blob: 4acc677ac8fbcd71733a8a2e120d89401be336cb [file] [log] [blame]
/*
* hugetlbpage-backed filesystem. Based on ramfs.
*
* Nadia Yvette Chambers, 2002
*
* Copyright (C) 2002 Linus Torvalds.
* License: GPL
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/thread_info.h>
#include <asm/current.h>
#include <linux/sched.h> /* remove ASAP */
#include <linux/falloc.h>
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/file.h>
#include <linux/kernel.h>
#include <linux/writeback.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/capability.h>
#include <linux/ctype.h>
#include <linux/backing-dev.h>
#include <linux/hugetlb.h>
#include <linux/pagevec.h>
#include <linux/parser.h>
#include <linux/mman.h>
#include <linux/slab.h>
#include <linux/dnotify.h>
#include <linux/statfs.h>
#include <linux/security.h>
#include <linux/magic.h>
#include <linux/migrate.h>
#include <linux/uio.h>
#include <asm/uaccess.h>
static const struct super_operations hugetlbfs_ops;
static const struct address_space_operations hugetlbfs_aops;
const struct file_operations hugetlbfs_file_operations;
static const struct inode_operations hugetlbfs_dir_inode_operations;
static const struct inode_operations hugetlbfs_inode_operations;
struct hugetlbfs_config {
kuid_t uid;
kgid_t gid;
umode_t mode;
long max_hpages;
long nr_inodes;
struct hstate *hstate;
long min_hpages;
};
struct hugetlbfs_inode_info {
struct shared_policy policy;
struct inode vfs_inode;
};
static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
{
return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
}
int sysctl_hugetlb_shm_group;
enum {
Opt_size, Opt_nr_inodes,
Opt_mode, Opt_uid, Opt_gid,
Opt_pagesize, Opt_min_size,
Opt_err,
};
static const match_table_t tokens = {
{Opt_size, "size=%s"},
{Opt_nr_inodes, "nr_inodes=%s"},
{Opt_mode, "mode=%o"},
{Opt_uid, "uid=%u"},
{Opt_gid, "gid=%u"},
{Opt_pagesize, "pagesize=%s"},
{Opt_min_size, "min_size=%s"},
{Opt_err, NULL},
};
#ifdef CONFIG_NUMA
static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
struct inode *inode, pgoff_t index)
{
vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
index);
}
static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
{
mpol_cond_put(vma->vm_policy);
}
#else
static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
struct inode *inode, pgoff_t index)
{
}
static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
{
}
#endif
static void huge_pagevec_release(struct pagevec *pvec)
{
int i;
for (i = 0; i < pagevec_count(pvec); ++i)
put_page(pvec->pages[i]);
pagevec_reinit(pvec);
}
/*
* Mask used when checking the page offset value passed in via system
* calls. This value will be converted to a loff_t which is signed.
* Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
* value. The extra bit (- 1 in the shift value) is to take the sign
* bit into account.
*/
#define PGOFF_LOFFT_MAX \
(((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
{
struct inode *inode = file_inode(file);
loff_t len, vma_len;
int ret;
struct hstate *h = hstate_file(file);
/*
* vma address alignment (but not the pgoff alignment) has
* already been checked by prepare_hugepage_range. If you add
* any error returns here, do so after setting VM_HUGETLB, so
* is_vm_hugetlb_page tests below unmap_region go the right
* way when do_mmap_pgoff unwinds (may be important on powerpc
* and ia64).
*/
vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
vma->vm_ops = &hugetlb_vm_ops;
/*
* page based offset in vm_pgoff could be sufficiently large to
* overflow a loff_t when converted to byte offset. This can
* only happen on architectures where sizeof(loff_t) ==
* sizeof(unsigned long). So, only check in those instances.
*/
if (sizeof(unsigned long) == sizeof(loff_t)) {
if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
return -EINVAL;
}
/* must be huge page aligned */
if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
return -EINVAL;
vma_len = (loff_t)(vma->vm_end - vma->vm_start);
len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
/* check for overflow */
if (len < vma_len)
return -EINVAL;
inode_lock(inode);
file_accessed(file);
ret = -ENOMEM;
if (hugetlb_reserve_pages(inode,
vma->vm_pgoff >> huge_page_order(h),
len >> huge_page_shift(h), vma,
vma->vm_flags))
goto out;
ret = 0;
if (vma->vm_flags & VM_WRITE && inode->i_size < len)
i_size_write(inode, len);
out:
inode_unlock(inode);
return ret;
}
/*
* Called under down_write(mmap_sem).
