| t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU); |
| t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64); |
| t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc); |
| t4_write_reg(adap, EDC_BIST_CMD + idx, |
| BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST); |
| i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1); |
| if (i) |
| return i; |
| |
| #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx) |
| |
| for (i = 15; i >= 0; i--) |
| *data++ = htonl(t4_read_reg(adap, EDC_DATA(i))); |
| if (ecc) |
| *ecc = t4_read_reg64(adap, EDC_DATA(16)); |
| #undef EDC_DATA |
| return 0; |
| } |
| |
| /* |
| * t4_mem_win_rw - read/write memory through PCIE memory window |
| * @adap: the adapter |
| * @addr: address of first byte requested |
| * @data: MEMWIN0_APERTURE bytes of data containing the requested address |
| * @dir: direction of transfer 1 => read, 0 => write |
| * |
| * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a |
| * MEMWIN0_APERTURE-byte-aligned address that covers the requested |
| * address @addr. |
| */ |
| static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir) |
| { |
| int i; |
| |
| /* |
| * Setup offset into PCIE memory window. Address must be a |
| * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to |
| * ensure that changes propagate before we attempt to use the new |
| * values.) |
| */ |
| t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET, |
| addr & ~(MEMWIN0_APERTURE - 1)); |
| t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET); |
| |
| /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */ |
| for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) { |
| if (dir) |
| *data++ = (__force __be32) t4_read_reg(adap, |
| (MEMWIN0_BASE + i)); |
| else |
| t4_write_reg(adap, (MEMWIN0_BASE + i), |
| (__force u32) *data++); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window |
| * @adap: the adapter |
| * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC |
| * @addr: address within indicated memory type |
| * @len: amount of memory to transfer |
| * @buf: host memory buffer |
| * @dir: direction of transfer 1 => read, 0 => write |
| * |
| * Reads/writes an [almost] arbitrary memory region in the firmware: the |
| * firmware memory address, length and host buffer must be aligned on |
| * 32-bit boudaries. The memory is transferred as a raw byte sequence |
| * from/to the firmware's memory. If this memory contains data |
| * structures which contain multi-byte integers, it's the callers |
| * responsibility to perform appropriate byte order conversions. |
| */ |
| static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len, |
| __be32 *buf, int dir) |
| { |
| u32 pos, start, end, offset, memoffset; |
| int ret = 0; |
| __be32 *data; |
| |
| /* |
| * Argument sanity checks ... |
| */ |
| if ((addr & 0x3) || (len & 0x3)) |
| return -EINVAL; |
| |
| data = vmalloc(MEMWIN0_APERTURE); |
| if (!data) |
| return -ENOMEM; |
| |
| /* |
| * Offset into the region of memory which is being accessed |
| * MEM_EDC0 = 0 |
| * MEM_EDC1 = 1 |
| * MEM_MC = 2 |
| */ |
| memoffset = (mtype * (5 * 1024 * 1024)); |
| |
| /* Determine the PCIE_MEM_ACCESS_OFFSET */ |
| addr = addr + memoffset; |
| |
| /* |
| * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes |
| * at a time so we need to round down the start and round up the end. |
| * We'll start copying out of the first line at (addr - start) a word |
| * at a time. |
| */ |
| start = addr & ~(MEMWIN0_APERTURE-1); |
| end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1); |
| offset = (addr - start)/sizeof(__be32); |
| |
| for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) { |
| |
| /* |
| * If we're writing, copy the data from the caller's memory |
| * buffer |
| */ |
| if (!dir) { |
| /* |
| * If we're doing a partial write, then we need to do |
| * a read-modify-write ... |
| */ |
| if (offset || len < MEMWIN0_APERTURE) { |
| ret = t4_mem_win_rw(adap, pos, data, 1); |
| if (ret) |
| break; |
| } |
| while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) && |
| len > 0) { |
| data[offset++] = *buf++; |
| len -= sizeof(__be32); |
| } |
| } |
| |
| /* |
| * Transfer a block of memory and bail if there's an error. |
| */ |
| ret = t4_mem_win_rw(adap, pos, data, dir); |
| if (ret) |
| break; |
| |
| /* |
| * If we're reading, copy the data into the caller's memory |
| * buffer. |
| */ |
| if (dir) |
| while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) && |
| len > 0) { |
| *buf++ = data[offset++]; |
| len -= sizeof(__be32); |
| } |
| } |
| |
| vfree(data); |
| return ret; |
| } |
| |
| int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len, |
| __be32 *buf) |
| { |
| return t4_memory_rw(adap, mtype, addr, len, buf, 0); |
| } |
| |
| #define EEPROM_STAT_ADDR 0x7bfc |
| #define VPD_BASE 0 |
| #define VPD_LEN 512 |
| |
| /** |
| * t4_seeprom_wp - enable/disable EEPROM write protection |
| * @adapter: the adapter |
| * @enable: whether to enable or disable write protection |
| * |
| * Enables or disables write protection on the serial EEPROM. |
| */ |
| int t4_seeprom_wp(struct adapter *adapter, bool enable) |
| { |
| unsigned int v = enable ? 0xc : 0; |
| int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); |
| return ret < 0 ? ret : 0; |
| } |
| |
| /** |
| * get_vpd_params - read VPD parameters from VPD EEPROM |
| * @adapter: adapter to read |
| * @p: where to store the parameters |
| * |
| * Reads card parameters stored in VPD EEPROM. |
| */ |
| int get_vpd_params(struct adapter *adapter, struct vpd_params *p) |
| { |
| u32 cclk_param, cclk_val; |
| int i, ret; |
| int ec, sn; |
| u8 *vpd, csum; |
| unsigned int vpdr_len, kw_offset, id_len; |
| |
| vpd = vmalloc(VPD_LEN); |
| if (!vpd) |
| return -ENOMEM; |
| |
| ret = pci_read_vpd(adapter->pdev, VPD_BASE, VPD_LEN, vpd); |
| if (ret < 0) |
| goto out; |
| |
| if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { |
| dev_err(adapter->pdev_dev, "missing VPD ID string\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| id_len = pci_vpd_lrdt_size(vpd); |
| if (id_len > ID_LEN) |
| id_len = ID_LEN; |
| |
| i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); |
| if (i < 0) { |
| dev_err(adapter->pdev_dev, "missing VPD-R section\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| vpdr_len = pci_vpd_lrdt_size(&vpd[i]); |
| kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; |
| if (vpdr_len + kw_offset > VPD_LEN) { |
| dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| #define FIND_VPD_KW(var, name) do { \ |
| var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ |
| if (var < 0) { \ |
| dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ |
| ret = -EINVAL; \ |
| goto out; \ |
| } \ |
| var += PCI_VPD_INFO_FLD_HDR_SIZE; \ |
| } while (0) |
| |
| FIND_VPD_KW(i, "RV"); |
| for (csum = 0; i >= 0; i--) |
| csum += vpd[i]; |
| |
| if (csum) { |
| dev_err(adapter->pdev_dev, |
| "corrupted VPD EEPROM, actual csum %u\n", csum); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| FIND_VPD_KW(ec, "EC"); |
| FIND_VPD_KW(sn, "SN"); |
| #undef FIND_VPD_KW |
| |
| memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); |
| strim(p->id); |
| memcpy(p->ec, vpd + ec, EC_LEN); |
| strim(p->ec); |
| i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); |
| memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); |
| strim(p->sn); |
| |
| /* |
| * Ask firmware for the Core Clock since it knows how to translate the |
| * Reference Clock ('V2') VPD field into a Core Clock value ... |
| */ |
| cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | |
| FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK)); |
| ret = t4_query_params(adapter, adapter->mbox, 0, 0, |
| 1, &cclk_param, &cclk_val); |
| |
| out: |
| vfree(vpd); |
| if (ret) |
| return ret; |
| p->cclk = cclk_val; |
| |
| return 0; |
| } |
| |
| /* serial flash and firmware constants */ |
| enum { |
| SF_ATTEMPTS = 10, /* max retries for SF operations */ |
| |
| /* flash command opcodes */ |
| SF_PROG_PAGE = 2, /* program page */ |
| SF_WR_DISABLE = 4, /* disable writes */ |
| SF_RD_STATUS = 5, /* read status register */ |
| SF_WR_ENABLE = 6, /* enable writes */ |
| SF_RD_DATA_FAST = 0xb, /* read flash */ |
| SF_RD_ID = 0x9f, /* read ID */ |
| SF_ERASE_SECTOR = 0xd8, /* erase sector */ |
| |
| FW_MAX_SIZE = 512 * 1024, |
| }; |
| |
| /** |
| * sf1_read - read data from the serial flash |
| * @adapter: the adapter |
| * @byte_cnt: number of bytes to read |
| * @cont: whether another operation will be chained |
| * @lock: whether to lock SF for PL access only |
| * @valp: where to store the read data |
| * |
| * Reads up to 4 bytes of data from the serial flash. The location of |
| * the read needs to be specified prior to calling this by issuing the |
| * appropriate commands to the serial flash. |
| */ |
| static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, |
| int lock, u32 *valp) |
| { |
| int ret; |
| |
| if (!byte_cnt || byte_cnt > 4) |
| return -EINVAL; |
| if (t4_read_reg(adapter, SF_OP) & BUSY) |
| return -EBUSY; |
| cont = cont ? SF_CONT : 0; |
| lock = lock ? SF_LOCK : 0; |
| t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1)); |
| ret = t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5); |
| if (!ret) |
| *valp = t4_read_reg(adapter, SF_DATA); |
| return ret; |
| } |
| |
| /** |
| * sf1_write - write data to the serial flash |
| * @adapter: the adapter |
| * @byte_cnt: number of bytes to write |
| * @cont: whether another operation will be chained |
| * @lock: whether to lock SF for PL access only |
| * @val: value to write |
| * |
| * Writes up to 4 bytes of data to the serial flash. The location of |
| * the write needs to be specified prior to calling this by issuing the |
| * appropriate commands to the serial flash. |
| */ |
| static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, |
| int lock, u32 val) |
| { |
| if (!byte_cnt || byte_cnt > 4) |
| return -EINVAL; |
| if (t4_read_reg(adapter, SF_OP) & BUSY) |
| return -EBUSY; |
| cont = cont ? SF_CONT : 0; |
| lock = lock ? SF_LOCK : 0; |
| t4_write_reg(adapter, SF_DATA, val); |
| t4_write_reg(adapter, SF_OP, lock | |
| cont | BYTECNT(byte_cnt - 1) | OP_WR); |
| return t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5); |
| } |
| |
| /** |
| * flash_wait_op - wait for a flash operation to complete |
| * @adapter: the adapter |
| * @attempts: max number of polls of the status register |
| * @delay: delay between polls in ms |
| * |
| * Wait for a flash operation to complete by polling the status register. |
| */ |
| static int flash_wait_op(struct adapter *adapter, int attempts, int delay) |
| { |
| int ret; |
| u32 status; |
| |
| while (1) { |
| if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || |
| (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) |
| return ret; |
| if (!(status & 1)) |
| return 0; |
| if (--attempts == 0) |
| return -EAGAIN; |
| if (delay) |
| msleep(delay); |
| } |
| } |
| |
| /** |
| * t4_read_flash - read words from serial flash |
| * @adapter: the adapter |
| * @addr: the start address for the read |
| * @nwords: how many 32-bit words to read |
| * @data: where to store the read data |
| * @byte_oriented: whether to store data as bytes or as words |
| * |
| * Read the specified number of 32-bit words from the serial flash. |
| * If @byte_oriented is set the read data is stored as a byte array |
| * (i.e., big-endian), otherwise as 32-bit words in the platform's |
| * natural endianess. |
| */ |
| static int t4_read_flash(struct adapter *adapter, unsigned int addr, |
| unsigned int nwords, u32 *data, int byte_oriented) |
| { |
| int ret; |
| |
| if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) |
| return -EINVAL; |
| |
| addr = swab32(addr) | SF_RD_DATA_FAST; |
| |
| if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || |
| (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) |
| return ret; |
| |
| for ( ; nwords; nwords--, data++) { |
| ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); |
| if (nwords == 1) |
| t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ |
| if (ret) |
| return ret; |
| if (byte_oriented) |
| *data = (__force __u32) (htonl(*data)); |
| } |
| return 0; |
| } |
| |
| /** |
| * t4_write_flash - write up to a page of data to the serial flash |
| * @adapter: the adapter |
| * @addr: the start address to write |
| * @n: length of data to write in bytes |
| * @data: the data to write |
| * |
| * Writes up to a page of data (256 bytes) to the serial flash starting |
| * at the given address. All the data must be written to the same page. |
| */ |
| static int t4_write_flash(struct adapter *adapter, unsigned int addr, |
| unsigned int n, const u8 *data) |
| { |
| int ret; |
| u32 buf[64]; |
| unsigned int i, c, left, val, offset = addr & 0xff; |
| |
| if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) |
| return -EINVAL; |
| |
| val = swab32(addr) | SF_PROG_PAGE; |
| |
| if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || |
| (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) |
| goto unlock; |
| |
| for (left = n; left; left -= c) { |
