| /* |
| * linux/drivers/char/mem.c |
| * |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * |
| * Added devfs support. |
| * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu> |
| * Shared /dev/zero mmaping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com> |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/mm.h> |
| #include <linux/miscdevice.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/mman.h> |
| #include <linux/random.h> |
| #include <linux/init.h> |
| #include <linux/raw.h> |
| #include <linux/tty.h> |
| #include <linux/capability.h> |
| #include <linux/smp_lock.h> |
| #include <linux/devfs_fs_kernel.h> |
| #include <linux/ptrace.h> |
| #include <linux/device.h> |
| #include <linux/backing-dev.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| |
| #ifdef CONFIG_IA64 |
| # include <linux/efi.h> |
| #endif |
| |
| #if defined(CONFIG_S390_TAPE) && defined(CONFIG_S390_TAPE_CHAR) |
| extern void tapechar_init(void); |
| #endif |
| |
| /* |
| * Architectures vary in how they handle caching for addresses |
| * outside of main memory. |
| * |
| */ |
| static inline int uncached_access(struct file *file, unsigned long addr) |
| { |
| #if defined(__i386__) |
| /* |
| * On the PPro and successors, the MTRRs are used to set |
| * memory types for physical addresses outside main memory, |
| * so blindly setting PCD or PWT on those pages is wrong. |
| * For Pentiums and earlier, the surround logic should disable |
| * caching for the high addresses through the KEN pin, but |
| * we maintain the tradition of paranoia in this code. |
| */ |
| if (file->f_flags & O_SYNC) |
| return 1; |
| return !( test_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability) || |
| test_bit(X86_FEATURE_K6_MTRR, boot_cpu_data.x86_capability) || |
| test_bit(X86_FEATURE_CYRIX_ARR, boot_cpu_data.x86_capability) || |
| test_bit(X86_FEATURE_CENTAUR_MCR, boot_cpu_data.x86_capability) ) |
| && addr >= __pa(high_memory); |
| #elif defined(__x86_64__) |
| /* |
| * This is broken because it can generate memory type aliases, |
| * which can cause cache corruptions |
| * But it is only available for root and we have to be bug-to-bug |
| * compatible with i386. |
| */ |
| if (file->f_flags & O_SYNC) |
| return 1; |
| /* same behaviour as i386. PAT always set to cached and MTRRs control the |
| caching behaviour. |
| Hopefully a full PAT implementation will fix that soon. */ |
| return 0; |
| #elif defined(CONFIG_IA64) |
| /* |
| * On ia64, we ignore O_SYNC because we cannot tolerate memory attribute aliases. |
| */ |
| return !(efi_mem_attributes(addr) & EFI_MEMORY_WB); |
| #else |
| /* |
| * Accessing memory above the top the kernel knows about or through a file pointer |
| * that was marked O_SYNC will be done non-cached. |
| */ |
| if (file->f_flags & O_SYNC) |
| return 1; |
| return addr >= __pa(high_memory); |
| #endif |
| } |
| |
| #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE |
| static inline int valid_phys_addr_range(unsigned long addr, size_t *count) |
| { |
| unsigned long end_mem; |
| |
| end_mem = __pa(high_memory); |
| if (addr >= end_mem) |
| return 0; |
| |
| if (*count > end_mem - addr) |
| *count = end_mem - addr; |
| |
| return 1; |
| } |
| #endif |
| |
| /* |
| * This funcion reads the *physical* memory. The f_pos points directly to the |
| * memory location. |
| */ |
| static ssize_t read_mem(struct file * file, char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| unsigned long p = *ppos; |
| ssize_t read, sz; |
| char *ptr; |
| |
| if (!valid_phys_addr_range(p, &count)) |
| return -EFAULT; |
| read = 0; |
| #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED |
| /* we don't have page 0 mapped on sparc and m68k.. */ |
| if (p < PAGE_SIZE) { |
| sz = PAGE_SIZE - p; |
| if (sz > count) |
| sz = count; |
| if (sz > 0) { |
| if (clear_user(buf, sz)) |
| return -EFAULT; |
| buf += sz; |
| p += sz; |
| count -= sz; |
| read += sz; |
| } |
| } |
| #endif |
| |
| while (count > 0) { |
| /* |
| * Handle first page in case it's not aligned |
| */ |
| if (-p & (PAGE_SIZE - 1)) |
| sz = -p & (PAGE_SIZE - 1); |
| else |
| sz = PAGE_SIZE; |
| |
| sz = min_t(unsigned long, sz, count); |
| |
| /* |
| * On ia64 if a page has been mapped somewhere as |
| * uncached, then it must also be accessed uncached |
| * by the kernel or data corruption may occur |
| */ |
| ptr = xlate_dev_mem_ptr(p); |
| |
| if (copy_to_user(buf, ptr, sz)) |
| return -EFAULT; |
| buf += sz; |
| p += sz; |
| count -= sz; |
| read += sz; |
| } |
| |
| *ppos += read; |
| return read; |
| } |
| |
| static ssize_t write_mem(struct file * file, const char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| unsigned long p = *ppos; |
| ssize_t written, sz; |
| unsigned long copied; |
| void *ptr; |
| |
| if (!valid_phys_addr_range(p, &count)) |
| return -EFAULT; |
| |
| written = 0; |
| |
| #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED |
| /* we don't have page 0 mapped on sparc and m68k.. */ |
| if (p < PAGE_SIZE) { |
| unsigned long sz = PAGE_SIZE - p; |
| if (sz > count) |
| sz = count; |
| /* Hmm. Do something? */ |
| buf += sz; |
| p += sz; |
| count -= sz; |
| written += sz; |
| } |
| #endif |
| |
| while (count > 0) { |
| /* |
| * Handle first page in case it's not aligned |
| */ |
| if (-p & (PAGE_SIZE - 1)) |
| sz = -p & (PAGE_SIZE - 1); |
| else |
| sz = PAGE_SIZE; |
| |
| sz = min_t(unsigned long, sz, count); |
| |
| /* |
| * On ia64 if a page has been mapped somewhere as |
| * uncached, then it must also be accessed uncached |
| * by the kernel or data corruption may occur |
| */ |
| ptr = xlate_dev_mem_ptr(p); |
| |
| copied = copy_from_user(ptr, buf, sz); |
| if (copied) { |
| ssize_t ret; |
| |
| ret = written + (sz - copied); |
| if (ret) |
| return ret; |
| return -EFAULT; |
| } |
| buf += sz; |
| p += sz; |
| count -= sz; |
| written += sz; |
| } |
| |
| *ppos += written; |
| return written; |
| } |
| |
| static int mmap_mem(struct file * file, struct vm_area_struct * vma) |
| { |
| #if defined(__HAVE_PHYS_MEM_ACCESS_PROT) |
| unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; |
| |
| vma->vm_page_prot = phys_mem_access_prot(file, offset, |
| vma->vm_end - vma->vm_start, |
| vma->vm_page_prot); |
| #elif defined(pgprot_noncached) |
| unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; |
| int uncached; |
| |
| uncached = uncached_access(file, offset); |
| if (uncached) |
| vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| #endif |
| |
| /* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */ |
| if (remap_pfn_range(vma, |
| vma->vm_start, |
| vma->vm_pgoff, |
| vma->vm_end-vma->vm_start, |
| vma->vm_page_prot)) |
| return -EAGAIN; |
| return 0; |
| } |
| |
| static int mmap_kmem(struct file * file, struct vm_area_struct * vma) |
| { |
| unsigned long long val; |
| /* |
| * RED-PEN: on some architectures there is more mapped memory |
| * than available in mem_map which pfn_valid checks |
| * for. Perhaps should add a new macro here. |
| * |
| * RED-PEN: vmalloc is not supported right now. |
| */ |
| if (!pfn_valid(vma->vm_pgoff)) |
| return -EIO; |
| val = (u64)vma->vm_pgoff << PAGE_SHIFT; |
| vma->vm_pgoff = __pa(val) >> PAGE_SHIFT; |
| return mmap_mem(file, vma); |
| } |
| |
| extern long vread(char *buf, char *addr, unsigned long count); |