*/
#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
static unsigned long
hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
struct hstate *h = hstate_file(file);
struct vm_unmapped_area_info info;
if (len & ~huge_page_mask(h))
return -EINVAL;
if (len > TASK_SIZE)
return -ENOMEM;
if (flags & MAP_FIXED) {
if (prepare_hugepage_range(file, addr, len))
return -EINVAL;
return addr;
}
if (addr) {
addr = ALIGN(addr, huge_page_size(h));
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vm_start_gap(vma)))
return addr;
}
info.flags = 0;
info.length = len;
info.low_limit = TASK_UNMAPPED_BASE;
info.high_limit = TASK_SIZE;
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
info.align_offset = 0;
return vm_unmapped_area(&info);
}
#endif
static size_t
hugetlbfs_read_actor(struct page *page, unsigned long offset,
struct iov_iter *to, unsigned long size)
{
size_t copied = 0;
int i, chunksize;
/* Find which 4k chunk and offset with in that chunk */
i = offset >> PAGE_SHIFT;
offset = offset & ~PAGE_MASK;
while (size) {
size_t n;
chunksize = PAGE_SIZE;
if (offset)
chunksize -= offset;
if (chunksize > size)
chunksize = size;
n = copy_page_to_iter(&page[i], offset, chunksize, to);
copied += n;
if (n != chunksize)
return copied;
offset = 0;
size -= chunksize;
i++;
}
return copied;
}
/*
* Support for read() - Find the page attached to f_mapping and copy out the
* data. Its *very* similar to do_generic_mapping_read(), we can't use that
* since it has PAGE_SIZE assumptions.
*/
static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct file *file = iocb->ki_filp;
struct hstate *h = hstate_file(file);
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
unsigned long index = iocb->ki_pos >> huge_page_shift(h);
unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
unsigned long end_index;
loff_t isize;
ssize_t retval = 0;
while (iov_iter_count(to)) {
struct page *page;
size_t nr, copied;
/* nr is the maximum number of bytes to copy from this page */
nr = huge_page_size(h);
isize = i_size_read(inode);
if (!isize)
break;
end_index = (isize - 1) >> huge_page_shift(h);
if (index > end_index)
break;
if (index == end_index) {
nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
if (nr <= offset)
break;
}
nr = nr - offset;
/* Find the page */
page = find_lock_page(mapping, index);
if (unlikely(page == NULL)) {
/*
* We have a HOLE, zero out the user-buffer for the
* length of the hole or request.
*/
copied = iov_iter_zero(nr, to);
} else {
unlock_page(page);
/*
* We have the page, copy it to user space buffer.
*/
copied = hugetlbfs_read_actor(page, offset, to, nr);
put_page(page);
}
offset += copied;
retval += copied;
if (copied != nr && iov_iter_count(to)) {
if (!retval)
retval = -EFAULT;
break;
}
index += offset >> huge_page_shift(h);
offset &= ~huge_page_mask(h);
}
iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
return retval;
}
static int hugetlbfs_write_begin(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
return -EINVAL;
}
static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
BUG();
return -EINVAL;
}
static void remove_huge_page(struct page *page)
{
ClearPageDirty(page);
ClearPageUptodate(page);
delete_from_page_cache(page);
}
static void
hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
{
struct vm_area_struct *vma;
/*
* end == 0 indicates that the entire range after
* start should be unmapped.
*/
vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
unsigned long v_offset;
unsigned long v_end;
/*
* Can the expression below overflow on 32-bit arches?
* No, because the interval tree returns us only those vmas
* which overlap the truncated area starting at pgoff,
* and no vma on a 32-bit arch can span beyond the 4GB.
*/
if (vma->vm_pgoff < start)
v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
else
v_offset = 0;
if (!end)
v_end = vma->vm_end;
else {
v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
+ vma->vm_start;
if (v_end > vma->vm_end)
v_end = vma->vm_end;
}
unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
NULL);
}
}
/*
* remove_inode_hugepages handles two distinct cases: truncation and hole
* punch. There are subtle differences in operation for each case.