| c = min(left, 4U); |
| for (val = 0, i = 0; i < c; ++i) |
| val = (val << 8) + *data++; |
| |
| ret = sf1_write(adapter, c, c != left, 1, val); |
| if (ret) |
| goto unlock; |
| } |
| ret = flash_wait_op(adapter, 8, 1); |
| if (ret) |
| goto unlock; |
| |
| t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ |
| |
| /* Read the page to verify the write succeeded */ |
| ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); |
| if (ret) |
| return ret; |
| |
| if (memcmp(data - n, (u8 *)buf + offset, n)) { |
| dev_err(adapter->pdev_dev, |
| "failed to correctly write the flash page at %#x\n", |
| addr); |
| return -EIO; |
| } |
| return 0; |
| |
| unlock: |
| t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ |
| return ret; |
| } |
| |
| /** |
| * get_fw_version - read the firmware version |
| * @adapter: the adapter |
| * @vers: where to place the version |
| * |
| * Reads the FW version from flash. |
| */ |
| static int get_fw_version(struct adapter *adapter, u32 *vers) |
| { |
| return t4_read_flash(adapter, adapter->params.sf_fw_start + |
| offsetof(struct fw_hdr, fw_ver), 1, vers, 0); |
| } |
| |
| /** |
| * get_tp_version - read the TP microcode version |
| * @adapter: the adapter |
| * @vers: where to place the version |
| * |
| * Reads the TP microcode version from flash. |
| */ |
| static int get_tp_version(struct adapter *adapter, u32 *vers) |
| { |
| return t4_read_flash(adapter, adapter->params.sf_fw_start + |
| offsetof(struct fw_hdr, tp_microcode_ver), |
| 1, vers, 0); |
| } |
| |
| /** |
| * t4_check_fw_version - check if the FW is compatible with this driver |
| * @adapter: the adapter |
| * |
| * Checks if an adapter's FW is compatible with the driver. Returns 0 |
| * if there's exact match, a negative error if the version could not be |
| * read or there's a major version mismatch, and a positive value if the |
| * expected major version is found but there's a minor version mismatch. |
| */ |
| int t4_check_fw_version(struct adapter *adapter) |
| { |
| u32 api_vers[2]; |
| int ret, major, minor, micro; |
| |
| ret = get_fw_version(adapter, &adapter->params.fw_vers); |
| if (!ret) |
| ret = get_tp_version(adapter, &adapter->params.tp_vers); |
| if (!ret) |
| ret = t4_read_flash(adapter, adapter->params.sf_fw_start + |
| offsetof(struct fw_hdr, intfver_nic), |
| 2, api_vers, 1); |
| if (ret) |
| return ret; |
| |
| major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers); |
| minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers); |
| micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers); |
| memcpy(adapter->params.api_vers, api_vers, |
| sizeof(adapter->params.api_vers)); |
| |
| if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */ |
| dev_err(adapter->pdev_dev, |
| "card FW has major version %u, driver wants %u\n", |
| major, FW_VERSION_MAJOR); |
| return -EINVAL; |
| } |
| |
| if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO) |
| return 0; /* perfect match */ |
| |
| /* Minor/micro version mismatch. Report it but often it's OK. */ |
| return 1; |
| } |
| |
| /** |
| * t4_flash_erase_sectors - erase a range of flash sectors |
| * @adapter: the adapter |
| * @start: the first sector to erase |
| * @end: the last sector to erase |
| * |
| * Erases the sectors in the given inclusive range. |
| */ |
| static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) |
| { |
| int ret = 0; |
| |
| while (start <= end) { |
| if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || |
| (ret = sf1_write(adapter, 4, 0, 1, |
| SF_ERASE_SECTOR | (start << 8))) != 0 || |
| (ret = flash_wait_op(adapter, 14, 500)) != 0) { |
| dev_err(adapter->pdev_dev, |
| "erase of flash sector %d failed, error %d\n", |
| start, ret); |
| break; |
| } |
| start++; |
| } |
| t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ |
| return ret; |
| } |
| |
| /** |
| * t4_flash_cfg_addr - return the address of the flash configuration file |
| * @adapter: the adapter |
| * |
| * Return the address within the flash where the Firmware Configuration |
| * File is stored. |
| */ |
| unsigned int t4_flash_cfg_addr(struct adapter *adapter) |
| { |
| if (adapter->params.sf_size == 0x100000) |
| return FLASH_FPGA_CFG_START; |
| else |
| return FLASH_CFG_START; |
| } |
| |
| /** |
| * t4_load_cfg - download config file |
| * @adap: the adapter |
| * @cfg_data: the cfg text file to write |
| * @size: text file size |
| * |
| * Write the supplied config text file to the card's serial flash. |
| */ |
| int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) |
| { |
| int ret, i, n; |
| unsigned int addr; |
| unsigned int flash_cfg_start_sec; |
| unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; |
| |
| addr = t4_flash_cfg_addr(adap); |
| flash_cfg_start_sec = addr / SF_SEC_SIZE; |
| |
| if (size > FLASH_CFG_MAX_SIZE) { |
| dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", |
| FLASH_CFG_MAX_SIZE); |
| return -EFBIG; |
| } |
| |
| i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ |
| sf_sec_size); |
| ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, |
| flash_cfg_start_sec + i - 1); |
| /* |
| * If size == 0 then we're simply erasing the FLASH sectors associated |
| * with the on-adapter Firmware Configuration File. |
| */ |
| if (ret || size == 0) |
| goto out; |
| |
| /* this will write to the flash up to SF_PAGE_SIZE at a time */ |
| for (i = 0; i < size; i += SF_PAGE_SIZE) { |
| if ((size - i) < SF_PAGE_SIZE) |
| n = size - i; |
| else |
| n = SF_PAGE_SIZE; |
| ret = t4_write_flash(adap, addr, n, cfg_data); |
| if (ret) |
| goto out; |
| |
| addr += SF_PAGE_SIZE; |
| cfg_data += SF_PAGE_SIZE; |
| } |
| |
| out: |
| if (ret) |
| dev_err(adap->pdev_dev, "config file %s failed %d\n", |
| (size == 0 ? "clear" : "download"), ret); |
| return ret; |
| } |
| |
| /** |
| * t4_load_fw - download firmware |
| * @adap: the adapter |
| * @fw_data: the firmware image to write |
| * @size: image size |
| * |
| * Write the supplied firmware image to the card's serial flash. |
| */ |
| int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) |
| { |
| u32 csum; |
| int ret, addr; |
| unsigned int i; |
| u8 first_page[SF_PAGE_SIZE]; |
| const __be32 *p = (const __be32 *)fw_data; |
| const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; |
| unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; |
| unsigned int fw_img_start = adap->params.sf_fw_start; |
| unsigned int fw_start_sec = fw_img_start / sf_sec_size; |
| |
| if (!size) { |
| dev_err(adap->pdev_dev, "FW image has no data\n"); |
| return -EINVAL; |
| } |
| if (size & 511) { |
| dev_err(adap->pdev_dev, |
| "FW image size not multiple of 512 bytes\n"); |
| return -EINVAL; |
| } |
| if (ntohs(hdr->len512) * 512 != size) { |
| dev_err(adap->pdev_dev, |
| "FW image size differs from size in FW header\n"); |
| return -EINVAL; |
| } |
| if (size > FW_MAX_SIZE) { |
| dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", |
| FW_MAX_SIZE); |
| return -EFBIG; |
| } |
| |
| for (csum = 0, i = 0; i < size / sizeof(csum); i++) |
| csum += ntohl(p[i]); |
| |
| if (csum != 0xffffffff) { |
| dev_err(adap->pdev_dev, |
| "corrupted firmware image, checksum %#x\n", csum); |
| return -EINVAL; |
| } |
| |
| i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ |
| ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); |
| if (ret) |
| goto out; |
| |
| /* |
| * We write the correct version at the end so the driver can see a bad |
| * version if the FW write fails. Start by writing a copy of the |
| * first page with a bad version. |
| */ |
| memcpy(first_page, fw_data, SF_PAGE_SIZE); |
| ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff); |
| ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); |
| if (ret) |
| goto out; |
| |
| addr = fw_img_start; |
| for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { |
| addr += SF_PAGE_SIZE; |
| fw_data += SF_PAGE_SIZE; |
| ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); |
| if (ret) |
| goto out; |
| } |
| |
| ret = t4_write_flash(adap, |
| fw_img_start + offsetof(struct fw_hdr, fw_ver), |
| sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); |
| out: |
| if (ret) |
| dev_err(adap->pdev_dev, "firmware download failed, error %d\n", |
| ret); |
| return ret; |
| } |
| |
| #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ |
| FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG) |
| |
| /** |
| * t4_link_start - apply link configuration to MAC/PHY |
| * @phy: the PHY to setup |
| * @mac: the MAC to setup |
| * @lc: the requested link configuration |
| * |
| * Set up a port's MAC and PHY according to a desired link configuration. |
| * - If the PHY can auto-negotiate first decide what to advertise, then |
| * enable/disable auto-negotiation as desired, and reset. |
| * - If the PHY does not auto-negotiate just reset it. |
| * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, |
| * otherwise do it later based on the outcome of auto-negotiation. |
| */ |
| int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port, |
| struct link_config *lc) |
| { |
| struct fw_port_cmd c; |
| unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO); |
| |
| lc->link_ok = 0; |
| if (lc->requested_fc & PAUSE_RX) |
| fc |= FW_PORT_CAP_FC_RX; |
| if (lc->requested_fc & PAUSE_TX) |
| fc |= FW_PORT_CAP_FC_TX; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST | |
| FW_CMD_EXEC | FW_PORT_CMD_PORTID(port)); |
| c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | |
| FW_LEN16(c)); |
| |
| if (!(lc->supported & FW_PORT_CAP_ANEG)) { |
| c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc); |
| lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); |
| } else if (lc->autoneg == AUTONEG_DISABLE) { |
| c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi); |
| lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); |
| } else |
| c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi); |
| |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_restart_aneg - restart autonegotiation |
| * @adap: the adapter |
| * @mbox: mbox to use for the FW command |
| * @port: the port id |
| * |
| * Restarts autonegotiation for the selected port. |
| */ |
| int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) |
| { |
| struct fw_port_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST | |
| FW_CMD_EXEC | FW_PORT_CMD_PORTID(port)); |
| c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | |
| FW_LEN16(c)); |
| c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| typedef void (*int_handler_t)(struct adapter *adap); |
| |
| struct intr_info { |
| unsigned int mask; /* bits to check in interrupt status */ |
| const char *msg; /* message to print or NULL */ |
| short stat_idx; /* stat counter to increment or -1 */ |
| unsigned short fatal; /* whether the condition reported is fatal */ |
| int_handler_t int_handler; /* platform-specific int handler */ |
| }; |
| |
| /** |
| * t4_handle_intr_status - table driven interrupt handler |
| * @adapter: the adapter that generated the interrupt |
| * @reg: the interrupt status register to process |
| * @acts: table of interrupt actions |
| * |
| * A table driven interrupt handler that applies a set of masks to an |
| * interrupt status word and performs the corresponding actions if the |
| * interrupts described by the mask have occurred. The actions include |
| * optionally emitting a warning or alert message. The table is terminated |
| * by an entry specifying mask 0. Returns the number of fatal interrupt |
| * conditions. |
| */ |
| static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, |
| const struct intr_info *acts) |
| { |
| int fatal = 0; |
| unsigned int mask = 0; |
| unsigned int status = t4_read_reg(adapter, reg); |
| |
| for ( ; acts->mask; ++acts) { |
| if (!(status & acts->mask)) |
| continue; |
| if (acts->fatal) { |
| fatal++; |
| dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, |
| status & acts->mask); |
| } else if (acts->msg && printk_ratelimit()) |
| dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, |
| status & acts->mask); |
| if (acts->int_handler) |
| acts->int_handler(adapter); |
| mask |= acts->mask; |
| } |
| status &= mask; |
| if (status) /* clear processed interrupts */ |
| t4_write_reg(adapter, reg, status); |
| return fatal; |
| } |
| |
| /* |
| * Interrupt handler for the PCIE module. |
| */ |
| static void pcie_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info sysbus_intr_info[] = { |
| { RNPP, "RXNP array parity error", -1, 1 }, |
| { RPCP, "RXPC array parity error", -1, 1 }, |
| { RCIP, "RXCIF array parity error", -1, 1 }, |
| { RCCP, "Rx completions control array parity error", -1, 1 }, |
| { RFTP, "RXFT array parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info pcie_port_intr_info[] = { |
| { TPCP, "TXPC array parity error", -1, 1 }, |
| { TNPP, "TXNP array parity error", -1, 1 }, |
| { TFTP, "TXFT array parity error", -1, 1 }, |
| { TCAP, "TXCA array parity error", -1, 1 }, |
| { TCIP, "TXCIF array parity error", -1, 1 }, |
| { RCAP, "RXCA array parity error", -1, 1 }, |
| { OTDD, "outbound request TLP discarded", -1, 1 }, |