| extern long vwrite(char *buf, char *addr, unsigned long count); |
| |
| /* |
| * This function reads the *virtual* memory as seen by the kernel. |
| */ |
| static ssize_t read_kmem(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| unsigned long p = *ppos; |
| ssize_t low_count, read, sz; |
| char * kbuf; /* k-addr because vread() takes vmlist_lock rwlock */ |
| |
| read = 0; |
| if (p < (unsigned long) high_memory) { |
| low_count = count; |
| if (count > (unsigned long) high_memory - p) |
| low_count = (unsigned long) high_memory - p; |
| |
| #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED |
| /* we don't have page 0 mapped on sparc and m68k.. */ |
| if (p < PAGE_SIZE && low_count > 0) { |
| size_t tmp = PAGE_SIZE - p; |
| if (tmp > low_count) tmp = low_count; |
| if (clear_user(buf, tmp)) |
| return -EFAULT; |
| buf += tmp; |
| p += tmp; |
| read += tmp; |
| low_count -= tmp; |
| count -= tmp; |
| } |
| #endif |
| while (low_count > 0) { |
| /* |
| * Handle first page in case it's not aligned |
| */ |
| if (-p & (PAGE_SIZE - 1)) |
| sz = -p & (PAGE_SIZE - 1); |
| else |
| sz = PAGE_SIZE; |
| |
| sz = min_t(unsigned long, sz, low_count); |
| |
| /* |
| * On ia64 if a page has been mapped somewhere as |
| * uncached, then it must also be accessed uncached |
| * by the kernel or data corruption may occur |
| */ |
| kbuf = xlate_dev_kmem_ptr((char *)p); |
| |
| if (copy_to_user(buf, kbuf, sz)) |
| return -EFAULT; |
| buf += sz; |
| p += sz; |
| read += sz; |
| low_count -= sz; |
| count -= sz; |
| } |
| } |
| |
| if (count > 0) { |
| kbuf = (char *)__get_free_page(GFP_KERNEL); |
| if (!kbuf) |
| return -ENOMEM; |
| while (count > 0) { |
| int len = count; |
| |
| if (len > PAGE_SIZE) |
| len = PAGE_SIZE; |
| len = vread(kbuf, (char *)p, len); |
| if (!len) |
| break; |
| if (copy_to_user(buf, kbuf, len)) { |
| free_page((unsigned long)kbuf); |
| return -EFAULT; |
| } |
| count -= len; |
| buf += len; |
| read += len; |
| p += len; |
| } |
| free_page((unsigned long)kbuf); |
| } |
| *ppos = p; |
| return read; |
| } |
| |
| |
| static inline ssize_t |
| do_write_kmem(void *p, unsigned long realp, const char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| ssize_t written, sz; |
| unsigned long copied; |
| |
| written = 0; |
| #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED |
| /* we don't have page 0 mapped on sparc and m68k.. */ |
| if (realp < PAGE_SIZE) { |
| unsigned long sz = PAGE_SIZE - realp; |
| if (sz > count) |
| sz = count; |
| /* Hmm. Do something? */ |
| buf += sz; |
| p += sz; |
| realp += sz; |
| count -= sz; |
| written += sz; |
| } |
| #endif |
| |
| while (count > 0) { |
| char *ptr; |
| /* |
| * Handle first page in case it's not aligned |
| */ |
| if (-realp & (PAGE_SIZE - 1)) |
| sz = -realp & (PAGE_SIZE - 1); |
| else |
| sz = PAGE_SIZE; |
| |
| sz = min_t(unsigned long, sz, count); |
| |
| /* |
| * On ia64 if a page has been mapped somewhere as |
| * uncached, then it must also be accessed uncached |
| * by the kernel or data corruption may occur |
| */ |
| ptr = xlate_dev_kmem_ptr(p); |
| |
| copied = copy_from_user(ptr, buf, sz); |
| if (copied) { |
| ssize_t ret; |
| |
| ret = written + (sz - copied); |
| if (ret) |
| return ret; |
| return -EFAULT; |
| } |
| buf += sz; |
| p += sz; |
| realp += sz; |
| count -= sz; |
| written += sz; |
| } |
| |
| *ppos += written; |
| return written; |
| } |
| |
| |
| /* |
| * This function writes to the *virtual* memory as seen by the kernel. |
| */ |
| static ssize_t write_kmem(struct file * file, const char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| unsigned long p = *ppos; |
