| /* |
| * driver/dma/ste_dma40.c |
| * |
| * Copyright (C) ST-Ericsson 2007-2010 |
| * License terms: GNU General Public License (GPL) version 2 |
| * Author: Per Friden <per.friden@stericsson.com> |
| * Author: Jonas Aaberg <jonas.aberg@stericsson.com> |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/dmaengine.h> |
| #include <linux/platform_device.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| |
| #include <plat/ste_dma40.h> |
| |
| #include "ste_dma40_ll.h" |
| |
| #define D40_NAME "dma40" |
| |
| #define D40_PHY_CHAN -1 |
| |
| /* For masking out/in 2 bit channel positions */ |
| #define D40_CHAN_POS(chan) (2 * (chan / 2)) |
| #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan)) |
| |
| /* Maximum iterations taken before giving up suspending a channel */ |
| #define D40_SUSPEND_MAX_IT 500 |
| |
| /* Hardware requirement on LCLA alignment */ |
| #define LCLA_ALIGNMENT 0x40000 |
| /* Attempts before giving up to trying to get pages that are aligned */ |
| #define MAX_LCLA_ALLOC_ATTEMPTS 256 |
| |
| /* Bit markings for allocation map */ |
| #define D40_ALLOC_FREE (1 << 31) |
| #define D40_ALLOC_PHY (1 << 30) |
| #define D40_ALLOC_LOG_FREE 0 |
| |
| /* Hardware designer of the block */ |
| #define D40_PERIPHID2_DESIGNER 0x8 |
| |
| /** |
| * enum 40_command - The different commands and/or statuses. |
| * |
| * @D40_DMA_STOP: DMA channel command STOP or status STOPPED, |
| * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN. |
| * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible. |
| * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED. |
| */ |
| enum d40_command { |
| D40_DMA_STOP = 0, |
| D40_DMA_RUN = 1, |
| D40_DMA_SUSPEND_REQ = 2, |
| D40_DMA_SUSPENDED = 3 |
| }; |
| |
| /** |
| * struct d40_lli_pool - Structure for keeping LLIs in memory |
| * |
| * @base: Pointer to memory area when the pre_alloc_lli's are not large |
| * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if |
| * pre_alloc_lli is used. |
| * @size: The size in bytes of the memory at base or the size of pre_alloc_lli. |
| * @pre_alloc_lli: Pre allocated area for the most common case of transfers, |
| * one buffer to one buffer. |
| */ |
| struct d40_lli_pool { |
| void *base; |
| int size; |
| /* Space for dst and src, plus an extra for padding */ |
| u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)]; |
| }; |
| |
| /** |
| * struct d40_desc - A descriptor is one DMA job. |
| * |
| * @lli_phy: LLI settings for physical channel. Both src and dst= |
| * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if |
| * lli_len equals one. |
| * @lli_log: Same as above but for logical channels. |
| * @lli_pool: The pool with two entries pre-allocated. |
| * @lli_len: Number of llis of current descriptor. |
| * @lli_count: Number of transfered llis. |
| * @lli_tx_len: Max number of LLIs per transfer, there can be |
| * many transfer for one descriptor. |
| * @txd: DMA engine struct. Used for among other things for communication |
| * during a transfer. |
| * @node: List entry. |
| * @dir: The transfer direction of this job. |
| * @is_in_client_list: true if the client owns this descriptor. |
| * |
| * This descriptor is used for both logical and physical transfers. |
| */ |
| |
| struct d40_desc { |
| /* LLI physical */ |
| struct d40_phy_lli_bidir lli_phy; |
| /* LLI logical */ |
| struct d40_log_lli_bidir lli_log; |
| |
| struct d40_lli_pool lli_pool; |
| int lli_len; |
| int lli_count; |
| u32 lli_tx_len; |
| |
| struct dma_async_tx_descriptor txd; |
| struct list_head node; |
| |
| enum dma_data_direction dir; |
| bool is_in_client_list; |
| }; |
| |
| /** |
| * struct d40_lcla_pool - LCLA pool settings and data. |
| * |
| * @base: The virtual address of LCLA. 18 bit aligned. |
| * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used. |
| * This pointer is only there for clean-up on error. |
| * @pages: The number of pages needed for all physical channels. |
| * Only used later for clean-up on error |
| * @lock: Lock to protect the content in this struct. |
| * @alloc_map: Bitmap mapping between physical channel and LCLA entries. |
| * @num_blocks: The number of entries of alloc_map. Equals to the |
| * number of physical channels. |
| */ |
| struct d40_lcla_pool { |
| void *base; |
| void *base_unaligned; |
| int pages; |
| spinlock_t lock; |
| u32 *alloc_map; |
| int num_blocks; |
| }; |
| |
| /** |
| * struct d40_phy_res - struct for handling eventlines mapped to physical |
| * channels. |
| * |
| * @lock: A lock protection this entity. |
| * @num: The physical channel number of this entity. |
| * @allocated_src: Bit mapped to show which src event line's are mapped to |
| * this physical channel. Can also be free or physically allocated. |
| * @allocated_dst: Same as for src but is dst. |
| * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as |
| * event line number. Both allocated_src and allocated_dst can not be |
| * allocated to a physical channel, since the interrupt handler has then |