| { RDPE, "Rx data parity error", -1, 1 }, |
| { TDUE, "Tx uncorrectable data error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info pcie_intr_info[] = { |
| { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 }, |
| { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 }, |
| { MSIDATAPERR, "MSI data parity error", -1, 1 }, |
| { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 }, |
| { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 }, |
| { MSIXDATAPERR, "MSI-X data parity error", -1, 1 }, |
| { MSIXDIPERR, "MSI-X DI parity error", -1, 1 }, |
| { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 }, |
| { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 }, |
| { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 }, |
| { CCNTPERR, "PCI CMD channel count parity error", -1, 1 }, |
| { CREQPERR, "PCI CMD channel request parity error", -1, 1 }, |
| { CRSPPERR, "PCI CMD channel response parity error", -1, 1 }, |
| { DCNTPERR, "PCI DMA channel count parity error", -1, 1 }, |
| { DREQPERR, "PCI DMA channel request parity error", -1, 1 }, |
| { DRSPPERR, "PCI DMA channel response parity error", -1, 1 }, |
| { HCNTPERR, "PCI HMA channel count parity error", -1, 1 }, |
| { HREQPERR, "PCI HMA channel request parity error", -1, 1 }, |
| { HRSPPERR, "PCI HMA channel response parity error", -1, 1 }, |
| { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 }, |
| { FIDPERR, "PCI FID parity error", -1, 1 }, |
| { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 }, |
| { MATAGPERR, "PCI MA tag parity error", -1, 1 }, |
| { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 }, |
| { RXCPLPERR, "PCI Rx completion parity error", -1, 1 }, |
| { RXWRPERR, "PCI Rx write parity error", -1, 1 }, |
| { RPLPERR, "PCI replay buffer parity error", -1, 1 }, |
| { PCIESINT, "PCI core secondary fault", -1, 1 }, |
| { PCIEPINT, "PCI core primary fault", -1, 1 }, |
| { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 }, |
| { 0 } |
| }; |
| |
| int fat; |
| |
| fat = t4_handle_intr_status(adapter, |
| PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, |
| sysbus_intr_info) + |
| t4_handle_intr_status(adapter, |
| PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, |
| pcie_port_intr_info) + |
| t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info); |
| if (fat) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * TP interrupt handler. |
| */ |
| static void tp_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info tp_intr_info[] = { |
| { 0x3fffffff, "TP parity error", -1, 1 }, |
| { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * SGE interrupt handler. |
| */ |
| static void sge_intr_handler(struct adapter *adapter) |
| { |
| u64 v; |
| |
| static const struct intr_info sge_intr_info[] = { |
| { ERR_CPL_EXCEED_IQE_SIZE, |
| "SGE received CPL exceeding IQE size", -1, 1 }, |
| { ERR_INVALID_CIDX_INC, |
| "SGE GTS CIDX increment too large", -1, 0 }, |
| { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 }, |
| { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full }, |
| { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full }, |
| { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped }, |
| { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0, |
| "SGE IQID > 1023 received CPL for FL", -1, 0 }, |
| { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1, |
| 0 }, |
| { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1, |
| 0 }, |
| { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1, |
| 0 }, |
| { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1, |
| 0 }, |
| { ERR_ING_CTXT_PRIO, |
| "SGE too many priority ingress contexts", -1, 0 }, |
| { ERR_EGR_CTXT_PRIO, |
| "SGE too many priority egress contexts", -1, 0 }, |
| { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 }, |
| { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 }, |
| { 0 } |
| }; |
| |
| v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) | |
| ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32); |
| if (v) { |
| dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", |
| (unsigned long long)v); |
| t4_write_reg(adapter, SGE_INT_CAUSE1, v); |
| t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32); |
| } |
| |
| if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) || |
| v != 0) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * CIM interrupt handler. |
| */ |
| static void cim_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info cim_intr_info[] = { |
| { PREFDROPINT, "CIM control register prefetch drop", -1, 1 }, |
| { OBQPARERR, "CIM OBQ parity error", -1, 1 }, |
| { IBQPARERR, "CIM IBQ parity error", -1, 1 }, |
| { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 }, |
| { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 }, |
| { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 }, |
| { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info cim_upintr_info[] = { |
| { RSVDSPACEINT, "CIM reserved space access", -1, 1 }, |
| { ILLTRANSINT, "CIM illegal transaction", -1, 1 }, |
| { ILLWRINT, "CIM illegal write", -1, 1 }, |
| { ILLRDINT, "CIM illegal read", -1, 1 }, |
| { ILLRDBEINT, "CIM illegal read BE", -1, 1 }, |
| { ILLWRBEINT, "CIM illegal write BE", -1, 1 }, |
| { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 }, |
| { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 }, |
| { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 }, |
| { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 }, |
| { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 }, |
| { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 }, |
| { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 }, |
| { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 }, |
| { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 }, |
| { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 }, |
| { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 }, |
| { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 }, |
| { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 }, |
| { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 }, |
| { SGLRDPLINT , "CIM single read from PL space", -1, 1 }, |
| { SGLWRPLINT , "CIM single write to PL space", -1, 1 }, |
| { BLKRDPLINT , "CIM block read from PL space", -1, 1 }, |
| { BLKWRPLINT , "CIM block write to PL space", -1, 1 }, |
| { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 }, |
| { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 }, |
| { TIMEOUTINT , "CIM PIF timeout", -1, 1 }, |
| { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 }, |
| { 0 } |
| }; |
| |
| int fat; |
| |
| fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE, |
| cim_intr_info) + |
| t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE, |
| cim_upintr_info); |
| if (fat) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * ULP RX interrupt handler. |
| */ |
| static void ulprx_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info ulprx_intr_info[] = { |
| { 0x1800000, "ULPRX context error", -1, 1 }, |
| { 0x7fffff, "ULPRX parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * ULP TX interrupt handler. |
| */ |
| static void ulptx_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info ulptx_intr_info[] = { |
| { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1, |
| 0 }, |
| { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1, |
| 0 }, |
| { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1, |
| 0 }, |
| { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1, |
| 0 }, |
| { 0xfffffff, "ULPTX parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * PM TX interrupt handler. |
| */ |
| static void pmtx_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info pmtx_intr_info[] = { |
| { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 }, |
| { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 }, |
| { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 }, |
| { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 }, |
| { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 }, |
| { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 }, |
| { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 }, |
| { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 }, |
| { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1}, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * PM RX interrupt handler. |
| */ |
| static void pmrx_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info pmrx_intr_info[] = { |
| { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 }, |
| { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 }, |
| { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 }, |
| { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 }, |
| { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 }, |
| { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1}, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * CPL switch interrupt handler. |
| */ |
| static void cplsw_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info cplsw_intr_info[] = { |
| { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 }, |
| { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 }, |
| { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 }, |
| { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 }, |
| { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 }, |
| { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * LE interrupt handler. |
| */ |
| static void le_intr_handler(struct adapter *adap) |
| { |
| static const struct intr_info le_intr_info[] = { |
| { LIPMISS, "LE LIP miss", -1, 0 }, |
| { LIP0, "LE 0 LIP error", -1, 0 }, |
| { PARITYERR, "LE parity error", -1, 1 }, |
| { UNKNOWNCMD, "LE unknown command", -1, 1 }, |
| { REQQPARERR, "LE request queue parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info)) |
| t4_fatal_err(adap); |
| } |
| |
| /* |
| * MPS interrupt handler. |
| */ |
| static void mps_intr_handler(struct adapter *adapter) |
| { |
| static const struct intr_info mps_rx_intr_info[] = { |
| { 0xffffff, "MPS Rx parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info mps_tx_intr_info[] = { |
| { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 }, |
| { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 }, |
| { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 }, |
| { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 }, |
| { BUBBLE, "MPS Tx underflow", -1, 1 }, |
| { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 }, |
| { FRMERR, "MPS Tx framing error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info mps_trc_intr_info[] = { |
| { FILTMEM, "MPS TRC filter parity error", -1, 1 }, |
| { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 }, |
| { MISCPERR, "MPS TRC misc parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info mps_stat_sram_intr_info[] = { |
| { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info mps_stat_tx_intr_info[] = { |
| { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info mps_stat_rx_intr_info[] = { |
| { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, |
| { 0 } |
| }; |
| static const struct intr_info mps_cls_intr_info[] = { |
| { MATCHSRAM, "MPS match SRAM parity error", -1, 1 }, |
| { MATCHTCAM, "MPS match TCAM parity error", -1, 1 }, |
| { HASHSRAM, "MPS hash SRAM parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| int fat; |
| |
| fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE, |
| mps_rx_intr_info) + |
| t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE, |
| mps_tx_intr_info) + |
| t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE, |
| mps_trc_intr_info) + |
| t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM, |
| mps_stat_sram_intr_info) + |
| t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO, |
| mps_stat_tx_intr_info) + |
| t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO, |
| mps_stat_rx_intr_info) + |
| t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE, |
| mps_cls_intr_info); |
| |
| t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT | |
| RXINT | TXINT | STATINT); |
| t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */ |
| if (fat) |
| t4_fatal_err(adapter); |
| } |
| |
| #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE) |
| |
| /* |
| * EDC/MC interrupt handler. |
| */ |
| static void mem_intr_handler(struct adapter *adapter, int idx) |
| { |
| static const char name[3][5] = { "EDC0", "EDC1", "MC" }; |
| |
| unsigned int addr, cnt_addr, v; |
| |
| if (idx <= MEM_EDC1) { |
| addr = EDC_REG(EDC_INT_CAUSE, idx); |
| cnt_addr = EDC_REG(EDC_ECC_STATUS, idx); |
| } else { |
| addr = MC_INT_CAUSE; |
| cnt_addr = MC_ECC_STATUS; |
| } |
| |
| v = t4_read_reg(adapter, addr) & MEM_INT_MASK; |
| if (v & PERR_INT_CAUSE) |
| dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", |
| name[idx]); |
| if (v & ECC_CE_INT_CAUSE) { |
| u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr)); |
| |
| t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK); |
| if (printk_ratelimit()) |
| dev_warn(adapter->pdev_dev, |
| "%u %s correctable ECC data error%s\n", |
| cnt, name[idx], cnt > 1 ? "s" : ""); |
| } |
| if (v & ECC_UE_INT_CAUSE) |