*
* truncation is indicated by end of range being LLONG_MAX
* In this case, we first scan the range and release found pages.
* After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
* maps and global counts. Page faults can not race with truncation
* in this routine. hugetlb_no_page() prevents page faults in the
* truncated range. It checks i_size before allocation, and again after
* with the page table lock for the page held. The same lock must be
* acquired to unmap a page.
* hole punch is indicated if end is not LLONG_MAX
* In the hole punch case we scan the range and release found pages.
* Only when releasing a page is the associated region/reserv map
* deleted. The region/reserv map for ranges without associated
* pages are not modified. Page faults can race with hole punch.
* This is indicated if we find a mapped page.
* Note: If the passed end of range value is beyond the end of file, but
* not LLONG_MAX this routine still performs a hole punch operation.
*/
static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
loff_t lend)
{
struct hstate *h = hstate_inode(inode);
struct address_space *mapping = &inode->i_data;
const pgoff_t start = lstart >> huge_page_shift(h);
const pgoff_t end = lend >> huge_page_shift(h);
struct vm_area_struct pseudo_vma;
struct pagevec pvec;
pgoff_t next;
int i, freed = 0;
long lookup_nr = PAGEVEC_SIZE;
bool truncate_op = (lend == LLONG_MAX);
memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
pagevec_init(&pvec, 0);
next = start;
while (next < end) {
/*
* Don't grab more pages than the number left in the range.
*/
if (end - next < lookup_nr)
lookup_nr = end - next;
/*
* When no more pages are found, we are done.
*/
if (!pagevec_lookup(&pvec, mapping, next, lookup_nr))
break;
for (i = 0; i < pagevec_count(&pvec); ++i) {
struct page *page = pvec.pages[i];
u32 hash;
/*
* The page (index) could be beyond end. This is
* only possible in the punch hole case as end is
* max page offset in the truncate case.
*/
next = page->index;
if (next >= end)
break;
hash = hugetlb_fault_mutex_hash(h, current->mm,
&pseudo_vma,
mapping, next, 0);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
/*
* If page is mapped, it was faulted in after being
* unmapped in caller. Unmap (again) now after taking
* the fault mutex. The mutex will prevent faults
* until we finish removing the page.
*
* This race can only happen in the hole punch case.
* Getting here in a truncate operation is a bug.
*/
if (unlikely(page_mapped(page))) {
BUG_ON(truncate_op);
i_mmap_lock_write(mapping);
hugetlb_vmdelete_list(&mapping->i_mmap,
next * pages_per_huge_page(h),
(next + 1) * pages_per_huge_page(h));
i_mmap_unlock_write(mapping);
}
lock_page(page);
/*
* We must free the huge page and remove from page
* cache (remove_huge_page) BEFORE removing the
* region/reserve map (hugetlb_unreserve_pages). In
* rare out of memory conditions, removal of the
* region/reserve map could fail. Correspondingly,
* the subpool and global reserve usage count can need
* to be adjusted.
*/
VM_BUG_ON(PagePrivate(page));
remove_huge_page(page);
freed++;
if (!truncate_op) {
if (unlikely(hugetlb_unreserve_pages(inode,
next, next + 1, 1)))
hugetlb_fix_reserve_counts(inode);
}
unlock_page(page);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
}
++next;
huge_pagevec_release(&pvec);
cond_resched();
}
if (truncate_op)
(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
}
static void hugetlbfs_evict_inode(struct inode *inode)
{
struct resv_map *resv_map;
remove_inode_hugepages(inode, 0, LLONG_MAX);
resv_map = (struct resv_map *)inode->i_mapping->private_data;
/* root inode doesn't have the resv_map, so we should check it */
if (resv_map)
resv_map_release(&resv_map->refs);
clear_inode(inode);
}
static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
{
pgoff_t pgoff;
struct address_space *mapping = inode->i_mapping;
struct hstate *h = hstate_inode(inode);
BUG_ON(offset & ~huge_page_mask(h));
pgoff = offset >> PAGE_SHIFT;
i_size_write(inode, offset);
i_mmap_lock_write(mapping);
if (!RB_EMPTY_ROOT(&mapping->i_mmap))
hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
i_mmap_unlock_write(mapping);
remove_inode_hugepages(inode, offset, LLONG_MAX);
return 0;
}
static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
{
struct hstate *h = hstate_inode(inode);
loff_t hpage_size = huge_page_size(h);
loff_t hole_start, hole_end;
/*
* For hole punch round up the beginning offset of the hole and
* round down the end.