| * no way of figure out which one the interrupt belongs to. |
| */ |
| struct d40_phy_res { |
| spinlock_t lock; |
| int num; |
| u32 allocated_src; |
| u32 allocated_dst; |
| }; |
| |
| struct d40_base; |
| |
| /** |
| * struct d40_chan - Struct that describes a channel. |
| * |
| * @lock: A spinlock to protect this struct. |
| * @log_num: The logical number, if any of this channel. |
| * @completed: Starts with 1, after first interrupt it is set to dma engine's |
| * current cookie. |
| * @pending_tx: The number of pending transfers. Used between interrupt handler |
| * and tasklet. |
| * @busy: Set to true when transfer is ongoing on this channel. |
| * @phy_chan: Pointer to physical channel which this instance runs on. If this |
| * point is NULL, then the channel is not allocated. |
| * @chan: DMA engine handle. |
| * @tasklet: Tasklet that gets scheduled from interrupt context to complete a |
| * transfer and call client callback. |
| * @client: Cliented owned descriptor list. |
| * @active: Active descriptor. |
| * @queue: Queued jobs. |
| * @dma_cfg: The client configuration of this dma channel. |
| * @base: Pointer to the device instance struct. |
| * @src_def_cfg: Default cfg register setting for src. |
| * @dst_def_cfg: Default cfg register setting for dst. |
| * @log_def: Default logical channel settings. |
| * @lcla: Space for one dst src pair for logical channel transfers. |
| * @lcpa: Pointer to dst and src lcpa settings. |
| * |
| * This struct can either "be" a logical or a physical channel. |
| */ |
| struct d40_chan { |
| spinlock_t lock; |
| int log_num; |
| /* ID of the most recent completed transfer */ |
| int completed; |
| int pending_tx; |
| bool busy; |
| struct d40_phy_res *phy_chan; |
| struct dma_chan chan; |
| struct tasklet_struct tasklet; |
| struct list_head client; |
| struct list_head active; |
| struct list_head queue; |
| struct stedma40_chan_cfg dma_cfg; |
| struct d40_base *base; |
| /* Default register configurations */ |
| u32 src_def_cfg; |
| u32 dst_def_cfg; |
| struct d40_def_lcsp log_def; |
| struct d40_lcla_elem lcla; |
| struct d40_log_lli_full *lcpa; |
| /* Runtime reconfiguration */ |
| dma_addr_t runtime_addr; |
| enum dma_data_direction runtime_direction; |
| }; |
| |
| /** |
| * struct d40_base - The big global struct, one for each probe'd instance. |
| * |
| * @interrupt_lock: Lock used to make sure one interrupt is handle a time. |
| * @execmd_lock: Lock for execute command usage since several channels share |
| * the same physical register. |
| * @dev: The device structure. |
| * @virtbase: The virtual base address of the DMA's register. |
| * @rev: silicon revision detected. |
| * @clk: Pointer to the DMA clock structure. |
| * @phy_start: Physical memory start of the DMA registers. |
| * @phy_size: Size of the DMA register map. |
| * @irq: The IRQ number. |
| * @num_phy_chans: The number of physical channels. Read from HW. This |
| * is the number of available channels for this driver, not counting "Secure |
| * mode" allocated physical channels. |
| * @num_log_chans: The number of logical channels. Calculated from |
| * num_phy_chans. |
| * @dma_both: dma_device channels that can do both memcpy and slave transfers. |
| * @dma_slave: dma_device channels that can do only do slave transfers. |
| * @dma_memcpy: dma_device channels that can do only do memcpy transfers. |
| * @phy_chans: Room for all possible physical channels in system. |
| * @log_chans: Room for all possible logical channels in system. |
| * @lookup_log_chans: Used to map interrupt number to logical channel. Points |
| * to log_chans entries. |
| * @lookup_phy_chans: Used to map interrupt number to physical channel. Points |
| * to phy_chans entries. |
| * @plat_data: Pointer to provided platform_data which is the driver |
| * configuration. |
| * @phy_res: Vector containing all physical channels. |
| * @lcla_pool: lcla pool settings and data. |
| * @lcpa_base: The virtual mapped address of LCPA. |
| * @phy_lcpa: The physical address of the LCPA. |
| * @lcpa_size: The size of the LCPA area. |
| * @desc_slab: cache for descriptors. |
| */ |
| struct d40_base { |
| spinlock_t interrupt_lock; |
| spinlock_t execmd_lock; |
| struct device *dev; |
| void __iomem *virtbase; |
| u8 rev:4; |
| struct clk *clk; |
| phys_addr_t phy_start; |
| resource_size_t phy_size; |
| int irq; |
| int num_phy_chans; |
| int num_log_chans; |
| struct dma_device dma_both; |
| struct dma_device dma_slave; |
| struct dma_device dma_memcpy; |
| struct d40_chan *phy_chans; |
| struct d40_chan *log_chans; |
| struct d40_chan **lookup_log_chans; |
| struct d40_chan **lookup_phy_chans; |
| struct stedma40_platform_data *plat_data; |
| /* Physical half channels */ |
| struct d40_phy_res *phy_res; |
| struct d40_lcla_pool lcla_pool; |
| void *lcpa_base; |
| dma_addr_t phy_lcpa; |
| resource_size_t lcpa_size; |
| struct kmem_cache *desc_slab; |
| }; |
| |
| /** |