| ssize_t wrote = 0; |
| ssize_t virtr = 0; |
| ssize_t written; |
| char * kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */ |
| |
| if (p < (unsigned long) high_memory) { |
| |
| wrote = count; |
| if (count > (unsigned long) high_memory - p) |
| wrote = (unsigned long) high_memory - p; |
| |
| written = do_write_kmem((void*)p, p, buf, wrote, ppos); |
| if (written != wrote) |
| return written; |
| wrote = written; |
| p += wrote; |
| buf += wrote; |
| count -= wrote; |
| } |
| |
| if (count > 0) { |
| kbuf = (char *)__get_free_page(GFP_KERNEL); |
| if (!kbuf) |
| return wrote ? wrote : -ENOMEM; |
| while (count > 0) { |
| int len = count; |
| |
| if (len > PAGE_SIZE) |
| len = PAGE_SIZE; |
| if (len) { |
| written = copy_from_user(kbuf, buf, len); |
| if (written) { |
| ssize_t ret; |
| |
| free_page((unsigned long)kbuf); |
| ret = wrote + virtr + (len - written); |
| return ret ? ret : -EFAULT; |
| } |
| } |
| len = vwrite(kbuf, (char *)p, len); |
| count -= len; |
| buf += len; |
| virtr += len; |
| p += len; |
| } |
| free_page((unsigned long)kbuf); |
| } |
| |
| *ppos = p; |
| return virtr + wrote; |
| } |
| |
| #if defined(CONFIG_ISA) || !defined(__mc68000__) |
| static ssize_t read_port(struct file * file, char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| unsigned long i = *ppos; |
| char __user *tmp = buf; |
| |
| if (!access_ok(VERIFY_WRITE, buf, count)) |
| return -EFAULT; |
| while (count-- > 0 && i < 65536) { |
| if (__put_user(inb(i),tmp) < 0) |
| return -EFAULT; |
| i++; |
| tmp++; |
| } |
| *ppos = i; |
| return tmp-buf; |
| } |
| |
| static ssize_t write_port(struct file * file, const char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| unsigned long i = *ppos; |
| const char __user * tmp = buf; |
| |
| if (!access_ok(VERIFY_READ,buf,count)) |
| return -EFAULT; |
| while (count-- > 0 && i < 65536) { |
| char c; |
| if (__get_user(c, tmp)) |
| return -EFAULT; |
| outb(c,i); |
| i++; |
| tmp++; |
| } |
| *ppos = i; |
| return tmp-buf; |
| } |
| #endif |
| |
| static ssize_t read_null(struct file * file, char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| return 0; |
| } |
| |
| static ssize_t write_null(struct file * file, const char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| return count; |
| } |
| |
| #ifdef CONFIG_MMU |
| /* |
| * For fun, we are using the MMU for this. |
| */ |
| static inline size_t read_zero_pagealigned(char __user * buf, size_t size) |
| { |
| struct mm_struct *mm; |
| struct vm_area_struct * vma; |
| unsigned long addr=(unsigned long)buf; |
| |
| mm = current->mm; |
| /* Oops, this was forgotten before. -ben */ |
| down_read(&mm->mmap_sem); |
| |
| /* For private mappings, just map in zero pages. */ |
| for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { |
| unsigned long count; |
| |
| if (vma->vm_start > addr || (vma->vm_flags & VM_WRITE) == 0) |
| goto out_up; |
| if (vma->vm_flags & (VM_SHARED | VM_HUGETLB)) |
| break; |
| count = vma->vm_end - addr; |
| if (count > size) |
| count = size; |
| |
| zap_page_range(vma, addr, count, NULL); |
| zeromap_page_range(vma, addr, count, PAGE_COPY); |
| |
| size -= count; |
| buf += count; |
| addr += count; |
| if (size == 0) |
| goto out_up; |
| } |
| |
| up_read(&mm->mmap_sem); |
| |
| /* The shared case is hard. Let's do the conventional zeroing. */ |
| do { |
| unsigned long unwritten = clear_user(buf, PAGE_SIZE); |
| if (unwritten) |
| return size + unwritten - PAGE_SIZE; |
| cond_resched(); |
| buf += PAGE_SIZE; |
| size -= PAGE_SIZE; |
| } while (size); |
| |
| return size; |
| out_up: |
| up_read(&mm->mmap_sem); |