*/
hole_start = round_up(offset, hpage_size);
hole_end = round_down(offset + len, hpage_size);
if (hole_end > hole_start) {
struct address_space *mapping = inode->i_mapping;
inode_lock(inode);
i_mmap_lock_write(mapping);
if (!RB_EMPTY_ROOT(&mapping->i_mmap))
hugetlb_vmdelete_list(&mapping->i_mmap,
hole_start >> PAGE_SHIFT,
hole_end >> PAGE_SHIFT);
i_mmap_unlock_write(mapping);
remove_inode_hugepages(inode, hole_start, hole_end);
inode_unlock(inode);
}
return 0;
}
static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
loff_t len)
{
struct inode *inode = file_inode(file);
struct address_space *mapping = inode->i_mapping;
struct hstate *h = hstate_inode(inode);
struct vm_area_struct pseudo_vma;
struct mm_struct *mm = current->mm;
loff_t hpage_size = huge_page_size(h);
unsigned long hpage_shift = huge_page_shift(h);
pgoff_t start, index, end;
int error;
u32 hash;
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
return -EOPNOTSUPP;
if (mode & FALLOC_FL_PUNCH_HOLE)
return hugetlbfs_punch_hole(inode, offset, len);
/*
* Default preallocate case.
* For this range, start is rounded down and end is rounded up
* as well as being converted to page offsets.
*/
start = offset >> hpage_shift;
end = (offset + len + hpage_size - 1) >> hpage_shift;
inode_lock(inode);
/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
error = inode_newsize_ok(inode, offset + len);
if (error)
goto out;
/*
* Initialize a pseudo vma as this is required by the huge page
* allocation routines. If NUMA is configured, use page index
* as input to create an allocation policy.
*/
memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
pseudo_vma.vm_file = file;
for (index = start; index < end; index++) {
/*
* This is supposed to be the vaddr where the page is being
* faulted in, but we have no vaddr here.
*/
struct page *page;
unsigned long addr;
int avoid_reserve = 0;
cond_resched();
/*
* fallocate(2) manpage permits EINTR; we may have been
* interrupted because we are using up too much memory.
*/
if (signal_pending(current)) {
error = -EINTR;
break;
}
/* Set numa allocation policy based on index */
hugetlb_set_vma_policy(&pseudo_vma, inode, index);
/* addr is the offset within the file (zero based) */
addr = index * hpage_size;
/* mutex taken here, fault path and hole punch */
hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
index, addr);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
/* See if already present in mapping to avoid alloc/free */
page = find_get_page(mapping, index);
if (page) {
put_page(page);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
hugetlb_drop_vma_policy(&pseudo_vma);
continue;
}
/* Allocate page and add to page cache */
page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
hugetlb_drop_vma_policy(&pseudo_vma);
if (IS_ERR(page)) {
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
error = PTR_ERR(page);
goto out;
}
clear_huge_page(page, addr, pages_per_huge_page(h));
__SetPageUptodate(page);
error = huge_add_to_page_cache(page, mapping, index);
if (unlikely(error)) {
put_page(page);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
goto out;
}
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
/*
* page_put due to reference from alloc_huge_page()
* unlock_page because locked by add_to_page_cache()
*/
put_page(page);
unlock_page(page);
}
if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
i_size_write(inode, offset + len);
inode->i_ctime = current_time(inode);
out:
inode_unlock(inode);
return error;
}
static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
struct hstate *h = hstate_inode(inode);
int error;
unsigned int ia_valid = attr->ia_valid;
BUG_ON(!inode);
error = setattr_prepare(dentry, attr);
if (error)
return error;
if (ia_valid & ATTR_SIZE) {
error = -EINVAL;
if (attr->ia_size & ~huge_page_mask(h))
return -EINVAL;
error = hugetlb_vmtruncate(inode, attr->ia_size);
if (error)
return error;
}
setattr_copy(inode, attr);
mark_inode_dirty(inode);
return 0;
}
static struct inode *hugetlbfs_get_root(struct super_block *sb,
struct hugetlbfs_config *config)
{
struct inode *inode;
inode = new_inode(sb);
if (inode) {
inode->i_ino = get_next_ino();
inode->i_mode = S_IFDIR | config->mode;
inode->i_uid = config->uid;
inode->i_gid = config->gid;
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
inode->i_op = &hugetlbfs_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
/* directory inodes start off with i_nlink == 2 (for "." entry) */
inc_nlink(inode);
lockdep_annotate_inode_mutex_key(inode);
}
return inode;
}
/*
* Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
* be taken from reclaim -- unlike regular filesystems. This needs an
* annotation because huge_pmd_share() does an allocation under hugetlb's
* i_mmap_rwsem.