| * struct d40_interrupt_lookup - lookup table for interrupt handler |
| * |
| * @src: Interrupt mask register. |
| * @clr: Interrupt clear register. |
| * @is_error: true if this is an error interrupt. |
| * @offset: start delta in the lookup_log_chans in d40_base. If equals to |
| * D40_PHY_CHAN, the lookup_phy_chans shall be used instead. |
| */ |
| struct d40_interrupt_lookup { |
| u32 src; |
| u32 clr; |
| bool is_error; |
| int offset; |
| }; |
| |
| /** |
| * struct d40_reg_val - simple lookup struct |
| * |
| * @reg: The register. |
| * @val: The value that belongs to the register in reg. |
| */ |
| struct d40_reg_val { |
| unsigned int reg; |
| unsigned int val; |
| }; |
| |
| static int d40_pool_lli_alloc(struct d40_desc *d40d, |
| int lli_len, bool is_log) |
| { |
| u32 align; |
| void *base; |
| |
| if (is_log) |
| align = sizeof(struct d40_log_lli); |
| else |
| align = sizeof(struct d40_phy_lli); |
| |
| if (lli_len == 1) { |
| base = d40d->lli_pool.pre_alloc_lli; |
| d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli); |
| d40d->lli_pool.base = NULL; |
| } else { |
| d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align); |
| |
| base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT); |
| d40d->lli_pool.base = base; |
| |
| if (d40d->lli_pool.base == NULL) |
| return -ENOMEM; |
| } |
| |
| if (is_log) { |
| d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base, |
| align); |
| d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len, |
| align); |
| } else { |
| d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base, |
| align); |
| d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len, |
| align); |
| |
| d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src); |
| d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst); |
| } |
| |
| return 0; |
| } |
| |
| static void d40_pool_lli_free(struct d40_desc *d40d) |
| { |
| kfree(d40d->lli_pool.base); |
| d40d->lli_pool.base = NULL; |
| d40d->lli_pool.size = 0; |
| d40d->lli_log.src = NULL; |
| d40d->lli_log.dst = NULL; |
| d40d->lli_phy.src = NULL; |
| d40d->lli_phy.dst = NULL; |
| d40d->lli_phy.src_addr = 0; |
| d40d->lli_phy.dst_addr = 0; |
| } |
| |
| static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c, |
| struct d40_desc *desc) |
| { |
| dma_cookie_t cookie = d40c->chan.cookie; |
| |
| if (++cookie < 0) |
| cookie = 1; |
| |
| d40c->chan.cookie = cookie; |
| desc->txd.cookie = cookie; |
| |
| return cookie; |
| } |
| |
| static void d40_desc_remove(struct d40_desc *d40d) |
| { |
| list_del(&d40d->node); |
| } |
| |
| static struct d40_desc *d40_desc_get(struct d40_chan *d40c) |
| { |
| struct d40_desc *d; |
| struct d40_desc *_d; |
| |
| if (!list_empty(&d40c->client)) { |
| list_for_each_entry_safe(d, _d, &d40c->client, node) |
| if (async_tx_test_ack(&d->txd)) { |
| d40_pool_lli_free(d); |
| d40_desc_remove(d); |
| break; |
| } |
| } else { |
| d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT); |
| if (d != NULL) { |
| memset(d, 0, sizeof(struct d40_desc)); |
| INIT_LIST_HEAD(&d->node); |
| } |
| } |
| return d; |
| } |
| |
| static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) |
| { |
| kmem_cache_free(d40c->base->desc_slab, d40d); |
| } |
| |
| static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) |
| { |
| list_add_tail(&desc->node, &d40c->active); |
| } |
| |
| static struct d40_desc *d40_first_active_get(struct d40_chan *d40c) |
| { |
| struct d40_desc *d; |
| |
| if (list_empty(&d40c->active)) |
| return NULL; |
| |
| d = list_first_entry(&d40c->active, |
| struct d40_desc, |
| node); |
| return d; |
| } |
| |
| static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc) |
| { |
| list_add_tail(&desc->node, &d40c->queue); |
| } |
| |
| static struct d40_desc *d40_first_queued(struct d40_chan *d40c) |
| { |
| struct d40_desc *d; |
| |
| if (list_empty(&d40c->queue)) |
| return NULL; |
| |
| d = list_first_entry(&d40c->queue, |
| struct d40_desc, |
| node); |
| return d; |
| } |
| |
| /* Support functions for logical channels */ |
| |
| static int d40_lcla_id_get(struct d40_chan *d40c) |
| { |
| int src_id = 0; |
| int dst_id = 0; |
| struct d40_log_lli *lcla_lidx_base = |
| d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024; |
| int i; |
| int lli_per_log = d40c->base->plat_data->llis_per_log; |
| unsigned long flags; |
| |
| if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0) |
| return 0; |
| |
| if (d40c->base->lcla_pool.num_blocks > 32) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); |
| |
| for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) { |
| if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] & |
| (0x1 << i))) { |
| d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |= |
| (0x1 << i); |
| break; |
| } |
| } |
| src_id = i; |
| if (src_id >= d40c->base->lcla_pool.num_blocks) |
| goto err; |
| |
| for (; i < d40c->base->lcla_pool.num_blocks; i++) { |
| if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] & |
