| #ifndef _PARISC_PGTABLE_H |
| #define _PARISC_PGTABLE_H |
| |
| #include <asm-generic/4level-fixup.h> |
| |
| #include <asm/fixmap.h> |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * we simulate an x86-style page table for the linux mm code |
| */ |
| |
| #include <linux/mm.h> /* for vm_area_struct */ |
| #include <asm/processor.h> |
| #include <asm/cache.h> |
| #include <asm/bitops.h> |
| |
| /* |
| * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel |
| * memory. For the return value to be meaningful, ADDR must be >= |
| * PAGE_OFFSET. This operation can be relatively expensive (e.g., |
| * require a hash-, or multi-level tree-lookup or something of that |
| * sort) but it guarantees to return TRUE only if accessing the page |
| * at that address does not cause an error. Note that there may be |
| * addresses for which kern_addr_valid() returns FALSE even though an |
| * access would not cause an error (e.g., this is typically true for |
| * memory mapped I/O regions. |
| * |
| * XXX Need to implement this for parisc. |
| */ |
| #define kern_addr_valid(addr) (1) |
| |
| /* Certain architectures need to do special things when PTEs |
| * within a page table are directly modified. Thus, the following |
| * hook is made available. |
| */ |
| #define set_pte(pteptr, pteval) \ |
| do{ \ |
| *(pteptr) = (pteval); \ |
| } while(0) |
| #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #define pte_ERROR(e) \ |
| printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) |
| #define pmd_ERROR(e) \ |
| printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e)) |
| #define pgd_ERROR(e) \ |
| printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e)) |
| |
| /* This is the size of the initially mapped kernel memory */ |
| #ifdef CONFIG_64BIT |
| #define KERNEL_INITIAL_ORDER 24 /* 0 to 1<<24 = 16MB */ |
| #else |
| #define KERNEL_INITIAL_ORDER 23 /* 0 to 1<<23 = 8MB */ |
| #endif |
| #define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER) |
| |
| #if defined(CONFIG_64BIT) && defined(CONFIG_PARISC_PAGE_SIZE_4KB) |
| #define PT_NLEVELS 3 |
| #define PGD_ORDER 1 /* Number of pages per pgd */ |
| #define PMD_ORDER 1 /* Number of pages per pmd */ |
| #define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */ |
| #else |
| #define PT_NLEVELS 2 |
| #define PGD_ORDER 1 /* Number of pages per pgd */ |
| #define PGD_ALLOC_ORDER PGD_ORDER |
| #endif |
| |
| /* Definitions for 3rd level (we use PLD here for Page Lower directory |
| * because PTE_SHIFT is used lower down to mean shift that has to be |
| * done to get usable bits out of the PTE) */ |
| #define PLD_SHIFT PAGE_SHIFT |
| #define PLD_SIZE PAGE_SIZE |
| #define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY) |
| #define PTRS_PER_PTE (1UL << BITS_PER_PTE) |
| |
| /* Definitions for 2nd level */ |
| #define pgtable_cache_init() do { } while (0) |
| |
| #define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE) |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| #if PT_NLEVELS == 3 |
| #define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY) |
| #else |
| #define BITS_PER_PMD 0 |
| #endif |
| #define PTRS_PER_PMD (1UL << BITS_PER_PMD) |
| |
| /* Definitions for 1st level */ |
| #define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD) |
| #define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| #define PTRS_PER_PGD (1UL << BITS_PER_PGD) |
| #define USER_PTRS_PER_PGD PTRS_PER_PGD |
| |
| #define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD) |
| #define MAX_ADDRESS (1UL << MAX_ADDRBITS) |
| |
| #define SPACEID_SHIFT (MAX_ADDRBITS - 32) |
| |
| /* This calculates the number of initial pages we need for the initial |
| * page tables */ |
| #if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT) |
| # define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT)) |
| #else |
| # define PT_INITIAL (1) /* all initial PTEs fit into one page */ |
| #endif |
| |
| /* |
| * pgd entries used up by user/kernel: |
| */ |
| |
| #define FIRST_USER_ADDRESS 0 |
| |
| #ifndef __ASSEMBLY__ |
| extern void *vmalloc_start; |
| #define PCXL_DMA_MAP_SIZE (8*1024*1024) |
| #define VMALLOC_START ((unsigned long)vmalloc_start) |
| /* this is a fixmap remnant, see fixmap.h */ |
| #define VMALLOC_END (KERNEL_MAP_END) |
| #endif |
| |
| /* NB: The tlb miss handlers make certain assumptions about the order */ |