| return size; |
| } |
| |
| static ssize_t read_zero(struct file * file, char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| unsigned long left, unwritten, written = 0; |
| |
| if (!count) |
| return 0; |
| |
| if (!access_ok(VERIFY_WRITE, buf, count)) |
| return -EFAULT; |
| |
| left = count; |
| |
| /* do we want to be clever? Arbitrary cut-off */ |
| if (count >= PAGE_SIZE*4) { |
| unsigned long partial; |
| |
| /* How much left of the page? */ |
| partial = (PAGE_SIZE-1) & -(unsigned long) buf; |
| unwritten = clear_user(buf, partial); |
| written = partial - unwritten; |
| if (unwritten) |
| goto out; |
| left -= partial; |
| buf += partial; |
| unwritten = read_zero_pagealigned(buf, left & PAGE_MASK); |
| written += (left & PAGE_MASK) - unwritten; |
| if (unwritten) |
| goto out; |
| buf += left & PAGE_MASK; |
| left &= ~PAGE_MASK; |
| } |
| unwritten = clear_user(buf, left); |
| written += left - unwritten; |
| out: |
| return written ? written : -EFAULT; |
| } |
| |
| static int mmap_zero(struct file * file, struct vm_area_struct * vma) |
| { |
| if (vma->vm_flags & VM_SHARED) |
| return shmem_zero_setup(vma); |
| if (zeromap_page_range(vma, vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot)) |
| return -EAGAIN; |
| return 0; |
| } |
| #else /* CONFIG_MMU */ |
| static ssize_t read_zero(struct file * file, char * buf, |
| size_t count, loff_t *ppos) |
| { |
| size_t todo = count; |
| |
| while (todo) { |
| size_t chunk = todo; |
| |
| if (chunk > 4096) |
| chunk = 4096; /* Just for latency reasons */ |
| if (clear_user(buf, chunk)) |
| return -EFAULT; |
| buf += chunk; |
| todo -= chunk; |
| cond_resched(); |
| } |
| return count; |
| } |
| |
| static int mmap_zero(struct file * file, struct vm_area_struct * vma) |
| { |
| return -ENOSYS; |
| } |
| #endif /* CONFIG_MMU */ |
| |
| static ssize_t write_full(struct file * file, const char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| return -ENOSPC; |
| } |
| |
| /* |
| * Special lseek() function for /dev/null and /dev/zero. Most notably, you |
| * can fopen() both devices with "a" now. This was previously impossible. |
| * -- SRB. |
| */ |
| |
| static loff_t null_lseek(struct file * file, loff_t offset, int orig) |
| { |
| return file->f_pos = 0; |
| } |
| |
| /* |
| * The memory devices use the full 32/64 bits of the offset, and so we cannot |
| * check against negative addresses: they are ok. The return value is weird, |
| * though, in that case (0). |
| * |
| * also note that seeking relative to the "end of file" isn't supported: |
| * it has no meaning, so it returns -EINVAL. |
| */ |
| static loff_t memory_lseek(struct file * file, loff_t offset, int orig) |
| { |
| loff_t ret; |
| |
| down(&file->f_dentry->d_inode->i_sem); |
| switch (orig) { |
| case 0: |
| file->f_pos = offset; |
| ret = file->f_pos; |
| force_successful_syscall_return(); |
| break; |
| case 1: |
| file->f_pos += offset; |
| ret = file->f_pos; |
| force_successful_syscall_return(); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| up(&file->f_dentry->d_inode->i_sem); |
| return ret; |
| } |
| |
| static int open_port(struct inode * inode, struct file * filp) |
| { |
| return capable(CAP_SYS_RAWIO) ? 0 : -EPERM; |
| } |
| |
| #define zero_lseek null_lseek |
| #define full_lseek null_lseek |
| #define write_zero write_null |
| #define read_full read_zero |
| #define open_mem open_port |
| #define open_kmem open_mem |
| |
| static struct file_operations mem_fops = { |
| .llseek = memory_lseek, |
| .read = read_mem, |
| .write = write_mem, |
| .mmap = mmap_mem, |
| .open = open_mem, |
| }; |
| |
| static struct file_operations kmem_fops = { |