*/
static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
static struct inode *hugetlbfs_get_inode(struct super_block *sb,
struct inode *dir,
umode_t mode, dev_t dev)
{
struct inode *inode;
struct resv_map *resv_map = NULL;
/*
* Reserve maps are only needed for inodes that can have associated
* page allocations.
*/
if (S_ISREG(mode) || S_ISLNK(mode)) {
resv_map = resv_map_alloc();
if (!resv_map)
return NULL;
}
inode = new_inode(sb);
if (inode) {
inode->i_ino = get_next_ino();
inode_init_owner(inode, dir, mode);
lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
&hugetlbfs_i_mmap_rwsem_key);
inode->i_mapping->a_ops = &hugetlbfs_aops;
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
inode->i_mapping->private_data = resv_map;
switch (mode & S_IFMT) {
default:
init_special_inode(inode, mode, dev);
break;
case S_IFREG:
inode->i_op = &hugetlbfs_inode_operations;
inode->i_fop = &hugetlbfs_file_operations;
break;
case S_IFDIR:
inode->i_op = &hugetlbfs_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
/* directory inodes start off with i_nlink == 2 (for "." entry) */
inc_nlink(inode);
break;
case S_IFLNK:
inode->i_op = &page_symlink_inode_operations;
inode_nohighmem(inode);
break;
}
lockdep_annotate_inode_mutex_key(inode);
} else {
if (resv_map)
kref_put(&resv_map->refs, resv_map_release);
}
return inode;
}
/*
* File creation. Allocate an inode, and we're done..
*/
static int hugetlbfs_mknod(struct inode *dir,
struct dentry *dentry, umode_t mode, dev_t dev)
{
struct inode *inode;
int error = -ENOSPC;
inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
if (inode) {
dir->i_ctime = dir->i_mtime = current_time(dir);
d_instantiate(dentry, inode);
dget(dentry); /* Extra count - pin the dentry in core */
error = 0;
}
return error;
}
static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
if (!retval)
inc_nlink(dir);
return retval;
}
static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
{
return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
}
static int hugetlbfs_symlink(struct inode *dir,
struct dentry *dentry, const char *symname)
{
struct inode *inode;
int error = -ENOSPC;
inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
if (inode) {
int l = strlen(symname)+1;
error = page_symlink(inode, symname, l);
if (!error) {
d_instantiate(dentry, inode);
dget(dentry);
} else
iput(inode);
}
dir->i_ctime = dir->i_mtime = current_time(dir);
return error;
}
/*
* mark the head page dirty
*/
static int hugetlbfs_set_page_dirty(struct page *page)
{
struct page *head = compound_head(page);
SetPageDirty(head);
return 0;
}
static int hugetlbfs_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page,
enum migrate_mode mode)
{
int rc;
rc = migrate_huge_page_move_mapping(mapping, newpage, page);
if (rc != MIGRATEPAGE_SUCCESS)
return rc;
/*
* page_private is subpool pointer in hugetlb pages. Transfer to
* new page. PagePrivate is not associated with page_private for
* hugetlb pages and can not be set here as only page_huge_active
* pages can be migrated.