| /* of the following bits, so be careful (One example, bits 25-31 */ |
| /* are moved together in one instruction). */ |
| |
| #define _PAGE_READ_BIT 31 /* (0x001) read access allowed */ |
| #define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */ |
| #define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */ |
| #define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */ |
| #define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */ |
| #define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */ |
| #define _PAGE_FILE_BIT _PAGE_DIRTY_BIT /* overload this bit */ |
| #define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */ |
| #define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */ |
| #define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */ |
| #define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */ |
| #define _PAGE_FLUSH_BIT 21 /* (0x400) Software: translation valid */ |
| /* for cache flushing only */ |
| #define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */ |
| |
| /* N.B. The bits are defined in terms of a 32 bit word above, so the */ |
| /* following macro is ok for both 32 and 64 bit. */ |
| |
| #define xlate_pabit(x) (31 - x) |
| |
| /* this defines the shift to the usable bits in the PTE it is set so |
| * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set |
| * to zero */ |
| #define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT) |
| |
| /* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */ |
| #define PFN_PTE_SHIFT 12 |
| |
| |
| /* this is how many bits may be used by the file functions */ |
| #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT) |
| |
| #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT) |
| #define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE }) |
| |
| #define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT)) |
| #define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT)) |
| #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) |
| #define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT)) |
| #define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT)) |
| #define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT)) |
| #define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT)) |
| #define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT)) |
| #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT)) |
| #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT)) |
| #define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT)) |
| #define _PAGE_FLUSH (1 << xlate_pabit(_PAGE_FLUSH_BIT)) |
| #define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT)) |
| #define _PAGE_FILE (1 << xlate_pabit(_PAGE_FILE_BIT)) |
| |
| #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) |
| #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) |
| #define _PAGE_KERNEL (_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) |
| |
| /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds |
| * are page-aligned, we don't care about the PAGE_OFFSET bits, except |
| * for a few meta-information bits, so we shift the address to be |
| * able to effectively address 40/42/44-bits of physical address space |
| * depending on 4k/16k/64k PAGE_SIZE */ |
| #define _PxD_PRESENT_BIT 31 |
| #define _PxD_ATTACHED_BIT 30 |
| #define _PxD_VALID_BIT 29 |
| |
| #define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT)) |
| #define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT)) |
| #define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT)) |
| #define PxD_FLAG_MASK (0xf) |
| #define PxD_FLAG_SHIFT (4) |
| #define PxD_VALUE_SHIFT (8) /* (PAGE_SHIFT-PxD_FLAG_SHIFT) */ |
| |
| #ifndef __ASSEMBLY__ |
| |
| #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) |
| #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED) |
| /* Others seem to make this executable, I don't know if that's correct |
| or not. The stack is mapped this way though so this is necessary |
| in the short term - dhd@linuxcare.com, 2000-08-08 */ |
| #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED) |
| #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED) |
| #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED) |
| #define PAGE_COPY PAGE_EXECREAD |
| #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED) |
| #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) |