| dev_alert(adapter->pdev_dev, |
| "%s uncorrectable ECC data error\n", name[idx]); |
| |
| t4_write_reg(adapter, addr, v); |
| if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE)) |
| t4_fatal_err(adapter); |
| } |
| |
| /* |
| * MA interrupt handler. |
| */ |
| static void ma_intr_handler(struct adapter *adap) |
| { |
| u32 v, status = t4_read_reg(adap, MA_INT_CAUSE); |
| |
| if (status & MEM_PERR_INT_CAUSE) |
| dev_alert(adap->pdev_dev, |
| "MA parity error, parity status %#x\n", |
| t4_read_reg(adap, MA_PARITY_ERROR_STATUS)); |
| if (status & MEM_WRAP_INT_CAUSE) { |
| v = t4_read_reg(adap, MA_INT_WRAP_STATUS); |
| dev_alert(adap->pdev_dev, "MA address wrap-around error by " |
| "client %u to address %#x\n", |
| MEM_WRAP_CLIENT_NUM_GET(v), |
| MEM_WRAP_ADDRESS_GET(v) << 4); |
| } |
| t4_write_reg(adap, MA_INT_CAUSE, status); |
| t4_fatal_err(adap); |
| } |
| |
| /* |
| * SMB interrupt handler. |
| */ |
| static void smb_intr_handler(struct adapter *adap) |
| { |
| static const struct intr_info smb_intr_info[] = { |
| { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 }, |
| { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 }, |
| { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info)) |
| t4_fatal_err(adap); |
| } |
| |
| /* |
| * NC-SI interrupt handler. |
| */ |
| static void ncsi_intr_handler(struct adapter *adap) |
| { |
| static const struct intr_info ncsi_intr_info[] = { |
| { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 }, |
| { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 }, |
| { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 }, |
| { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info)) |
| t4_fatal_err(adap); |
| } |
| |
| /* |
| * XGMAC interrupt handler. |
| */ |
| static void xgmac_intr_handler(struct adapter *adap, int port) |
| { |
| u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE)); |
| |
| v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR; |
| if (!v) |
| return; |
| |
| if (v & TXFIFO_PRTY_ERR) |
| dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", |
| port); |
| if (v & RXFIFO_PRTY_ERR) |
| dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", |
| port); |
| t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v); |
| t4_fatal_err(adap); |
| } |
| |
| /* |
| * PL interrupt handler. |
| */ |
| static void pl_intr_handler(struct adapter *adap) |
| { |
| static const struct intr_info pl_intr_info[] = { |
| { FATALPERR, "T4 fatal parity error", -1, 1 }, |
| { PERRVFID, "PL VFID_MAP parity error", -1, 1 }, |
| { 0 } |
| }; |
| |
| if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info)) |
| t4_fatal_err(adap); |
| } |
| |
| #define PF_INTR_MASK (PFSW) |
| #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \ |
| EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \ |
| CPL_SWITCH | SGE | ULP_TX) |
| |
| /** |
| * t4_slow_intr_handler - control path interrupt handler |
| * @adapter: the adapter |
| * |
| * T4 interrupt handler for non-data global interrupt events, e.g., errors. |
| * The designation 'slow' is because it involves register reads, while |
| * data interrupts typically don't involve any MMIOs. |
| */ |
| int t4_slow_intr_handler(struct adapter *adapter) |
| { |
| u32 cause = t4_read_reg(adapter, PL_INT_CAUSE); |
| |
| if (!(cause & GLBL_INTR_MASK)) |
| return 0; |
| if (cause & CIM) |
| cim_intr_handler(adapter); |
| if (cause & MPS) |
| mps_intr_handler(adapter); |
| if (cause & NCSI) |
| ncsi_intr_handler(adapter); |
| if (cause & PL) |
| pl_intr_handler(adapter); |
| if (cause & SMB) |
| smb_intr_handler(adapter); |
| if (cause & XGMAC0) |
| xgmac_intr_handler(adapter, 0); |
| if (cause & XGMAC1) |
| xgmac_intr_handler(adapter, 1); |
| if (cause & XGMAC_KR0) |
| xgmac_intr_handler(adapter, 2); |
| if (cause & XGMAC_KR1) |
| xgmac_intr_handler(adapter, 3); |
| if (cause & PCIE) |
| pcie_intr_handler(adapter); |
| if (cause & MC) |
| mem_intr_handler(adapter, MEM_MC); |
| if (cause & EDC0) |
| mem_intr_handler(adapter, MEM_EDC0); |
| if (cause & EDC1) |
| mem_intr_handler(adapter, MEM_EDC1); |
| if (cause & LE) |
| le_intr_handler(adapter); |
| if (cause & TP) |
| tp_intr_handler(adapter); |
| if (cause & MA) |
| ma_intr_handler(adapter); |
| if (cause & PM_TX) |
| pmtx_intr_handler(adapter); |
| if (cause & PM_RX) |
| pmrx_intr_handler(adapter); |
| if (cause & ULP_RX) |
| ulprx_intr_handler(adapter); |
| if (cause & CPL_SWITCH) |
| cplsw_intr_handler(adapter); |
| if (cause & SGE) |
| sge_intr_handler(adapter); |
| if (cause & ULP_TX) |
| ulptx_intr_handler(adapter); |
| |
| /* Clear the interrupts just processed for which we are the master. */ |
| t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK); |
| (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */ |
| return 1; |
| } |
| |
| /** |
| * t4_intr_enable - enable interrupts |
| * @adapter: the adapter whose interrupts should be enabled |
| * |
| * Enable PF-specific interrupts for the calling function and the top-level |
| * interrupt concentrator for global interrupts. Interrupts are already |
| * enabled at each module, here we just enable the roots of the interrupt |
| * hierarchies. |
| * |
| * Note: this function should be called only when the driver manages |
| * non PF-specific interrupts from the various HW modules. Only one PCI |
| * function at a time should be doing this. |
| */ |
| void t4_intr_enable(struct adapter *adapter) |
| { |
| u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI)); |
| |
| t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE | |
| ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 | |
| ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 | |
| ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 | |
| ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 | |
| ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO | |
| ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR | |
| DBFIFO_HP_INT | DBFIFO_LP_INT | |
| EGRESS_SIZE_ERR); |
| t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK); |
| t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf); |
| } |
| |
| /** |
| * t4_intr_disable - disable interrupts |
| * @adapter: the adapter whose interrupts should be disabled |
| * |
| * Disable interrupts. We only disable the top-level interrupt |
| * concentrators. The caller must be a PCI function managing global |
| * interrupts. |
| */ |
| void t4_intr_disable(struct adapter *adapter) |
| { |
| u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI)); |
| |
| t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0); |
| t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0); |
| } |
| |
| /** |
| * hash_mac_addr - return the hash value of a MAC address |
| * @addr: the 48-bit Ethernet MAC address |
| * |
| * Hashes a MAC address according to the hash function used by HW inexact |
| * (hash) address matching. |
| */ |
| static int hash_mac_addr(const u8 *addr) |
| { |
| u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; |
| u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; |
| a ^= b; |
| a ^= (a >> 12); |
| a ^= (a >> 6); |
| return a & 0x3f; |
| } |
| |
| /** |
| * t4_config_rss_range - configure a portion of the RSS mapping table |
| * @adapter: the adapter |
| * @mbox: mbox to use for the FW command |
| * @viid: virtual interface whose RSS subtable is to be written |
| * @start: start entry in the table to write |
| * @n: how many table entries to write |
| * @rspq: values for the response queue lookup table |
| * @nrspq: number of values in @rspq |
| * |
| * Programs the selected part of the VI's RSS mapping table with the |
| * provided values. If @nrspq < @n the supplied values are used repeatedly |
| * until the full table range is populated. |
| * |
| * The caller must ensure the values in @rspq are in the range allowed for |
| * @viid. |
| */ |
| int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, |
| int start, int n, const u16 *rspq, unsigned int nrspq) |
| { |
| int ret; |
| const u16 *rsp = rspq; |
| const u16 *rsp_end = rspq + nrspq; |
| struct fw_rss_ind_tbl_cmd cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) | |
| FW_CMD_REQUEST | FW_CMD_WRITE | |
| FW_RSS_IND_TBL_CMD_VIID(viid)); |
| cmd.retval_len16 = htonl(FW_LEN16(cmd)); |
| |
| /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ |
| while (n > 0) { |
| int nq = min(n, 32); |
| __be32 *qp = &cmd.iq0_to_iq2; |
| |
| cmd.niqid = htons(nq); |
| cmd.startidx = htons(start); |
| |
| start += nq; |
| n -= nq; |
| |
| while (nq > 0) { |
| unsigned int v; |
| |
| v = FW_RSS_IND_TBL_CMD_IQ0(*rsp); |
| if (++rsp >= rsp_end) |
| rsp = rspq; |
| v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp); |
| if (++rsp >= rsp_end) |
| rsp = rspq; |
| v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp); |
| if (++rsp >= rsp_end) |
| rsp = rspq; |
| |
| *qp++ = htonl(v); |
| nq -= 3; |
| } |
| |
| ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| /** |
| * t4_config_glbl_rss - configure the global RSS mode |
| * @adapter: the adapter |
| * @mbox: mbox to use for the FW command |
| * @mode: global RSS mode |
| * @flags: mode-specific flags |
| * |
| * Sets the global RSS mode. |
| */ |
| int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, |
| unsigned int flags) |
| { |
| struct fw_rss_glb_config_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | |
| FW_CMD_REQUEST | FW_CMD_WRITE); |
| c.retval_len16 = htonl(FW_LEN16(c)); |
| if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { |
| c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode)); |
| } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { |
| c.u.basicvirtual.mode_pkd = |
| htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode)); |
| c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags); |
| } else |
| return -EINVAL; |
| return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_tp_get_tcp_stats - read TP's TCP MIB counters |
| * @adap: the adapter |
| * @v4: holds the TCP/IP counter values |
| * @v6: holds the TCP/IPv6 counter values |
| * |
| * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. |
| * Either @v4 or @v6 may be %NULL to skip the corresponding stats. |
| */ |
| void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, |
| struct tp_tcp_stats *v6) |
| { |
| u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1]; |
| |
| #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST) |
| #define STAT(x) val[STAT_IDX(x)] |
| #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) |
| |
| if (v4) { |
| t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val, |
| ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST); |
| v4->tcpOutRsts = STAT(OUT_RST); |
| v4->tcpInSegs = STAT64(IN_SEG); |
| v4->tcpOutSegs = STAT64(OUT_SEG); |
| v4->tcpRetransSegs = STAT64(RXT_SEG); |
| } |
| if (v6) { |
| t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val, |
| ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST); |
| v6->tcpOutRsts = STAT(OUT_RST); |
| v6->tcpInSegs = STAT64(IN_SEG); |
| v6->tcpOutSegs = STAT64(OUT_SEG); |
| v6->tcpRetransSegs = STAT64(RXT_SEG); |
| } |
| #undef STAT64 |
| #undef STAT |
| #undef STAT_IDX |
| } |
| |
| /** |
| * t4_read_mtu_tbl - returns the values in the HW path MTU table |
| * @adap: the adapter |
| * @mtus: where to store the MTU values |
| * @mtu_log: where to store the MTU base-2 log (may be %NULL) |
| * |
| * Reads the HW path MTU table. |
| */ |
| void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) |
| { |
| u32 v; |
| int i; |
| |
| for (i = 0; i < NMTUS; ++i) { |
| t4_write_reg(adap, TP_MTU_TABLE, |
| MTUINDEX(0xff) | MTUVALUE(i)); |
| v = t4_read_reg(adap, TP_MTU_TABLE); |
| mtus[i] = MTUVALUE_GET(v); |
| if (mtu_log) |
| mtu_log[i] = MTUWIDTH_GET(v); |
| } |
| } |
| |
| /** |
| * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register |
| * @adap: the adapter |
| * @addr: the indirect TP register address |
| * @mask: specifies the field within the register to modify |
| * @val: new value for the field |
| * |
| * Sets a field of an indirect TP register to the given value. |
| */ |
| void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, |
| unsigned int mask, unsigned int val) |
| { |
| t4_write_reg(adap, TP_PIO_ADDR, addr); |
| val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask; |
| t4_write_reg(adap, TP_PIO_DATA, val); |
| } |
| |
| /** |
| * init_cong_ctrl - initialize congestion control parameters |
| * @a: the alpha values for congestion control |
| * @b: the beta values for congestion control |
| * |
| * Initialize the congestion control parameters. |
| */ |
| static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b) |
| { |
| a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; |
| a[9] = 2; |
| a[10] = 3; |
| a[11] = 4; |
| a[12] = 5; |
| a[13] = 6; |
| a[14] = 7; |
| a[15] = 8; |
| a[16] = 9; |
| a[17] = 10; |
| a[18] = 14; |
| a[19] = 17; |
| a[20] = 21; |
| a[21] = 25; |
| a[22] = 30; |
| a[23] = 35; |
| a[24] = 45; |
| a[25] = 60; |
| a[26] = 80; |
| a[27] = 100; |
| a[28] = 200; |
| a[29] = 300; |
| a[30] = 400; |
| a[31] = 500; |
| |
| b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; |