*/
if (page_private(page)) {
set_page_private(newpage, page_private(page));
set_page_private(page, 0);
}
migrate_page_copy(newpage, page);
return MIGRATEPAGE_SUCCESS;
}
static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
struct hstate *h = hstate_inode(d_inode(dentry));
buf->f_type = HUGETLBFS_MAGIC;
buf->f_bsize = huge_page_size(h);
if (sbinfo) {
spin_lock(&sbinfo->stat_lock);
/* If no limits set, just report 0 for max/free/used
* blocks, like simple_statfs() */
if (sbinfo->spool) {
long free_pages;
spin_lock(&sbinfo->spool->lock);
buf->f_blocks = sbinfo->spool->max_hpages;
free_pages = sbinfo->spool->max_hpages
- sbinfo->spool->used_hpages;
buf->f_bavail = buf->f_bfree = free_pages;
spin_unlock(&sbinfo->spool->lock);
buf->f_files = sbinfo->max_inodes;
buf->f_ffree = sbinfo->free_inodes;
}
spin_unlock(&sbinfo->stat_lock);
}
buf->f_namelen = NAME_MAX;
return 0;
}
static void hugetlbfs_put_super(struct super_block *sb)
{
struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
if (sbi) {
sb->s_fs_info = NULL;
if (sbi->spool)
hugepage_put_subpool(sbi->spool);
kfree(sbi);
}
}
static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
{
if (sbinfo->free_inodes >= 0) {
spin_lock(&sbinfo->stat_lock);
if (unlikely(!sbinfo->free_inodes)) {
spin_unlock(&sbinfo->stat_lock);
return 0;
}
sbinfo->free_inodes--;
spin_unlock(&sbinfo->stat_lock);
}
return 1;
}
static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
{
if (sbinfo->free_inodes >= 0) {
spin_lock(&sbinfo->stat_lock);
sbinfo->free_inodes++;
spin_unlock(&sbinfo->stat_lock);
}
}
static struct kmem_cache *hugetlbfs_inode_cachep;
static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
{
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
struct hugetlbfs_inode_info *p;
if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
return NULL;
p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
if (unlikely(!p)) {
hugetlbfs_inc_free_inodes(sbinfo);
return NULL;
}
/*
* Any time after allocation, hugetlbfs_destroy_inode can be called
* for the inode. mpol_free_shared_policy is unconditionally called
* as part of hugetlbfs_destroy_inode. So, initialize policy here
* in case of a quick call to destroy.
*
* Note that the policy is initialized even if we are creating a
* private inode. This simplifies hugetlbfs_destroy_inode.
*/
mpol_shared_policy_init(&p->policy, NULL);
return &p->vfs_inode;
}
static void hugetlbfs_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
}
static void hugetlbfs_destroy_inode(struct inode *inode)
{
hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
}
static const struct address_space_operations hugetlbfs_aops = {
.write_begin = hugetlbfs_write_begin,
.write_end = hugetlbfs_write_end,
.set_page_dirty = hugetlbfs_set_page_dirty,
.migratepage = hugetlbfs_migrate_page,
};
static void init_once(void *foo)
{
struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
inode_init_once(&ei->vfs_inode);
}
const struct file_operations hugetlbfs_file_operations = {
.read_iter = hugetlbfs_read_iter,
.mmap = hugetlbfs_file_mmap,
.fsync = noop_fsync,
.get_unmapped_area = hugetlb_get_unmapped_area,
.llseek = default_llseek,
.fallocate = hugetlbfs_fallocate,
};
static const struct inode_operations hugetlbfs_dir_inode_operations = {
.create = hugetlbfs_create,
.lookup = simple_lookup,
.link = simple_link,
.unlink = simple_unlink,
.symlink = hugetlbfs_symlink,
.mkdir = hugetlbfs_mkdir,
.rmdir = simple_rmdir,
.mknod = hugetlbfs_mknod,
.rename = simple_rename,
.setattr = hugetlbfs_setattr,
};
static const struct inode_operations hugetlbfs_inode_operations = {
.setattr = hugetlbfs_setattr,
};
static const struct super_operations hugetlbfs_ops = {
.alloc_inode = hugetlbfs_alloc_inode,
.destroy_inode = hugetlbfs_destroy_inode,
.evict_inode = hugetlbfs_evict_inode,
.statfs = hugetlbfs_statfs,
.put_super = hugetlbfs_put_super,
.show_options = generic_show_options,