| #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) |
| #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) |
| #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ) |
| #define PAGE_FLUSH __pgprot(_PAGE_FLUSH) |
| |
| |
| /* |
| * We could have an execute only page using "gateway - promote to priv |
| * level 3", but that is kind of silly. So, the way things are defined |
| * now, we must always have read permission for pages with execute |
| * permission. For the fun of it we'll go ahead and support write only |
| * pages. |
| */ |
| |
| /*xwr*/ |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_READONLY |
| #define __P010 __P000 /* copy on write */ |
| #define __P011 __P001 /* copy on write */ |
| #define __P100 PAGE_EXECREAD |
| #define __P101 PAGE_EXECREAD |
| #define __P110 __P100 /* copy on write */ |
| #define __P111 __P101 /* copy on write */ |
| |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_READONLY |
| #define __S010 PAGE_WRITEONLY |
| #define __S011 PAGE_SHARED |
| #define __S100 PAGE_EXECREAD |
| #define __S101 PAGE_EXECREAD |
| #define __S110 PAGE_RWX |
| #define __S111 PAGE_RWX |
| |
| |
| extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */ |
| |
| /* initial page tables for 0-8MB for kernel */ |
| |
| extern pte_t pg0[]; |
| |
| /* zero page used for uninitialized stuff */ |
| |
| extern unsigned long *empty_zero_page; |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| |
| #define pte_none(x) ((pte_val(x) == 0) || (pte_val(x) & _PAGE_FLUSH)) |
| #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) |
| #define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0) |
| |
| #define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK) |
| #define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) |
| #define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK) |
| #define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) |
| |
| #if PT_NLEVELS == 3 |
| /* The first entry of the permanent pmd is not there if it contains |
| * the gateway marker */ |
| #define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED) |
| #else |
| #define pmd_none(x) (!pmd_val(x)) |
| #endif |
| #define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID)) |
| #define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT) |
| static inline void pmd_clear(pmd_t *pmd) { |
| #if PT_NLEVELS == 3 |
| if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED) |
| /* This is the entry pointing to the permanent pmd |
| * attached to the pgd; cannot clear it */ |
| __pmd_val_set(*pmd, PxD_FLAG_ATTACHED); |
| else |
| #endif |
| __pmd_val_set(*pmd, 0); |
| } |
| |
| |
| |
| #if PT_NLEVELS == 3 |
| #define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd))) |
| #define pgd_page(pgd) virt_to_page((void *)pgd_page_vaddr(pgd)) |
| |
| /* For 64 bit we have three level tables */ |
| |
| #define pgd_none(x) (!pgd_val(x)) |
| #define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID)) |
| #define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT) |
| static inline void pgd_clear(pgd_t *pgd) { |
| #if PT_NLEVELS == 3 |
| if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED) |
| /* This is the permanent pmd attached to the pgd; cannot |
| * free it */ |
| return; |
| #endif |
| __pgd_val_set(*pgd, 0); |
| } |
| #else |
| /* |
| * The "pgd_xxx()" functions here are trivial for a folded two-level |
| * setup: the pgd is never bad, and a pmd always exists (as it's folded |
| * into the pgd entry) |
| */ |
| static inline int pgd_none(pgd_t pgd) { return 0; } |
| static inline int pgd_bad(pgd_t pgd) { return 0; } |
| static inline int pgd_present(pgd_t pgd) { return 1; } |
| static inline void pgd_clear(pgd_t * pgdp) { } |
| #endif |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } |
| static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } |
| |
| static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } |
| static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| #define __mk_pte(addr,pgprot) \ |
| ({ \ |
| pte_t __pte; \ |
| \ |
| pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \ |
| \ |
| __pte; \ |
| }) |
| |
| #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
| |
| static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) |
| { |
| pte_t pte; |
| pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot); |