| b[9] = b[10] = 1; |
| b[11] = b[12] = 2; |
| b[13] = b[14] = b[15] = b[16] = 3; |
| b[17] = b[18] = b[19] = b[20] = b[21] = 4; |
| b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; |
| b[28] = b[29] = 6; |
| b[30] = b[31] = 7; |
| } |
| |
| /* The minimum additive increment value for the congestion control table */ |
| #define CC_MIN_INCR 2U |
| |
| /** |
| * t4_load_mtus - write the MTU and congestion control HW tables |
| * @adap: the adapter |
| * @mtus: the values for the MTU table |
| * @alpha: the values for the congestion control alpha parameter |
| * @beta: the values for the congestion control beta parameter |
| * |
| * Write the HW MTU table with the supplied MTUs and the high-speed |
| * congestion control table with the supplied alpha, beta, and MTUs. |
| * We write the two tables together because the additive increments |
| * depend on the MTUs. |
| */ |
| void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, |
| const unsigned short *alpha, const unsigned short *beta) |
| { |
| static const unsigned int avg_pkts[NCCTRL_WIN] = { |
| 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, |
| 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, |
| 28672, 40960, 57344, 81920, 114688, 163840, 229376 |
| }; |
| |
| unsigned int i, w; |
| |
| for (i = 0; i < NMTUS; ++i) { |
| unsigned int mtu = mtus[i]; |
| unsigned int log2 = fls(mtu); |
| |
| if (!(mtu & ((1 << log2) >> 2))) /* round */ |
| log2--; |
| t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) | |
| MTUWIDTH(log2) | MTUVALUE(mtu)); |
| |
| for (w = 0; w < NCCTRL_WIN; ++w) { |
| unsigned int inc; |
| |
| inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], |
| CC_MIN_INCR); |
| |
| t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) | |
| (w << 16) | (beta[w] << 13) | inc); |
| } |
| } |
| } |
| |
| /** |
| * get_mps_bg_map - return the buffer groups associated with a port |
| * @adap: the adapter |
| * @idx: the port index |
| * |
| * Returns a bitmap indicating which MPS buffer groups are associated |
| * with the given port. Bit i is set if buffer group i is used by the |
| * port. |
| */ |
| static unsigned int get_mps_bg_map(struct adapter *adap, int idx) |
| { |
| u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL)); |
| |
| if (n == 0) |
| return idx == 0 ? 0xf : 0; |
| if (n == 1) |
| return idx < 2 ? (3 << (2 * idx)) : 0; |
| return 1 << idx; |
| } |
| |
| /** |
| * t4_get_port_stats - collect port statistics |
| * @adap: the adapter |
| * @idx: the port index |
| * @p: the stats structure to fill |
| * |
| * Collect statistics related to the given port from HW. |
| */ |
| void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) |
| { |
| u32 bgmap = get_mps_bg_map(adap, idx); |
| |
| #define GET_STAT(name) \ |
| t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L)) |
| #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) |
| |
| p->tx_octets = GET_STAT(TX_PORT_BYTES); |
| p->tx_frames = GET_STAT(TX_PORT_FRAMES); |
| p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); |
| p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); |
| p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); |
| p->tx_error_frames = GET_STAT(TX_PORT_ERROR); |
| p->tx_frames_64 = GET_STAT(TX_PORT_64B); |
| p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); |
| p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); |
| p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); |
| p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); |
| p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); |
| p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); |
| p->tx_drop = GET_STAT(TX_PORT_DROP); |
| p->tx_pause = GET_STAT(TX_PORT_PAUSE); |
| p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); |
| p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); |
| p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); |
| p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); |
| p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); |
| p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); |
| p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); |
| p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); |
| |
| p->rx_octets = GET_STAT(RX_PORT_BYTES); |
| p->rx_frames = GET_STAT(RX_PORT_FRAMES); |
| p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); |
| p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); |
| p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); |
| p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); |
| p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); |
| p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); |
| p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); |
| p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); |
| p->rx_runt = GET_STAT(RX_PORT_LESS_64B); |
| p->rx_frames_64 = GET_STAT(RX_PORT_64B); |
| p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); |
| p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); |
| p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); |
| p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); |
| p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); |
| p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); |
| p->rx_pause = GET_STAT(RX_PORT_PAUSE); |
| p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); |
| p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); |
| p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); |
| p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); |
| p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); |
| p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); |
| p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); |
| p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); |
| |
| p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; |
| p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; |
| p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; |
| p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; |
| p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; |
| p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; |
| p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; |
| p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; |
| |
| #undef GET_STAT |
| #undef GET_STAT_COM |
| } |
| |
| /** |
| * t4_wol_magic_enable - enable/disable magic packet WoL |
| * @adap: the adapter |
| * @port: the physical port index |
| * @addr: MAC address expected in magic packets, %NULL to disable |
| * |
| * Enables/disables magic packet wake-on-LAN for the selected port. |
| */ |
| void t4_wol_magic_enable(struct adapter *adap, unsigned int port, |
| const u8 *addr) |
| { |
| if (addr) { |
| t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO), |
| (addr[2] << 24) | (addr[3] << 16) | |
| (addr[4] << 8) | addr[5]); |
| t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI), |
| (addr[0] << 8) | addr[1]); |
| } |
| t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN, |
| addr ? MAGICEN : 0); |
| } |
| |
| /** |
| * t4_wol_pat_enable - enable/disable pattern-based WoL |
| * @adap: the adapter |
| * @port: the physical port index |
| * @map: bitmap of which HW pattern filters to set |
| * @mask0: byte mask for bytes 0-63 of a packet |
| * @mask1: byte mask for bytes 64-127 of a packet |
| * @crc: Ethernet CRC for selected bytes |
| * @enable: enable/disable switch |
| * |
| * Sets the pattern filters indicated in @map to mask out the bytes |
| * specified in @mask0/@mask1 in received packets and compare the CRC of |
| * the resulting packet against @crc. If @enable is %true pattern-based |
| * WoL is enabled, otherwise disabled. |
| */ |
| int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, |
| u64 mask0, u64 mask1, unsigned int crc, bool enable) |
| { |
| int i; |
| |
| if (!enable) { |
| t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), |
| PATEN, 0); |
| return 0; |
| } |
| if (map > 0xff) |
| return -EINVAL; |
| |
| #define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name) |
| |
| t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); |
| t4_write_reg(adap, EPIO_REG(DATA2), mask1); |
| t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); |
| |
| for (i = 0; i < NWOL_PAT; i++, map >>= 1) { |
| if (!(map & 1)) |
| continue; |
| |
| /* write byte masks */ |
| t4_write_reg(adap, EPIO_REG(DATA0), mask0); |
| t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR); |
| t4_read_reg(adap, EPIO_REG(OP)); /* flush */ |
| if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY) |
| return -ETIMEDOUT; |
| |
| /* write CRC */ |
| t4_write_reg(adap, EPIO_REG(DATA0), crc); |
| t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR); |
| t4_read_reg(adap, EPIO_REG(OP)); /* flush */ |
| if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY) |
| return -ETIMEDOUT; |
| } |
| #undef EPIO_REG |
| |
| t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN); |
| return 0; |
| } |
| |
| #define INIT_CMD(var, cmd, rd_wr) do { \ |
| (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \ |
| FW_CMD_REQUEST | FW_CMD_##rd_wr); \ |
| (var).retval_len16 = htonl(FW_LEN16(var)); \ |
| } while (0) |
| |
| int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, |
| u32 addr, u32 val) |
| { |
| struct fw_ldst_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST | |
| FW_CMD_WRITE | |
| FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE)); |
| c.cycles_to_len16 = htonl(FW_LEN16(c)); |
| c.u.addrval.addr = htonl(addr); |
| c.u.addrval.val = htonl(val); |
| |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_mem_win_read_len - read memory through PCIE memory window |
| * @adap: the adapter |
| * @addr: address of first byte requested aligned on 32b. |
| * @data: len bytes to hold the data read |
| * @len: amount of data to read from window. Must be <= |
| * MEMWIN0_APERATURE after adjusting for 16B alignment |
| * requirements of the the memory window. |
| * |
| * Read len bytes of data from MC starting at @addr. |
| */ |
| int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len) |
| { |
| int i; |
| int off; |
| |
| /* |
| * Align on a 16B boundary. |
| */ |
| off = addr & 15; |
| if ((addr & 3) || (len + off) > MEMWIN0_APERTURE) |
| return -EINVAL; |
| |
| t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET, addr & ~15); |
| t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET); |
| |
| for (i = 0; i < len; i += 4) |
| *data++ = (__force __be32) t4_read_reg(adap, |
| (MEMWIN0_BASE + off + i)); |
| |
| return 0; |
| } |
| |
| /** |
| * t4_mdio_rd - read a PHY register through MDIO |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @phy_addr: the PHY address |
| * @mmd: the PHY MMD to access (0 for clause 22 PHYs) |
| * @reg: the register to read |
| * @valp: where to store the value |
| * |
| * Issues a FW command through the given mailbox to read a PHY register. |
| */ |
| int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, |
| unsigned int mmd, unsigned int reg, u16 *valp) |
| { |
| int ret; |
| struct fw_ldst_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST | |
| FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO)); |
| c.cycles_to_len16 = htonl(FW_LEN16(c)); |
| c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) | |
| FW_LDST_CMD_MMD(mmd)); |
| c.u.mdio.raddr = htons(reg); |
| |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); |
| if (ret == 0) |
| *valp = ntohs(c.u.mdio.rval); |
| return ret; |
| } |
| |
| /** |
| * t4_mdio_wr - write a PHY register through MDIO |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @phy_addr: the PHY address |
| * @mmd: the PHY MMD to access (0 for clause 22 PHYs) |
| * @reg: the register to write |
| * @valp: value to write |
| * |
| * Issues a FW command through the given mailbox to write a PHY register. |
| */ |
| int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, |
| unsigned int mmd, unsigned int reg, u16 val) |
| { |
| struct fw_ldst_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST | |
| FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO)); |
| c.cycles_to_len16 = htonl(FW_LEN16(c)); |
| c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) | |
| FW_LDST_CMD_MMD(mmd)); |
| c.u.mdio.raddr = htons(reg); |
| c.u.mdio.rval = htons(val); |
| |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_fw_hello - establish communication with FW |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @evt_mbox: mailbox to receive async FW events |
| * @master: specifies the caller's willingness to be the device master |
| * @state: returns the current device state (if non-NULL) |
| * |
| * Issues a command to establish communication with FW. Returns either |
| * an error (negative integer) or the mailbox of the Master PF. |
| */ |
| int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, |
| enum dev_master master, enum dev_state *state) |
| { |
| int ret; |
| struct fw_hello_cmd c; |
| u32 v; |
| unsigned int master_mbox; |
| int retries = FW_CMD_HELLO_RETRIES; |
| |
| retry: |
| memset(&c, 0, sizeof(c)); |
| INIT_CMD(c, HELLO, WRITE); |
| c.err_to_mbasyncnot = htonl( |
| FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) | |
| FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) | |
| FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : |
| FW_HELLO_CMD_MBMASTER_MASK) | |
| FW_HELLO_CMD_MBASYNCNOT(evt_mbox) | |
| FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) | |
| FW_HELLO_CMD_CLEARINIT); |
| |
| /* |
| * Issue the HELLO command to the firmware. If it's not successful |
| * but indicates that we got a "busy" or "timeout" condition, retry |
| * the HELLO until we exhaust our retry limit. |
| */ |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); |
| if (ret < 0) { |
| if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) |
| goto retry; |
| return ret; |
| } |
| |
| v = ntohl(c.err_to_mbasyncnot); |
| master_mbox = FW_HELLO_CMD_MBMASTER_GET(v); |
| if (state) { |
| if (v & FW_HELLO_CMD_ERR) |
| *state = DEV_STATE_ERR; |
| else if (v & FW_HELLO_CMD_INIT) |
| *state = DEV_STATE_INIT; |
| else |
| *state = DEV_STATE_UNINIT; |
| } |
| |
| /* |
| * If we're not the Master PF then we need to wait around for the |
| * Master PF Driver to finish setting up the adapter. |
| * |
| * Note that we also do this wait if we're a non-Master-capable PF and |
| * there is no current Master PF; a Master PF may show up momentarily |
| * and we wouldn't want to fail pointlessly. (This can happen when an |
| * OS loads lots of different drivers rapidly at the same time). In |
| * this case, the Master PF returned by the firmware will be |
| * FW_PCIE_FW_MASTER_MASK so the test below will work ... |
| */ |
| if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 && |
| master_mbox != mbox) { |
| int waiting = FW_CMD_HELLO_TIMEOUT; |
| |
| /* |
| * Wait for the firmware to either indicate an error or |
| * initialized state. If we see either of these we bail out |
| * and report the issue to the caller. If we exhaust the |
| * "hello timeout" and we haven't exhausted our retries, try |
| * again. Otherwise bail with a timeout error. |
| */ |
| for (;;) { |
| u32 pcie_fw; |
| |
| msleep(50); |
| waiting -= 50; |
| |
| /* |
| * If neither Error nor Initialialized are indicated |
| * by the firmware keep waiting till we exaust our |
| * timeout ... and then retry if we haven't exhausted |
| * our retries ... |
| */ |
| pcie_fw = t4_read_reg(adap, MA_PCIE_FW); |
| if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) { |
| if (waiting <= 0) { |
| if (retries-- > 0) |
| goto retry; |
| |
| return -ETIMEDOUT; |
| } |
| continue; |
| } |
| |
| /* |
| * We either have an Error or Initialized condition |
| * report errors preferentially. |
| */ |
| if (state) { |
| if (pcie_fw & FW_PCIE_FW_ERR) |
| *state = DEV_STATE_ERR; |
| else if (pcie_fw & FW_PCIE_FW_INIT) |
| *state = DEV_STATE_INIT; |
| } |
| |
| /* |
| * If we arrived before a Master PF was selected and |
| * there's not a valid Master PF, grab its identity |
| * for our caller. |
| */ |
| if (master_mbox == FW_PCIE_FW_MASTER_MASK && |
| (pcie_fw & FW_PCIE_FW_MASTER_VLD)) |
| master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw); |
| break; |
| } |
| } |
| |
| return master_mbox; |
| } |
| |
| /** |
| * t4_fw_bye - end communication with FW |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * |
| * Issues a command to terminate communication with FW. |
| */ |
| int t4_fw_bye(struct adapter *adap, unsigned int mbox) |
| { |
| struct fw_bye_cmd c; |
| |
| INIT_CMD(c, BYE, WRITE); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_init_cmd - ask FW to initialize the device |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * |
| * Issues a command to FW to partially initialize the device. This |
| * performs initialization that generally doesn't depend on user input. |
| */ |
| int t4_early_init(struct adapter *adap, unsigned int mbox) |
| { |
| struct fw_initialize_cmd c; |
| |
| INIT_CMD(c, INITIALIZE, WRITE); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_fw_reset - issue a reset to FW |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @reset: specifies the type of reset to perform |
| * |
| * Issues a reset command of the specified type to FW. |
| */ |
| int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) |
| { |
| struct fw_reset_cmd c; |
| |
| INIT_CMD(c, RESET, WRITE); |
| c.val = htonl(reset); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_fw_halt - issue a reset/halt to FW and put uP into RESET |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW RESET command (if desired) |
| * @force: force uP into RESET even if FW RESET command fails |
| * |
| * Issues a RESET command to firmware (if desired) with a HALT indication |
| * and then puts the microprocessor into RESET state. The RESET command |
| * will only be issued if a legitimate mailbox is provided (mbox <= |
| * FW_PCIE_FW_MASTER_MASK). |
| * |
| * This is generally used in order for the host to safely manipulate the |
| * adapter without fear of conflicting with whatever the firmware might |
| * be doing. The only way out of this state is to RESTART the firmware |
| * ... |
| */ |
| int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) |
| { |
| int ret = 0; |
| |
| /* |
| * If a legitimate mailbox is provided, issue a RESET command |
| * with a HALT indication. |
| */ |
| if (mbox <= FW_PCIE_FW_MASTER_MASK) { |
| struct fw_reset_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| INIT_CMD(c, RESET, WRITE); |
| c.val = htonl(PIORST | PIORSTMODE); |
| c.halt_pkd = htonl(FW_RESET_CMD_HALT(1U)); |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /* |
| * Normally we won't complete the operation if the firmware RESET |
| * command fails but if our caller insists we'll go ahead and put the |
| * uP into RESET. This can be useful if the firmware is hung or even |
| * missing ... We'll have to take the risk of putting the uP into |
| * RESET without the cooperation of firmware in that case. |
| * |
| * We also force the firmware's HALT flag to be on in case we bypassed |
| * the firmware RESET command above or we're dealing with old firmware |
| * which doesn't have the HALT capability. This will serve as a flag |
| * for the incoming firmware to know that it's coming out of a HALT |
| * rather than a RESET ... if it's new enough to understand that ... |
| */ |
| if (ret == 0 || force) { |
| t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST); |
| t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, |
| FW_PCIE_FW_HALT); |
| } |
| |
| /* |
| * And we always return the result of the firmware RESET command |
| * even when we force the uP into RESET ... |
| */ |
| return ret; |
| } |
| |
| /** |
| * t4_fw_restart - restart the firmware by taking the uP out of RESET |
| * @adap: the adapter |
| * @reset: if we want to do a RESET to restart things |
| * |
| * Restart firmware previously halted by t4_fw_halt(). On successful |
| * return the previous PF Master remains as the new PF Master and there |
| * is no need to issue a new HELLO command, etc. |
| * |
| * We do this in two ways: |
| * |
| * 1. If we're dealing with newer firmware we'll simply want to take |
| * the chip's microprocessor out of RESET. This will cause the |
| * firmware to start up from its start vector. And then we'll loop |
| * until the firmware indicates it's started again (PCIE_FW.HALT |
| * reset to 0) or we timeout. |
| * |
| * 2. If we're dealing with older firmware then we'll need to RESET |
| * the chip since older firmware won't recognize the PCIE_FW.HALT |
| * flag and automatically RESET itself on startup. |
| */ |
| int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) |
| { |
| if (reset) { |
| /* |
| * Since we're directing the RESET instead of the firmware |
| * doing it automatically, we need to clear the PCIE_FW.HALT |
| * bit. |
| */ |
| t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 0); |
| |
| /* |
| * If we've been given a valid mailbox, first try to get the |
| * firmware to do the RESET. If that works, great and we can |
| * return success. Otherwise, if we haven't been given a |
| * valid mailbox or the RESET command failed, fall back to |
| * hitting the chip with a hammer. |
| */ |
| if (mbox <= FW_PCIE_FW_MASTER_MASK) { |
| t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0); |
| msleep(100); |
| if (t4_fw_reset(adap, mbox, |
| PIORST | PIORSTMODE) == 0) |
| return 0; |
| } |
| |
| t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE); |
| msleep(2000); |
| } else { |
| int ms; |
| |
| t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0); |
| for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { |
| if (!(t4_read_reg(adap, PCIE_FW) & FW_PCIE_FW_HALT)) |
| return 0; |
| msleep(100); |
| ms += 100; |
| } |
| return -ETIMEDOUT; |
| } |
| return 0; |
| } |
| |
| /** |
| * t4_fw_upgrade - perform all of the steps necessary to upgrade FW |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW RESET command (if desired) |
| * @fw_data: the firmware image to write |
| * @size: image size |
| * @force: force upgrade even if firmware doesn't cooperate |
| * |
| * Perform all of the steps necessary for upgrading an adapter's |
| * firmware image. Normally this requires the cooperation of the |
| * existing firmware in order to halt all existing activities |
| * but if an invalid mailbox token is passed in we skip that step |
| * (though we'll still put the adapter microprocessor into RESET in |
| * that case). |
| * |
| * On successful return the new firmware will have been loaded and |
| * the adapter will have been fully RESET losing all previous setup |
| * state. On unsuccessful return the adapter may be completely hosed ... |
| * positive errno indicates that the adapter is ~probably~ intact, a |
| * negative errno indicates that things are looking bad ... |
| */ |
| int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, |
| const u8 *fw_data, unsigned int size, int force) |
| { |
| const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; |
| int reset, ret; |
| |
| ret = t4_fw_halt(adap, mbox, force); |
| if (ret < 0 && !force) |
| return ret; |
| |
| ret = t4_load_fw(adap, fw_data, size); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Older versions of the firmware don't understand the new |
| * PCIE_FW.HALT flag and so won't know to perform a RESET when they |
| * restart. So for newly loaded older firmware we'll have to do the |
| * RESET for it so it starts up on a clean slate. We can tell if |
| * the newly loaded firmware will handle this right by checking |
| * its header flags to see if it advertises the capability. |
| */ |
| reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); |
| return t4_fw_restart(adap, mbox, reset); |
| } |
| |
| |
| /** |
| * t4_fw_config_file - setup an adapter via a Configuration File |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @mtype: the memory type where the Configuration File is located |
| * @maddr: the memory address where the Configuration File is located |
| * @finiver: return value for CF [fini] version |
| * @finicsum: return value for CF [fini] checksum |
| * @cfcsum: return value for CF computed checksum |
| * |
| * Issue a command to get the firmware to process the Configuration |
| * File located at the specified mtype/maddress. If the Configuration |
| * File is processed successfully and return value pointers are |
| * provided, the Configuration File "[fini] section version and |
| * checksum values will be returned along with the computed checksum. |
| * It's up to the caller to decide how it wants to respond to the |
| * checksums not matching but it recommended that a prominant warning |
| * be emitted in order to help people rapidly identify changed or |
| * corrupted Configuration Files. |
| * |
| * Also note that it's possible to modify things like "niccaps", |
| * "toecaps",etc. between processing the Configuration File and telling |
| * the firmware to use the new configuration. Callers which want to |
| * do this will need to "hand-roll" their own CAPS_CONFIGS commands for |
| * Configuration Files if they want to do this. |
| */ |
| int t4_fw_config_file(struct adapter *adap, unsigned int mbox, |
| unsigned int mtype, unsigned int maddr, |
| u32 *finiver, u32 *finicsum, u32 *cfcsum) |
| { |
| struct fw_caps_config_cmd caps_cmd; |
| int ret; |
| |
| /* |
| * Tell the firmware to process the indicated Configuration File. |
| * If there are no errors and the caller has provided return value |
| * pointers for the [fini] section version, checksum and computed |
| * checksum, pass those back to the caller. |
| */ |
| memset(&caps_cmd, 0, sizeof(caps_cmd)); |
| caps_cmd.op_to_write = |
| htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | |
| FW_CMD_REQUEST | |
| FW_CMD_READ); |
| caps_cmd.retval_len16 = |
| htonl(FW_CAPS_CONFIG_CMD_CFVALID | |
| FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | |
| FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) | |
| FW_LEN16(caps_cmd)); |
| ret = t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd); |
| if (ret < 0) |
| return ret; |
| |
| if (finiver) |
| *finiver = ntohl(caps_cmd.finiver); |
| if (finicsum) |
| *finicsum = ntohl(caps_cmd.finicsum); |