| (0x1 << i))) { |
| d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |= |
| (0x1 << i); |
| break; |
| } |
| } |
| |
| dst_id = i; |
| if (dst_id == src_id) |
| goto err; |
| |
| d40c->lcla.src_id = src_id; |
| d40c->lcla.dst_id = dst_id; |
| d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1; |
| d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1; |
| |
| spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); |
| return 0; |
| err: |
| spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); |
| return -EINVAL; |
| } |
| |
| |
| static int d40_channel_execute_command(struct d40_chan *d40c, |
| enum d40_command command) |
| { |
| int status, i; |
| void __iomem *active_reg; |
| int ret = 0; |
| unsigned long flags; |
| u32 wmask; |
| |
| spin_lock_irqsave(&d40c->base->execmd_lock, flags); |
| |
| if (d40c->phy_chan->num % 2 == 0) |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; |
| else |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; |
| |
| if (command == D40_DMA_SUSPEND_REQ) { |
| status = (readl(active_reg) & |
| D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> |
| D40_CHAN_POS(d40c->phy_chan->num); |
| |
| if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) |
| goto done; |
| } |
| |
| wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num)); |
| writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)), |
| active_reg); |
| |
| if (command == D40_DMA_SUSPEND_REQ) { |
| |
| for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) { |
| status = (readl(active_reg) & |
| D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> |
| D40_CHAN_POS(d40c->phy_chan->num); |
| |
| cpu_relax(); |
| /* |
| * Reduce the number of bus accesses while |
| * waiting for the DMA to suspend. |
| */ |
| udelay(3); |
| |
| if (status == D40_DMA_STOP || |
| status == D40_DMA_SUSPENDED) |
| break; |
| } |
| |
| if (i == D40_SUSPEND_MAX_IT) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s]: unable to suspend the chl %d (log: %d) status %x\n", |
| __func__, d40c->phy_chan->num, d40c->log_num, |
| status); |
| dump_stack(); |
| ret = -EBUSY; |
| } |
| |
| } |
| done: |
| spin_unlock_irqrestore(&d40c->base->execmd_lock, flags); |
| return ret; |
| } |
| |
| static void d40_term_all(struct d40_chan *d40c) |
| { |
| struct d40_desc *d40d; |
| unsigned long flags; |
| |
| /* Release active descriptors */ |
| while ((d40d = d40_first_active_get(d40c))) { |
| d40_desc_remove(d40d); |
| |
| /* Return desc to free-list */ |
| d40_desc_free(d40c, d40d); |
| } |
| |
| /* Release queued descriptors waiting for transfer */ |
| while ((d40d = d40_first_queued(d40c))) { |
| d40_desc_remove(d40d); |
| |
| /* Return desc to free-list */ |
| d40_desc_free(d40c, d40d); |
| } |
| |
| spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); |
| |
| d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &= |
| (~(0x1 << d40c->lcla.dst_id)); |
| d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &= |
| (~(0x1 << d40c->lcla.src_id)); |
| |
| d40c->lcla.src_id = -1; |
| d40c->lcla.dst_id = -1; |
| |
| spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); |
| |
| d40c->pending_tx = 0; |
| d40c->busy = false; |
| } |
| |
| static void d40_config_set_event(struct d40_chan *d40c, bool do_enable) |
| { |
| u32 val; |
| unsigned long flags; |
| |
| /* Notice, that disable requires the physical channel to be stopped */ |
| if (do_enable) |
| val = D40_ACTIVATE_EVENTLINE; |
| else |
| val = D40_DEACTIVATE_EVENTLINE; |
| |
| spin_lock_irqsave(&d40c->phy_chan->lock, flags); |
| |
| /* Enable event line connected to device (or memcpy) */ |
| if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || |
| (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) { |
| u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); |
| |
| writel((val << D40_EVENTLINE_POS(event)) | |
| ~D40_EVENTLINE_MASK(event), |
| d40c->base->virtbase + D40_DREG_PCBASE + |
| d40c->phy_chan->num * D40_DREG_PCDELTA + |
| D40_CHAN_REG_SSLNK); |
| } |
| if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) { |
| u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); |
| |
| writel((val << D40_EVENTLINE_POS(event)) | |
| ~D40_EVENTLINE_MASK(event), |
| d40c->base->virtbase + D40_DREG_PCBASE + |
| d40c->phy_chan->num * D40_DREG_PCDELTA + |
| D40_CHAN_REG_SDLNK); |
| } |
| |
| spin_unlock_irqrestore(&d40c->phy_chan->lock, flags); |
| } |
| |
| static u32 d40_chan_has_events(struct d40_chan *d40c) |
| { |
| u32 val = 0; |
| |
| /* If SSLNK or SDLNK is zero all events are disabled */ |
| if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || |
| (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) |
| val = readl(d40c->base->virtbase + D40_DREG_PCBASE + |
| d40c->phy_chan->num * D40_DREG_PCDELTA + |
| D40_CHAN_REG_SSLNK); |
| |
| if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) |
| val = readl(d40c->base->virtbase + D40_DREG_PCBASE + |
| d40c->phy_chan->num * D40_DREG_PCDELTA + |