| .llseek = memory_lseek, |
| .read = read_kmem, |
| .write = write_kmem, |
| .mmap = mmap_kmem, |
| .open = open_kmem, |
| }; |
| |
| static struct file_operations null_fops = { |
| .llseek = null_lseek, |
| .read = read_null, |
| .write = write_null, |
| }; |
| |
| #if defined(CONFIG_ISA) || !defined(__mc68000__) |
| static struct file_operations port_fops = { |
| .llseek = memory_lseek, |
| .read = read_port, |
| .write = write_port, |
| .open = open_port, |
| }; |
| #endif |
| |
| static struct file_operations zero_fops = { |
| .llseek = zero_lseek, |
| .read = read_zero, |
| .write = write_zero, |
| .mmap = mmap_zero, |
| }; |
| |
| static struct backing_dev_info zero_bdi = { |
| .capabilities = BDI_CAP_MAP_COPY, |
| }; |
| |
| static struct file_operations full_fops = { |
| .llseek = full_lseek, |
| .read = read_full, |
| .write = write_full, |
| }; |
| |
| static ssize_t kmsg_write(struct file * file, const char __user * buf, |
| size_t count, loff_t *ppos) |
| { |
| char *tmp; |
| int ret; |
| |
| tmp = kmalloc(count + 1, GFP_KERNEL); |
| if (tmp == NULL) |
| return -ENOMEM; |
| ret = -EFAULT; |
| if (!copy_from_user(tmp, buf, count)) { |
| tmp[count] = 0; |
| ret = printk("%s", tmp); |
| } |
| kfree(tmp); |
| return ret; |
| } |
| |
| static struct file_operations kmsg_fops = { |
| .write = kmsg_write, |
| }; |
| |
| static int memory_open(struct inode * inode, struct file * filp) |
| { |
| switch (iminor(inode)) { |
| case 1: |
| filp->f_op = &mem_fops; |
| break; |
| case 2: |
| filp->f_op = &kmem_fops; |
| break; |
| case 3: |
| filp->f_op = &null_fops; |
| break; |
| #if defined(CONFIG_ISA) || !defined(__mc68000__) |
| case 4: |
| filp->f_op = &port_fops; |
| break; |
| #endif |
| case 5: |
| filp->f_mapping->backing_dev_info = &zero_bdi; |
| filp->f_op = &zero_fops; |
| break; |
| case 7: |
| filp->f_op = &full_fops; |
| break; |
| case 8: |
| filp->f_op = &random_fops; |
| break; |
| case 9: |
| filp->f_op = &urandom_fops; |
| break; |
| case 11: |
| filp->f_op = &kmsg_fops; |
| break; |
| default: |
| return -ENXIO; |
| } |
| if (filp->f_op && filp->f_op->open) |
| return filp->f_op->open(inode,filp); |
| return 0; |
| } |
| |
| static struct file_operations memory_fops = { |
| .open = memory_open, /* just a selector for the real open */ |
| }; |
| |
| static const struct { |
| unsigned int minor; |
| char *name; |
| umode_t mode; |
| struct file_operations *fops; |
| } devlist[] = { /* list of minor devices */ |
| {1, "mem", S_IRUSR | S_IWUSR | S_IRGRP, &mem_fops}, |
| {2, "kmem", S_IRUSR | S_IWUSR | S_IRGRP, &kmem_fops}, |
| {3, "null", S_IRUGO | S_IWUGO, &null_fops}, |
| #if defined(CONFIG_ISA) || !defined(__mc68000__) |
| {4, "port", S_IRUSR | S_IWUSR | S_IRGRP, &port_fops}, |
| #endif |
| {5, "zero", S_IRUGO | S_IWUGO, &zero_fops}, |
| {7, "full", S_IRUGO | S_IWUGO, &full_fops}, |
| {8, "random", S_IRUGO | S_IWUSR, &random_fops}, |
| {9, "urandom", S_IRUGO | S_IWUSR, &urandom_fops}, |
| {11,"kmsg", S_IRUGO | S_IWUSR, &kmsg_fops}, |
| }; |
| |
| static struct class_simple *mem_class; |
| |
| static int __init chr_dev_init(void) |
| { |
| int i; |
| |
| if (register_chrdev(MEM_MAJOR,"mem",&memory_fops)) |
| printk("unable to get major %d for memory devs\n", MEM_MAJOR); |
| |
| mem_class = class_simple_create(THIS_MODULE, "mem"); |
| for (i = 0; i < ARRAY_SIZE(devlist); i++) { |
| class_simple_device_add(mem_class, |
| MKDEV(MEM_MAJOR, devlist[i].minor), |
| NULL, devlist[i].name); |
| devfs_mk_cdev(MKDEV(MEM_MAJOR, devlist[i].minor), |
| S_IFCHR | devlist[i].mode, devlist[i].name); |
| } |
| |
| return 0; |
| } |
| |
| fs_initcall(chr_dev_init); |