| return pte; |
| } |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } |
| |
| /* Permanent address of a page. On parisc we don't have highmem. */ |
| |
| #define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT) |
| |
| #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) |
| |
| #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_address(pmd))) |
| |
| #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd))) |
| #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd)) |
| |
| #define pgd_index(address) ((address) >> PGDIR_SHIFT) |
| |
| /* to find an entry in a page-table-directory */ |
| #define pgd_offset(mm, address) \ |
| ((mm)->pgd + ((address) >> PGDIR_SHIFT)) |
| |
| /* to find an entry in a kernel page-table-directory */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| /* Find an entry in the second-level page table.. */ |
| |
| #if PT_NLEVELS == 3 |
| #define pmd_offset(dir,address) \ |
| ((pmd_t *) pgd_page_vaddr(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1))) |
| #else |
| #define pmd_offset(dir,addr) ((pmd_t *) dir) |
| #endif |
| |
| /* Find an entry in the third-level page table.. */ |
| #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) |
| #define pte_offset_kernel(pmd, address) \ |
| ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address)) |
| #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) |
| #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| |
| extern void paging_init (void); |
| |
| /* Used for deferring calls to flush_dcache_page() */ |
| |
| #define PG_dcache_dirty PG_arch_1 |
| |
| extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); |
| |
| /* Encode and de-code a swap entry */ |
| |
| #define __swp_type(x) ((x).val & 0x1f) |
| #define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \ |
| (((x).val >> 8) & ~0x7) ) |
| #define __swp_entry(type, offset) ((swp_entry_t) { (type) | \ |
| ((offset & 0x7) << 6) | \ |
| ((offset & ~0x7) << 8) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) |
| { |
| #ifdef CONFIG_SMP |
| if (!pte_young(*ptep)) |
| return 0; |
| return test_and_clear_bit(xlate_pabit(_PAGE_ACCESSED_BIT), &pte_val(*ptep)); |
| #else |
| pte_t pte = *ptep; |
| if (!pte_young(pte)) |
| return 0; |
| set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); |
| return 1; |
| #endif |
| } |
| |
| extern spinlock_t pa_dbit_lock; |
| |
| struct mm_struct; |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| pte_t old_pte; |
| pte_t pte; |
| |
| spin_lock(&pa_dbit_lock); |
| pte = old_pte = *ptep; |
| pte_val(pte) &= ~_PAGE_PRESENT; |
| pte_val(pte) |= _PAGE_FLUSH; |
| set_pte_at(mm,addr,ptep,pte); |
| spin_unlock(&pa_dbit_lock); |
| |
| return old_pte; |
| } |
| |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| #ifdef CONFIG_SMP |
| unsigned long new, old; |
| |
| do { |
| old = pte_val(*ptep); |
| new = pte_val(pte_wrprotect(__pte (old))); |
| } while (cmpxchg((unsigned long *) ptep, old, new) != old); |
| #else |
| pte_t old_pte = *ptep; |
| set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); |
| #endif |
| } |
| |
| #define pte_same(A,B) (pte_val(A) == pte_val(B)) |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| |
| /* TLB page size encoding - see table 3-1 in parisc20.pdf */ |
| #define _PAGE_SIZE_ENCODING_4K 0 |
| #define _PAGE_SIZE_ENCODING_16K 1 |
| #define _PAGE_SIZE_ENCODING_64K 2 |
| #define _PAGE_SIZE_ENCODING_256K 3 |
| #define _PAGE_SIZE_ENCODING_1M 4 |
| #define _PAGE_SIZE_ENCODING_4M 5 |
| #define _PAGE_SIZE_ENCODING_16M 6 |
| #define _PAGE_SIZE_ENCODING_64M 7 |
| |
| #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) |
| # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K |
| #elif defined(CONFIG_PARISC_PAGE_SIZE_16KB) |
| # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K |
| #elif defined(CONFIG_PARISC_PAGE_SIZE_64KB) |
| # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K |
| #endif |
| |
| |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
| remap_pfn_range(vma, vaddr, pfn, size, prot) |
| |
| #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE) |
| |
| /* We provide our own get_unmapped_area to provide cache coherency */ |
| |
| #define HAVE_ARCH_UNMAPPED_AREA |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| #define __HAVE_ARCH_PTE_SAME |
| #include <asm-generic/pgtable.h> |
| |
| #endif /* _PARISC_PGTABLE_H */ |