| D40_CHAN_REG_SDLNK); |
| return val; |
| } |
| |
| static void d40_config_enable_lidx(struct d40_chan *d40c) |
| { |
| /* Set LIDX for lcla */ |
| writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) & |
| D40_SREG_ELEM_LOG_LIDX_MASK, |
| d40c->base->virtbase + D40_DREG_PCBASE + |
| d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT); |
| |
| writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) & |
| D40_SREG_ELEM_LOG_LIDX_MASK, |
| d40c->base->virtbase + D40_DREG_PCBASE + |
| d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT); |
| } |
| |
| static int d40_config_write(struct d40_chan *d40c) |
| { |
| u32 addr_base; |
| u32 var; |
| int res; |
| |
| res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); |
| if (res) |
| return res; |
| |
| /* Odd addresses are even addresses + 4 */ |
| addr_base = (d40c->phy_chan->num % 2) * 4; |
| /* Setup channel mode to logical or physical */ |
| var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) << |
| D40_CHAN_POS(d40c->phy_chan->num); |
| writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base); |
| |
| /* Setup operational mode option register */ |
| var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) & |
| 0x3) << D40_CHAN_POS(d40c->phy_chan->num); |
| |
| writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base); |
| |
| if (d40c->log_num != D40_PHY_CHAN) { |
| /* Set default config for CFG reg */ |
| writel(d40c->src_def_cfg, |
| d40c->base->virtbase + D40_DREG_PCBASE + |
| d40c->phy_chan->num * D40_DREG_PCDELTA + |
| D40_CHAN_REG_SSCFG); |
| writel(d40c->dst_def_cfg, |
| d40c->base->virtbase + D40_DREG_PCBASE + |
| d40c->phy_chan->num * D40_DREG_PCDELTA + |
| D40_CHAN_REG_SDCFG); |
| |
| d40_config_enable_lidx(d40c); |
| } |
| return res; |
| } |
| |
| static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) |
| { |
| if (d40d->lli_phy.dst && d40d->lli_phy.src) { |
| d40_phy_lli_write(d40c->base->virtbase, |
| d40c->phy_chan->num, |
| d40d->lli_phy.dst, |
| d40d->lli_phy.src); |
| } else if (d40d->lli_log.dst && d40d->lli_log.src) { |
| struct d40_log_lli *src = d40d->lli_log.src; |
| struct d40_log_lli *dst = d40d->lli_log.dst; |
| int s; |
| |
| src += d40d->lli_count; |
| dst += d40d->lli_count; |
| s = d40_log_lli_write(d40c->lcpa, |
| d40c->lcla.src, d40c->lcla.dst, |
| dst, src, |
| d40c->base->plat_data->llis_per_log); |
| |
| /* If s equals to zero, the job is not linked */ |
| if (s > 0) { |
| (void) dma_map_single(d40c->base->dev, d40c->lcla.src, |
| s * sizeof(struct d40_log_lli), |
| DMA_TO_DEVICE); |
| (void) dma_map_single(d40c->base->dev, d40c->lcla.dst, |
| s * sizeof(struct d40_log_lli), |
| DMA_TO_DEVICE); |
| } |
| } |
| d40d->lli_count += d40d->lli_tx_len; |
| } |
| |
| static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) |
| { |
| struct d40_chan *d40c = container_of(tx->chan, |
| struct d40_chan, |
| chan); |
| struct d40_desc *d40d = container_of(tx, struct d40_desc, txd); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| tx->cookie = d40_assign_cookie(d40c, d40d); |
| |
| d40_desc_queue(d40c, d40d); |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| |
| return tx->cookie; |
| } |
| |
| static int d40_start(struct d40_chan *d40c) |
| { |
| if (d40c->base->rev == 0) { |
| int err; |
| |
| if (d40c->log_num != D40_PHY_CHAN) { |
| err = d40_channel_execute_command(d40c, |
| D40_DMA_SUSPEND_REQ); |
| if (err) |
| return err; |
| } |
| } |
| |
| if (d40c->log_num != D40_PHY_CHAN) |
| d40_config_set_event(d40c, true); |
| |
| return d40_channel_execute_command(d40c, D40_DMA_RUN); |
| } |
| |
| static struct d40_desc *d40_queue_start(struct d40_chan *d40c) |
| { |
| struct d40_desc *d40d; |
| int err; |
| |
| /* Start queued jobs, if any */ |
| d40d = d40_first_queued(d40c); |
| |
| if (d40d != NULL) { |
| d40c->busy = true; |
| |
| /* Remove from queue */ |
| d40_desc_remove(d40d); |
| |
| /* Add to active queue */ |
| d40_desc_submit(d40c, d40d); |
| |
| /* Initiate DMA job */ |
| d40_desc_load(d40c, d40d); |
| |
| /* Start dma job */ |
| err = d40_start(d40c); |
| |
| if (err) |
| return NULL; |
| } |
| |
| return d40d; |
| } |
| |
| /* called from interrupt context */ |
| static void dma_tc_handle(struct d40_chan *d40c) |
| { |
| struct d40_desc *d40d; |
| |
| if (!d40c->phy_chan) |
| return; |
| |
| /* Get first active entry from list */ |
| d40d = d40_first_active_get(d40c); |
| |
| if (d40d == NULL) |
| return; |
| |
| if (d40d->lli_count < d40d->lli_len) { |
| |
| d40_desc_load(d40c, d40d); |
| /* Start dma job */ |
| (void) d40_start(d40c); |
| return; |
| } |
| |
| if (d40_queue_start(d40c) == NULL) |
| d40c->busy = false; |
| |
| d40c->pending_tx++; |
| tasklet_schedule(&d40c->tasklet); |
| |
| } |
| |
| static void dma_tasklet(unsigned long data) |
| { |
| struct d40_chan *d40c = (struct d40_chan *) data; |
| struct d40_desc *d40d_fin; |
| unsigned long flags; |
| dma_async_tx_callback callback; |