};
enum { NO_SIZE, SIZE_STD, SIZE_PERCENT };
/*
* Convert size option passed from command line to number of huge pages
* in the pool specified by hstate. Size option could be in bytes
* (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
*/
static long long
hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
int val_type)
{
if (val_type == NO_SIZE)
return -1;
if (val_type == SIZE_PERCENT) {
size_opt <<= huge_page_shift(h);
size_opt *= h->max_huge_pages;
do_div(size_opt, 100);
}
size_opt >>= huge_page_shift(h);
return size_opt;
}
static int
hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
{
char *p, *rest;
substring_t args[MAX_OPT_ARGS];
int option;
unsigned long long max_size_opt = 0, min_size_opt = 0;
int max_val_type = NO_SIZE, min_val_type = NO_SIZE;
if (!options)
return 0;
while ((p = strsep(&options, ",")) != NULL) {
int token;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_uid:
if (match_int(&args[0], &option))
goto bad_val;
pconfig->uid = make_kuid(current_user_ns(), option);
if (!uid_valid(pconfig->uid))
goto bad_val;
break;
case Opt_gid:
if (match_int(&args[0], &option))
goto bad_val;
pconfig->gid = make_kgid(current_user_ns(), option);
if (!gid_valid(pconfig->gid))
goto bad_val;
break;
case Opt_mode:
if (match_octal(&args[0], &option))
goto bad_val;
pconfig->mode = option & 01777U;
break;
case Opt_size: {
/* memparse() will accept a K/M/G without a digit */
if (!isdigit(*args[0].from))
goto bad_val;
max_size_opt = memparse(args[0].from, &rest);
max_val_type = SIZE_STD;
if (*rest == '%')
max_val_type = SIZE_PERCENT;
break;
}
case Opt_nr_inodes:
/* memparse() will accept a K/M/G without a digit */
if (!isdigit(*args[0].from))
goto bad_val;
pconfig->nr_inodes = memparse(args[0].from, &rest);
break;
case Opt_pagesize: {
unsigned long ps;
ps = memparse(args[0].from, &rest);
pconfig->hstate = size_to_hstate(ps);
if (!pconfig->hstate) {
pr_err("Unsupported page size %lu MB\n",
ps >> 20);
return -EINVAL;
}
break;
}
case Opt_min_size: {
/* memparse() will accept a K/M/G without a digit */
if (!isdigit(*args[0].from))
goto bad_val;
min_size_opt = memparse(args[0].from, &rest);
min_val_type = SIZE_STD;
if (*rest == '%')
min_val_type = SIZE_PERCENT;
break;
}
default:
pr_err("Bad mount option: \"%s\"\n", p);
return -EINVAL;
break;
}
}
/*
* Use huge page pool size (in hstate) to convert the size
* options to number of huge pages. If NO_SIZE, -1 is returned.
*/
pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
max_size_opt, max_val_type);
pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
min_size_opt, min_val_type);
/*
* If max_size was specified, then min_size must be smaller
*/
if (max_val_type > NO_SIZE &&
pconfig->min_hpages > pconfig->max_hpages) {
pr_err("minimum size can not be greater than maximum size\n");
return -EINVAL;
}
return 0;
bad_val:
pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
return -EINVAL;
}
static int
hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
{
int ret;
struct hugetlbfs_config config;
struct hugetlbfs_sb_info *sbinfo;
save_mount_options(sb, data);
config.max_hpages = -1; /* No limit on size by default */
config.nr_inodes = -1; /* No limit on number of inodes by default */
config.uid = current_fsuid();
config.gid = current_fsgid();
config.mode = 0755;
config.hstate = &default_hstate;
config.min_hpages = -1; /* No default minimum size */
ret = hugetlbfs_parse_options(data, &config);
if (ret)
return ret;
sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
if (!sbinfo)
return -ENOMEM;
sb->s_fs_info = sbinfo;
sbinfo->hstate = config.hstate;
spin_lock_init(&sbinfo->stat_lock);
sbinfo->max_inodes = config.nr_inodes;
sbinfo->free_inodes = config.nr_inodes;
sbinfo->spool = NULL;
/*
* Allocate and initialize subpool if maximum or minimum size is
* specified. Any needed reservations (for minimim size) are taken
* taken when the subpool is created.