| if (cfcsum) |
| *cfcsum = ntohl(caps_cmd.cfcsum); |
| |
| /* |
| * And now tell the firmware to use the configuration we just loaded. |
| */ |
| caps_cmd.op_to_write = |
| htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | |
| FW_CMD_REQUEST | |
| FW_CMD_WRITE); |
| caps_cmd.retval_len16 = htonl(FW_LEN16(caps_cmd)); |
| return t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), NULL); |
| } |
| |
| /** |
| * t4_fixup_host_params - fix up host-dependent parameters |
| * @adap: the adapter |
| * @page_size: the host's Base Page Size |
| * @cache_line_size: the host's Cache Line Size |
| * |
| * Various registers in T4 contain values which are dependent on the |
| * host's Base Page and Cache Line Sizes. This function will fix all of |
| * those registers with the appropriate values as passed in ... |
| */ |
| int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, |
| unsigned int cache_line_size) |
| { |
| unsigned int page_shift = fls(page_size) - 1; |
| unsigned int sge_hps = page_shift - 10; |
| unsigned int stat_len = cache_line_size > 64 ? 128 : 64; |
| unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; |
| unsigned int fl_align_log = fls(fl_align) - 1; |
| |
| t4_write_reg(adap, SGE_HOST_PAGE_SIZE, |
| HOSTPAGESIZEPF0(sge_hps) | |
| HOSTPAGESIZEPF1(sge_hps) | |
| HOSTPAGESIZEPF2(sge_hps) | |
| HOSTPAGESIZEPF3(sge_hps) | |
| HOSTPAGESIZEPF4(sge_hps) | |
| HOSTPAGESIZEPF5(sge_hps) | |
| HOSTPAGESIZEPF6(sge_hps) | |
| HOSTPAGESIZEPF7(sge_hps)); |
| |
| t4_set_reg_field(adap, SGE_CONTROL, |
| INGPADBOUNDARY(INGPADBOUNDARY_MASK) | |
| EGRSTATUSPAGESIZE_MASK, |
| INGPADBOUNDARY(fl_align_log - 5) | |
| EGRSTATUSPAGESIZE(stat_len != 64)); |
| |
| /* |
| * Adjust various SGE Free List Host Buffer Sizes. |
| * |
| * This is something of a crock since we're using fixed indices into |
| * the array which are also known by the sge.c code and the T4 |
| * Firmware Configuration File. We need to come up with a much better |
| * approach to managing this array. For now, the first four entries |
| * are: |
| * |
| * 0: Host Page Size |
| * 1: 64KB |
| * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) |
| * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) |
| * |
| * For the single-MTU buffers in unpacked mode we need to include |
| * space for the SGE Control Packet Shift, 14 byte Ethernet header, |
| * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet |
| * Padding boundry. All of these are accommodated in the Factory |
| * Default Firmware Configuration File but we need to adjust it for |
| * this host's cache line size. |
| */ |
| t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size); |
| t4_write_reg(adap, SGE_FL_BUFFER_SIZE2, |
| (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1) |
| & ~(fl_align-1)); |
| t4_write_reg(adap, SGE_FL_BUFFER_SIZE3, |
| (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1) |
| & ~(fl_align-1)); |
| |
| t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12)); |
| |
| return 0; |
| } |
| |
| /** |
| * t4_fw_initialize - ask FW to initialize the device |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * |
| * Issues a command to FW to partially initialize the device. This |
| * performs initialization that generally doesn't depend on user input. |
| */ |
| int t4_fw_initialize(struct adapter *adap, unsigned int mbox) |
| { |
| struct fw_initialize_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| INIT_CMD(c, INITIALIZE, WRITE); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_query_params - query FW or device parameters |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF |
| * @vf: the VF |
| * @nparams: the number of parameters |
| * @params: the parameter names |
| * @val: the parameter values |
| * |
| * Reads the value of FW or device parameters. Up to 7 parameters can be |
| * queried at once. |
| */ |
| int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int nparams, const u32 *params, |
| u32 *val) |
| { |
| int i, ret; |
| struct fw_params_cmd c; |
| __be32 *p = &c.param[0].mnem; |
| |
| if (nparams > 7) |
| return -EINVAL; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST | |
| FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) | |
| FW_PARAMS_CMD_VFN(vf)); |
| c.retval_len16 = htonl(FW_LEN16(c)); |
| for (i = 0; i < nparams; i++, p += 2) |
| *p = htonl(*params++); |
| |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); |
| if (ret == 0) |
| for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) |
| *val++ = ntohl(*p); |
| return ret; |
| } |
| |
| /** |
| * t4_set_params - sets FW or device parameters |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF |
| * @vf: the VF |
| * @nparams: the number of parameters |
| * @params: the parameter names |
| * @val: the parameter values |
| * |
| * Sets the value of FW or device parameters. Up to 7 parameters can be |
| * specified at once. |
| */ |
| int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int nparams, const u32 *params, |
| const u32 *val) |
| { |
| struct fw_params_cmd c; |
| __be32 *p = &c.param[0].mnem; |
| |
| if (nparams > 7) |
| return -EINVAL; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST | |
| FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) | |
| FW_PARAMS_CMD_VFN(vf)); |
| c.retval_len16 = htonl(FW_LEN16(c)); |
| while (nparams--) { |
| *p++ = htonl(*params++); |
| *p++ = htonl(*val++); |
| } |
| |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_cfg_pfvf - configure PF/VF resource limits |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF being configured |
| * @vf: the VF being configured |
| * @txq: the max number of egress queues |
| * @txq_eth_ctrl: the max number of egress Ethernet or control queues |
| * @rxqi: the max number of interrupt-capable ingress queues |
| * @rxq: the max number of interruptless ingress queues |
| * @tc: the PCI traffic class |
| * @vi: the max number of virtual interfaces |
| * @cmask: the channel access rights mask for the PF/VF |
| * @pmask: the port access rights mask for the PF/VF |
| * @nexact: the maximum number of exact MPS filters |
| * @rcaps: read capabilities |
| * @wxcaps: write/execute capabilities |
| * |
| * Configures resource limits and capabilities for a physical or virtual |
| * function. |
| */ |
| int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, |
| unsigned int rxqi, unsigned int rxq, unsigned int tc, |
| unsigned int vi, unsigned int cmask, unsigned int pmask, |
| unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) |
| { |
| struct fw_pfvf_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST | |
| FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) | |
| FW_PFVF_CMD_VFN(vf)); |
| c.retval_len16 = htonl(FW_LEN16(c)); |
| c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) | |
| FW_PFVF_CMD_NIQ(rxq)); |
| c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) | |
| FW_PFVF_CMD_PMASK(pmask) | |
| FW_PFVF_CMD_NEQ(txq)); |
| c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) | |
| FW_PFVF_CMD_NEXACTF(nexact)); |
| c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) | |
| FW_PFVF_CMD_WX_CAPS(wxcaps) | |
| FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl)); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_alloc_vi - allocate a virtual interface |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @port: physical port associated with the VI |
| * @pf: the PF owning the VI |
| * @vf: the VF owning the VI |
| * @nmac: number of MAC addresses needed (1 to 5) |
| * @mac: the MAC addresses of the VI |
| * @rss_size: size of RSS table slice associated with this VI |
| * |
| * Allocates a virtual interface for the given physical port. If @mac is |
| * not %NULL it contains the MAC addresses of the VI as assigned by FW. |
| * @mac should be large enough to hold @nmac Ethernet addresses, they are |
| * stored consecutively so the space needed is @nmac * 6 bytes. |
| * Returns a negative error number or the non-negative VI id. |
| */ |
| int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, |
| unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, |
| unsigned int *rss_size) |
| { |
| int ret; |
| struct fw_vi_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST | |
| FW_CMD_WRITE | FW_CMD_EXEC | |
| FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf)); |
| c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c)); |
| c.portid_pkd = FW_VI_CMD_PORTID(port); |
| c.nmac = nmac - 1; |
| |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); |
| if (ret) |
| return ret; |
| |
| if (mac) { |
| memcpy(mac, c.mac, sizeof(c.mac)); |
| switch (nmac) { |
| case 5: |
| memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); |
| case 4: |
| memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); |
| case 3: |
| memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); |
| case 2: |
| memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); |
| } |
| } |
| if (rss_size) |
| *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd)); |
| return FW_VI_CMD_VIID_GET(ntohs(c.type_viid)); |
| } |
| |
| /** |
| * t4_set_rxmode - set Rx properties of a virtual interface |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @mtu: the new MTU or -1 |
| * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change |
| * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change |
| * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change |
| * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change |
| * @sleep_ok: if true we may sleep while awaiting command completion |
| * |
| * Sets Rx properties of a virtual interface. |
| */ |
| int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, |
| int mtu, int promisc, int all_multi, int bcast, int vlanex, |
| bool sleep_ok) |
| { |
| struct fw_vi_rxmode_cmd c; |
| |
| /* convert to FW values */ |
| if (mtu < 0) |
| mtu = FW_RXMODE_MTU_NO_CHG; |
| if (promisc < 0) |
| promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK; |
| if (all_multi < 0) |
| all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK; |
| if (bcast < 0) |
| bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK; |
| if (vlanex < 0) |
| vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST | |
| FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid)); |
| c.retval_len16 = htonl(FW_LEN16(c)); |
| c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) | |
| FW_VI_RXMODE_CMD_PROMISCEN(promisc) | |
| FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | |
| FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | |
| FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); |
| return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); |
| } |
| |
| /** |
| * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @free: if true any existing filters for this VI id are first removed |
| * @naddr: the number of MAC addresses to allocate filters for (up to 7) |
| * @addr: the MAC address(es) |
| * @idx: where to store the index of each allocated filter |
| * @hash: pointer to hash address filter bitmap |
| * @sleep_ok: call is allowed to sleep |
| * |
| * Allocates an exact-match filter for each of the supplied addresses and |
| * sets it to the corresponding address. If @idx is not %NULL it should |
| * have at least @naddr entries, each of which will be set to the index of |
| * the filter allocated for the corresponding MAC address. If a filter |
| * could not be allocated for an address its index is set to 0xffff. |
| * If @hash is not %NULL addresses that fail to allocate an exact filter |
| * are hashed and update the hash filter bitmap pointed at by @hash. |
| * |
| * Returns a negative error number or the number of filters allocated. |
| */ |
| int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, |
| unsigned int viid, bool free, unsigned int naddr, |
| const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) |
| { |
| int i, ret; |
| struct fw_vi_mac_cmd c; |
| struct fw_vi_mac_exact *p; |
| |
| if (naddr > 7) |
| return -EINVAL; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST | |
| FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) | |
| FW_VI_MAC_CMD_VIID(viid)); |
| c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) | |
| FW_CMD_LEN16((naddr + 2) / 2)); |
| |
| for (i = 0, p = c.u.exact; i < naddr; i++, p++) { |
| p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID | |
| FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); |
| memcpy(p->macaddr, addr[i], sizeof(p->macaddr)); |
| } |
| |
| ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); |
| if (ret) |
| return ret; |
| |
| for (i = 0, p = c.u.exact; i < naddr; i++, p++) { |
| u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx)); |
| |
| if (idx) |
| idx[i] = index >= NEXACT_MAC ? 0xffff : index; |
| if (index < NEXACT_MAC) |
| ret++; |
| else if (hash) |
| *hash |= (1ULL << hash_mac_addr(addr[i])); |
| } |
| return ret; |
| } |
| |
| /** |
| * t4_change_mac - modifies the exact-match filter for a MAC address |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @idx: index of existing filter for old value of MAC address, or -1 |
| * @addr: the new MAC address value |