| void *callback_param; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| /* Get first active entry from list */ |
| d40d_fin = d40_first_active_get(d40c); |
| |
| if (d40d_fin == NULL) |
| goto err; |
| |
| d40c->completed = d40d_fin->txd.cookie; |
| |
| /* |
| * If terminating a channel pending_tx is set to zero. |
| * This prevents any finished active jobs to return to the client. |
| */ |
| if (d40c->pending_tx == 0) { |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return; |
| } |
| |
| /* Callback to client */ |
| callback = d40d_fin->txd.callback; |
| callback_param = d40d_fin->txd.callback_param; |
| |
| if (async_tx_test_ack(&d40d_fin->txd)) { |
| d40_pool_lli_free(d40d_fin); |
| d40_desc_remove(d40d_fin); |
| /* Return desc to free-list */ |
| d40_desc_free(d40c, d40d_fin); |
| } else { |
| if (!d40d_fin->is_in_client_list) { |
| d40_desc_remove(d40d_fin); |
| list_add_tail(&d40d_fin->node, &d40c->client); |
| d40d_fin->is_in_client_list = true; |
| } |
| } |
| |
| d40c->pending_tx--; |
| |
| if (d40c->pending_tx) |
| tasklet_schedule(&d40c->tasklet); |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| |
| if (callback) |
| callback(callback_param); |
| |
| return; |
| |
| err: |
| /* Rescue manouver if receiving double interrupts */ |
| if (d40c->pending_tx > 0) |
| d40c->pending_tx--; |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| } |
| |
| static irqreturn_t d40_handle_interrupt(int irq, void *data) |
| { |
| static const struct d40_interrupt_lookup il[] = { |
| {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0}, |
| {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32}, |
| {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64}, |
| {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96}, |
| {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0}, |
| {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32}, |
| {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64}, |
| {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96}, |
| {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN}, |
| {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN}, |
| }; |
| |
| int i; |
| u32 regs[ARRAY_SIZE(il)]; |
| u32 tmp; |
| u32 idx; |
| u32 row; |
| long chan = -1; |
| struct d40_chan *d40c; |
| unsigned long flags; |
| struct d40_base *base = data; |
| |
| spin_lock_irqsave(&base->interrupt_lock, flags); |
| |
| /* Read interrupt status of both logical and physical channels */ |
| for (i = 0; i < ARRAY_SIZE(il); i++) |
| regs[i] = readl(base->virtbase + il[i].src); |
| |
| for (;;) { |
| |
| chan = find_next_bit((unsigned long *)regs, |
| BITS_PER_LONG * ARRAY_SIZE(il), chan + 1); |
| |
| /* No more set bits found? */ |
| if (chan == BITS_PER_LONG * ARRAY_SIZE(il)) |
| break; |
| |
| row = chan / BITS_PER_LONG; |
| idx = chan & (BITS_PER_LONG - 1); |
| |
| /* ACK interrupt */ |
| tmp = readl(base->virtbase + il[row].clr); |
| tmp |= 1 << idx; |
| writel(tmp, base->virtbase + il[row].clr); |
| |
| if (il[row].offset == D40_PHY_CHAN) |
| d40c = base->lookup_phy_chans[idx]; |
| else |
| d40c = base->lookup_log_chans[il[row].offset + idx]; |
| spin_lock(&d40c->lock); |
| |
| if (!il[row].is_error) |
| dma_tc_handle(d40c); |
| else |
| dev_err(base->dev, |
| "[%s] IRQ chan: %ld offset %d idx %d\n", |
| __func__, chan, il[row].offset, idx); |
| |
| spin_unlock(&d40c->lock); |
| } |
| |
| spin_unlock_irqrestore(&base->interrupt_lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| static int d40_validate_conf(struct d40_chan *d40c, |
| struct stedma40_chan_cfg *conf) |
| { |
| int res = 0; |
| u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type); |
| u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type); |
| bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE) |
| == STEDMA40_CHANNEL_IN_LOG_MODE; |
| |
| if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH && |
| dst_event_group == STEDMA40_DEV_DST_MEMORY) { |
| dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n", |
| __func__); |
| res = -EINVAL; |
| } |
| |
| if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM && |
| src_event_group == STEDMA40_DEV_SRC_MEMORY) { |
| dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n", |
| __func__); |
| res = -EINVAL; |
| } |
| |
| if (src_event_group == STEDMA40_DEV_SRC_MEMORY && |
| dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] No event line\n", __func__); |
| res = -EINVAL; |
| } |
| |
| if (conf->dir == STEDMA40_PERIPH_TO_PERIPH && |
| (src_event_group != dst_event_group)) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Invalid event group\n", __func__); |
| res = -EINVAL; |
| } |
| |
| if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) { |
| /* |
| * DMAC HW supports it. Will be added to this driver, |
| * in case any dma client requires it. |
| */ |
| dev_err(&d40c->chan.dev->device, |
| "[%s] periph to periph not supported\n", |
| __func__); |
| res = -EINVAL; |
| } |
| |
| return res; |
| } |
| |
| static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src, |