*/
if (config.max_hpages != -1 || config.min_hpages != -1) {
sbinfo->spool = hugepage_new_subpool(config.hstate,
config.max_hpages,
config.min_hpages);
if (!sbinfo->spool)
goto out_free;
}
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_blocksize = huge_page_size(config.hstate);
sb->s_blocksize_bits = huge_page_shift(config.hstate);
sb->s_magic = HUGETLBFS_MAGIC;
sb->s_op = &hugetlbfs_ops;
sb->s_time_gran = 1;
sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
if (!sb->s_root)
goto out_free;
return 0;
out_free:
kfree(sbinfo->spool);
kfree(sbinfo);
return -ENOMEM;
}
static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
}
static struct file_system_type hugetlbfs_fs_type = {
.name = "hugetlbfs",
.mount = hugetlbfs_mount,
.kill_sb = kill_litter_super,
};
static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
static int can_do_hugetlb_shm(void)
{
kgid_t shm_group;
shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
}
static int get_hstate_idx(int page_size_log)
{
struct hstate *h = hstate_sizelog(page_size_log);
if (!h)
return -1;
return h - hstates;
}
static const struct dentry_operations anon_ops = {
.d_dname = simple_dname
};
/*
* Note that size should be aligned to proper hugepage size in caller side,
* otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
*/
struct file *hugetlb_file_setup(const char *name, size_t size,
vm_flags_t acctflag, struct user_struct **user,
int creat_flags, int page_size_log)
{
struct file *file = ERR_PTR(-ENOMEM);
struct inode *inode;
struct path path;
struct super_block *sb;
struct qstr quick_string;
int hstate_idx;
hstate_idx = get_hstate_idx(page_size_log);
if (hstate_idx < 0)
return ERR_PTR(-ENODEV);
*user = NULL;
if (!hugetlbfs_vfsmount[hstate_idx])
return ERR_PTR(-ENOENT);
if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
*user = current_user();
if (user_shm_lock(size, *user)) {
task_lock(current);
pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
current->comm, current->pid);
task_unlock(current);
} else {
*user = NULL;
return ERR_PTR(-EPERM);
}
}
sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
quick_string.name = name;
quick_string.len = strlen(quick_string.name);
quick_string.hash = 0;
path.dentry = d_alloc_pseudo(sb, &quick_string);
if (!path.dentry)
goto out_shm_unlock;
d_set_d_op(path.dentry, &anon_ops);
path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
file = ERR_PTR(-ENOSPC);
inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
if (!inode)
goto out_dentry;
if (creat_flags == HUGETLB_SHMFS_INODE)
inode->i_flags |= S_PRIVATE;
file = ERR_PTR(-ENOMEM);
if (hugetlb_reserve_pages(inode, 0,
size >> huge_page_shift(hstate_inode(inode)), NULL,
acctflag))
goto out_inode;
d_instantiate(path.dentry, inode);
inode->i_size = size;
clear_nlink(inode);
file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
&hugetlbfs_file_operations);
if (IS_ERR(file))
goto out_dentry; /* inode is already attached */
return file;
out_inode:
iput(inode);
out_dentry:
path_put(&path);
out_shm_unlock:
if (*user) {
user_shm_unlock(size, *user);
*user = NULL;
}
return file;
}
static int __init init_hugetlbfs_fs(void)
{
struct hstate *h;
int error;
int i;
if (!hugepages_supported()) {
pr_info("disabling because there are no supported hugepage sizes\n");
return -ENOTSUPP;
}
error = -ENOMEM;
hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
sizeof(struct hugetlbfs_inode_info),
0, SLAB_ACCOUNT, init_once);
if (hugetlbfs_inode_cachep == NULL)
goto out2;
error = register_filesystem(&hugetlbfs_fs_type);
if (error)
goto out;
i = 0;
for_each_hstate(h) {
char buf[50];
unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
buf);
if (IS_ERR(hugetlbfs_vfsmount[i])) {
pr_err("Cannot mount internal hugetlbfs for "
"page size %uK", ps_kb);
error = PTR_ERR(hugetlbfs_vfsmount[i]);
hugetlbfs_vfsmount[i] = NULL;
}
i++;
}
/* Non default hstates are optional */
if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
return 0;
out:
kmem_cache_destroy(hugetlbfs_inode_cachep);
out2:
return error;
}
fs_initcall(init_hugetlbfs_fs)