| * @persist: whether a new MAC allocation should be persistent |
| * @add_smt: if true also add the address to the HW SMT |
| * |
| * Modifies an exact-match filter and sets it to the new MAC address. |
| * Note that in general it is not possible to modify the value of a given |
| * filter so the generic way to modify an address filter is to free the one |
| * being used by the old address value and allocate a new filter for the |
| * new address value. @idx can be -1 if the address is a new addition. |
| * |
| * Returns a negative error number or the index of the filter with the new |
| * MAC value. |
| */ |
| int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, |
| int idx, const u8 *addr, bool persist, bool add_smt) |
| { |
| int ret, mode; |
| struct fw_vi_mac_cmd c; |
| struct fw_vi_mac_exact *p = c.u.exact; |
| |
| if (idx < 0) /* new allocation */ |
| idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; |
| mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST | |
| FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid)); |
| c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1)); |
| p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID | |
| FW_VI_MAC_CMD_SMAC_RESULT(mode) | |
| FW_VI_MAC_CMD_IDX(idx)); |
| memcpy(p->macaddr, addr, sizeof(p->macaddr)); |
| |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); |
| if (ret == 0) { |
| ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx)); |
| if (ret >= NEXACT_MAC) |
| ret = -ENOMEM; |
| } |
| return ret; |
| } |
| |
| /** |
| * t4_set_addr_hash - program the MAC inexact-match hash filter |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @ucast: whether the hash filter should also match unicast addresses |
| * @vec: the value to be written to the hash filter |
| * @sleep_ok: call is allowed to sleep |
| * |
| * Sets the 64-bit inexact-match hash filter for a virtual interface. |
| */ |
| int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, |
| bool ucast, u64 vec, bool sleep_ok) |
| { |
| struct fw_vi_mac_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST | |
| FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid)); |
| c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN | |
| FW_VI_MAC_CMD_HASHUNIEN(ucast) | |
| FW_CMD_LEN16(1)); |
| c.u.hash.hashvec = cpu_to_be64(vec); |
| return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); |
| } |
| |
| /** |
| * t4_enable_vi - enable/disable a virtual interface |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @rx_en: 1=enable Rx, 0=disable Rx |
| * @tx_en: 1=enable Tx, 0=disable Tx |
| * |
| * Enables/disables a virtual interface. |
| */ |
| int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, |
| bool rx_en, bool tx_en) |
| { |
| struct fw_vi_enable_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST | |
| FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid)); |
| c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) | |
| FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c)); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_identify_port - identify a VI's port by blinking its LED |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @viid: the VI id |
| * @nblinks: how many times to blink LED at 2.5 Hz |
| * |
| * Identifies a VI's port by blinking its LED. |
| */ |
| int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, |
| unsigned int nblinks) |
| { |
| struct fw_vi_enable_cmd c; |
| |
| c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST | |
| FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid)); |
| c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c)); |
| c.blinkdur = htons(nblinks); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_iq_free - free an ingress queue and its FLs |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF owning the queues |
| * @vf: the VF owning the queues |
| * @iqtype: the ingress queue type |
| * @iqid: ingress queue id |
| * @fl0id: FL0 queue id or 0xffff if no attached FL0 |
| * @fl1id: FL1 queue id or 0xffff if no attached FL1 |
| * |
| * Frees an ingress queue and its associated FLs, if any. |
| */ |
| int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int iqtype, unsigned int iqid, |
| unsigned int fl0id, unsigned int fl1id) |
| { |
| struct fw_iq_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST | |
| FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) | |
| FW_IQ_CMD_VFN(vf)); |
| c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c)); |
| c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype)); |
| c.iqid = htons(iqid); |
| c.fl0id = htons(fl0id); |
| c.fl1id = htons(fl1id); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_eth_eq_free - free an Ethernet egress queue |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF owning the queue |
| * @vf: the VF owning the queue |
| * @eqid: egress queue id |
| * |
| * Frees an Ethernet egress queue. |
| */ |
| int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int eqid) |
| { |
| struct fw_eq_eth_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST | |
| FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) | |
| FW_EQ_ETH_CMD_VFN(vf)); |
| c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c)); |
| c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid)); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_ctrl_eq_free - free a control egress queue |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF owning the queue |
| * @vf: the VF owning the queue |
| * @eqid: egress queue id |
| * |
| * Frees a control egress queue. |
| */ |
| int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int eqid) |
| { |
| struct fw_eq_ctrl_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST | |
| FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) | |
| FW_EQ_CTRL_CMD_VFN(vf)); |
| c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c)); |
| c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid)); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_ofld_eq_free - free an offload egress queue |
| * @adap: the adapter |
| * @mbox: mailbox to use for the FW command |
| * @pf: the PF owning the queue |
| * @vf: the VF owning the queue |
| * @eqid: egress queue id |
| * |
| * Frees a control egress queue. |
| */ |
| int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, |
| unsigned int vf, unsigned int eqid) |
| { |
| struct fw_eq_ofld_cmd c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST | |
| FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) | |
| FW_EQ_OFLD_CMD_VFN(vf)); |
| c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c)); |
| c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid)); |
| return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); |
| } |
| |
| /** |
| * t4_handle_fw_rpl - process a FW reply message |
| * @adap: the adapter |
| * @rpl: start of the FW message |
| * |
| * Processes a FW message, such as link state change messages. |
| */ |
| int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) |
| { |
| u8 opcode = *(const u8 *)rpl; |
| |
| if (opcode == FW_PORT_CMD) { /* link/module state change message */ |
| int speed = 0, fc = 0; |
| const struct fw_port_cmd *p = (void *)rpl; |
| int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid)); |
| int port = adap->chan_map[chan]; |
| struct port_info *pi = adap2pinfo(adap, port); |
| struct link_config *lc = &pi->link_cfg; |
| u32 stat = ntohl(p->u.info.lstatus_to_modtype); |
| int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0; |
| u32 mod = FW_PORT_CMD_MODTYPE_GET(stat); |
| |
| if (stat & FW_PORT_CMD_RXPAUSE) |
| fc |= PAUSE_RX; |
| if (stat & FW_PORT_CMD_TXPAUSE) |
| fc |= PAUSE_TX; |
| if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) |
| speed = SPEED_100; |
| else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) |
| speed = SPEED_1000; |
| else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) |
| speed = SPEED_10000; |
| |
| if (link_ok != lc->link_ok || speed != lc->speed || |
| fc != lc->fc) { /* something changed */ |
| lc->link_ok = link_ok; |
| lc->speed = speed; |
| lc->fc = fc; |
| t4_os_link_changed(adap, port, link_ok); |
| } |
| if (mod != pi->mod_type) { |
| pi->mod_type = mod; |
| t4_os_portmod_changed(adap, port); |
| } |
| } |
| return 0; |
| } |
| |
| static void __devinit get_pci_mode(struct adapter *adapter, |
| struct pci_params *p) |
| { |
| u16 val; |
| |
| if (pci_is_pcie(adapter->pdev)) { |
| pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); |
| p->speed = val & PCI_EXP_LNKSTA_CLS; |
| p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; |
| } |
| } |
| |
| /** |
| * init_link_config - initialize a link's SW state |
| * @lc: structure holding the link state |
| * @caps: link capabilities |
| * |
| * Initializes the SW state maintained for each link, including the link's |
| * capabilities and default speed/flow-control/autonegotiation settings. |
| */ |
| static void __devinit init_link_config(struct link_config *lc, |
| unsigned int caps) |
| { |
| lc->supported = caps; |
| lc->requested_speed = 0; |
| lc->speed = 0; |
| lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; |
| if (lc->supported & FW_PORT_CAP_ANEG) { |
| lc->advertising = lc->supported & ADVERT_MASK; |
| lc->autoneg = AUTONEG_ENABLE; |
| lc->requested_fc |= PAUSE_AUTONEG; |
| } else { |
| lc->advertising = 0; |
| lc->autoneg = AUTONEG_DISABLE; |
| } |
| } |
| |
| int t4_wait_dev_ready(struct adapter *adap) |
| { |
| if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff) |
| return 0; |
| msleep(500); |
| return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO; |
| } |
| |
| static int __devinit get_flash_params(struct adapter *adap) |
| { |
| int ret; |
| u32 info; |
| |
| ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); |
| if (!ret) |
| ret = sf1_read(adap, 3, 0, 1, &info); |
| t4_write_reg(adap, SF_OP, 0); /* unlock SF */ |
| if (ret) |
| return ret; |
| |
| if ((info & 0xff) != 0x20) /* not a Numonix flash */ |
| return -EINVAL; |
| info >>= 16; /* log2 of size */ |
| if (info >= 0x14 && info < 0x18) |
| adap->params.sf_nsec = 1 << (info - 16); |
| else if (info == 0x18) |
| adap->params.sf_nsec = 64; |
| else |
| return -EINVAL; |
| adap->params.sf_size = 1 << info; |
| adap->params.sf_fw_start = |
| t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK; |
| return 0; |
| } |
| |
| /** |
| * t4_prep_adapter - prepare SW and HW for operation |
| * @adapter: the adapter |
| * @reset: if true perform a HW reset |
| * |
| * Initialize adapter SW state for the various HW modules, set initial |
| * values for some adapter tunables, take PHYs out of reset, and |
| * initialize the MDIO interface. |
| */ |
| int __devinit t4_prep_adapter(struct adapter *adapter) |
| { |
| int ret; |
| |
| ret = t4_wait_dev_ready(adapter); |
| if (ret < 0) |
| return ret; |
| |
| get_pci_mode(adapter, &adapter->params.pci); |
| adapter->params.rev = t4_read_reg(adapter, PL_REV); |
| |
| ret = get_flash_params(adapter); |
| if (ret < 0) { |
| dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); |
| return ret; |
| } |
| |
| init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); |
| |
| /* |
| * Default port for debugging in case we can't reach FW. |
| */ |
| adapter->params.nports = 1; |
| adapter->params.portvec = 1; |
| adapter->params.vpd.cclk = 50000; |
| return 0; |
| } |
| |
| int __devinit t4_port_init(struct adapter *adap, int mbox, int pf, int vf) |
| { |
| u8 addr[6]; |
| int ret, i, j = 0; |
| struct fw_port_cmd c; |
| struct fw_rss_vi_config_cmd rvc; |
| |
| memset(&c, 0, sizeof(c)); |
| memset(&rvc, 0, sizeof(rvc)); |
| |
| for_each_port(adap, i) { |
| unsigned int rss_size; |
| struct port_info *p = adap2pinfo(adap, i); |
| |
| while ((adap->params.portvec & (1 << j)) == 0) |
| j++; |
| |
| c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | |
| FW_CMD_REQUEST | FW_CMD_READ | |
| FW_PORT_CMD_PORTID(j)); |
| c.action_to_len16 = htonl( |
| FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) | |
| FW_LEN16(c)); |
| ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); |
| if (ret) |
| return ret; |
| |
| ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size); |
| if (ret < 0) |
| return ret; |
| |
| p->viid = ret; |
| p->tx_chan = j; |
| p->lport = j; |
| p->rss_size = rss_size; |
| memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); |
| memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN); |
| adap->port[i]->dev_id = j; |
| |
| ret = ntohl(c.u.info.lstatus_to_modtype); |
| p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ? |
| FW_PORT_CMD_MDIOADDR_GET(ret) : -1; |
| p->port_type = FW_PORT_CMD_PTYPE_GET(ret); |
| p->mod_type = FW_PORT_MOD_TYPE_NA; |
| |
| rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | |
| FW_CMD_REQUEST | FW_CMD_READ | |
| FW_RSS_VI_CONFIG_CMD_VIID(p->viid)); |
| rvc.retval_len16 = htonl(FW_LEN16(rvc)); |
| ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); |
| if (ret) |
| return ret; |
| p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen); |
| |
| init_link_config(&p->link_cfg, ntohs(c.u.info.pcap)); |
| j++; |
| } |
| return 0; |
| } |