| int log_event_line, bool is_log) |
| { |
| unsigned long flags; |
| spin_lock_irqsave(&phy->lock, flags); |
| if (!is_log) { |
| /* Physical interrupts are masked per physical full channel */ |
| if (phy->allocated_src == D40_ALLOC_FREE && |
| phy->allocated_dst == D40_ALLOC_FREE) { |
| phy->allocated_dst = D40_ALLOC_PHY; |
| phy->allocated_src = D40_ALLOC_PHY; |
| goto found; |
| } else |
| goto not_found; |
| } |
| |
| /* Logical channel */ |
| if (is_src) { |
| if (phy->allocated_src == D40_ALLOC_PHY) |
| goto not_found; |
| |
| if (phy->allocated_src == D40_ALLOC_FREE) |
| phy->allocated_src = D40_ALLOC_LOG_FREE; |
| |
| if (!(phy->allocated_src & (1 << log_event_line))) { |
| phy->allocated_src |= 1 << log_event_line; |
| goto found; |
| } else |
| goto not_found; |
| } else { |
| if (phy->allocated_dst == D40_ALLOC_PHY) |
| goto not_found; |
| |
| if (phy->allocated_dst == D40_ALLOC_FREE) |
| phy->allocated_dst = D40_ALLOC_LOG_FREE; |
| |
| if (!(phy->allocated_dst & (1 << log_event_line))) { |
| phy->allocated_dst |= 1 << log_event_line; |
| goto found; |
| } else |
| goto not_found; |
| } |
| |
| not_found: |
| spin_unlock_irqrestore(&phy->lock, flags); |
| return false; |
| found: |
| spin_unlock_irqrestore(&phy->lock, flags); |
| return true; |
| } |
| |
| static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src, |
| int log_event_line) |
| { |
| unsigned long flags; |
| bool is_free = false; |
| |
| spin_lock_irqsave(&phy->lock, flags); |
| if (!log_event_line) { |
| /* Physical interrupts are masked per physical full channel */ |
| phy->allocated_dst = D40_ALLOC_FREE; |
| phy->allocated_src = D40_ALLOC_FREE; |
| is_free = true; |
| goto out; |
| } |
| |
| /* Logical channel */ |
| if (is_src) { |
| phy->allocated_src &= ~(1 << log_event_line); |
| if (phy->allocated_src == D40_ALLOC_LOG_FREE) |
| phy->allocated_src = D40_ALLOC_FREE; |
| } else { |
| phy->allocated_dst &= ~(1 << log_event_line); |
| if (phy->allocated_dst == D40_ALLOC_LOG_FREE) |
| phy->allocated_dst = D40_ALLOC_FREE; |
| } |
| |
| is_free = ((phy->allocated_src | phy->allocated_dst) == |
| D40_ALLOC_FREE); |
| |
| out: |
| spin_unlock_irqrestore(&phy->lock, flags); |
| |
| return is_free; |
| } |
| |
| static int d40_allocate_channel(struct d40_chan *d40c) |
| { |
| int dev_type; |
| int event_group; |
| int event_line; |
| struct d40_phy_res *phys; |
| int i; |
| int j; |
| int log_num; |
| bool is_src; |
| bool is_log = (d40c->dma_cfg.channel_type & |
| STEDMA40_CHANNEL_IN_OPER_MODE) |
| == STEDMA40_CHANNEL_IN_LOG_MODE; |
| |
| |
| phys = d40c->base->phy_res; |
| |
| if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { |
| dev_type = d40c->dma_cfg.src_dev_type; |
| log_num = 2 * dev_type; |
| is_src = true; |
| } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || |
| d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { |
| /* dst event lines are used for logical memcpy */ |
| dev_type = d40c->dma_cfg.dst_dev_type; |
| log_num = 2 * dev_type + 1; |
| is_src = false; |
| } else |
| return -EINVAL; |
| |
| event_group = D40_TYPE_TO_GROUP(dev_type); |
| event_line = D40_TYPE_TO_EVENT(dev_type); |
| |
| if (!is_log) { |
| if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { |
| /* Find physical half channel */ |
| for (i = 0; i < d40c->base->num_phy_chans; i++) { |
| |
| if (d40_alloc_mask_set(&phys[i], is_src, |
| 0, is_log)) |
| goto found_phy; |
| } |
| } else |
| for (j = 0; j < d40c->base->num_phy_chans; j += 8) { |
| int phy_num = j + event_group * 2; |
| for (i = phy_num; i < phy_num + 2; i++) { |
| if (d40_alloc_mask_set(&phys[i], |
| is_src, |
| 0, |
| is_log)) |
| goto found_phy; |
| } |
| } |
| return -EINVAL; |
| found_phy: |
| d40c->phy_chan = &phys[i]; |
| d40c->log_num = D40_PHY_CHAN; |
| goto out; |
| } |
| if (dev_type == -1) |
| return -EINVAL; |
| |
| /* Find logical channel */ |
| for (j = 0; j < d40c->base->num_phy_chans; j += 8) { |
| int phy_num = j + event_group * 2; |
| /* |
| * Spread logical channels across all available physical rather |
| * than pack every logical channel at the first available phy |
| * channels. |
| */ |
| if (is_src) { |
| for (i = phy_num; i < phy_num + 2; i++) { |
| if (d40_alloc_mask_set(&phys[i], is_src, |
| event_line, is_log)) |
| goto found_log; |
| } |
| } else { |
| for (i = phy_num + 1; i >= phy_num; i--) { |
| if (d40_alloc_mask_set(&phys[i], is_src, |
| event_line, is_log)) |
| goto found_log; |
| } |
| } |
| } |
| return -EINVAL; |
| |
| found_log: |
| d40c->phy_chan = &phys[i]; |
| d40c->log_num = log_num; |
| out: |
| |
| if (is_log) |
| d40c->base->lookup_log_chans[d40c->log_num] = d40c; |
| else |
| d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c; |
| |
| return 0; |
| |
| } |
| |
| static int d40_config_memcpy(struct d40_chan *d40c) |
| { |
| dma_cap_mask_t cap = d40c->chan.device->cap_mask; |
| |
| if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) { |
| d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log; |
| d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY; |
| d40c->dma_cfg.dst_dev_type = d40c->base->plat_data-> |
| memcpy[d40c->chan.chan_id]; |
| |
| } else if (dma_has_cap(DMA_MEMCPY, cap) && |
| dma_has_cap(DMA_SLAVE, cap)) { |
| d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy; |
| } else { |
| dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| |
| static int d40_free_dma(struct d40_chan *d40c) |
| { |
| |
| int res = 0; |
| u32 event; |
| struct d40_phy_res *phy = d40c->phy_chan; |
| bool is_src; |
| struct d40_desc *d; |
| struct d40_desc *_d; |
| |
| |
| /* Terminate all queued and active transfers */ |
| d40_term_all(d40c); |
| |
| /* Release client owned descriptors */ |
| if (!list_empty(&d40c->client)) |
| list_for_each_entry_safe(d, _d, &d40c->client, node) { |
| d40_pool_lli_free(d); |
| d40_desc_remove(d); |
| /* Return desc to free-list */ |
| d40_desc_free(d40c, d); |
| } |
| |
| if (phy == NULL) { |
| dev_err(&d40c->chan.dev->device, "[%s] phy == null\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| if (phy->allocated_src == D40_ALLOC_FREE && |
| phy->allocated_dst == D40_ALLOC_FREE) { |
| dev_err(&d40c->chan.dev->device, "[%s] channel already free\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || |
| d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { |
| event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); |
| is_src = false; |
| } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { |
| event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); |
| is_src = true; |
| } else { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Unknown direction\n", __func__); |
| return -EINVAL; |
| } |
| |
| res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); |
| if (res) { |
| dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n", |
| __func__); |
| return res; |
| } |
| |
| if (d40c->log_num != D40_PHY_CHAN) { |
| /* Release logical channel, deactivate the event line */ |
| |
| d40_config_set_event(d40c, false); |
| d40c->base->lookup_log_chans[d40c->log_num] = NULL; |
| |
| /* |
| * Check if there are more logical allocation |
| * on this phy channel. |
| */ |
| if (!d40_alloc_mask_free(phy, is_src, event)) { |
| /* Resume the other logical channels if any */ |
| if (d40_chan_has_events(d40c)) { |
| res = d40_channel_execute_command(d40c, |
| D40_DMA_RUN); |
| if (res) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Executing RUN command\n", |
| __func__); |
| return res; |
| } |
| } |
| return 0; |
| } |
| } else { |
| (void) d40_alloc_mask_free(phy, is_src, 0); |
| } |
| |
| /* Release physical channel */ |
| res = d40_channel_execute_command(d40c, D40_DMA_STOP); |
| if (res) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Failed to stop channel\n", __func__); |
| return res; |
| } |
| d40c->phy_chan = NULL; |
| /* Invalidate channel type */ |
| d40c->dma_cfg.channel_type = 0; |
| d40c->base->lookup_phy_chans[phy->num] = NULL; |
| |
| return 0; |
| } |
| |
| static int d40_pause(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| int res; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); |
| if (res == 0) { |
| if (d40c->log_num != D40_PHY_CHAN) { |
| d40_config_set_event(d40c, false); |
| /* Resume the other logical channels if any */ |
| if (d40_chan_has_events(d40c)) |
| res = d40_channel_execute_command(d40c, |
| D40_DMA_RUN); |
| } |
| } |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return res; |
| } |
| |
| static bool d40_is_paused(struct d40_chan *d40c) |
| { |
| bool is_paused = false; |
| unsigned long flags; |
| void __iomem *active_reg; |
| u32 status; |
| u32 event; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| if (d40c->log_num == D40_PHY_CHAN) { |
| if (d40c->phy_chan->num % 2 == 0) |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; |
| else |
| active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; |
| |
| status = (readl(active_reg) & |
| D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> |
| D40_CHAN_POS(d40c->phy_chan->num); |
| if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) |
| is_paused = true; |
| |
| goto _exit; |
| } |
| |
| if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || |
| d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) |
| event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); |
| else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) |
| event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); |
| else { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Unknown direction\n", __func__); |
| goto _exit; |
| } |
| status = d40_chan_has_events(d40c); |
| status = (status & D40_EVENTLINE_MASK(event)) >> |
| D40_EVENTLINE_POS(event); |
| |
| if (status != D40_DMA_RUN) |
| is_paused = true; |
| _exit: |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return is_paused; |
| |
| } |
| |
| |
| static bool d40_tx_is_linked(struct d40_chan *d40c) |
| { |
| bool is_link; |
| |
| if (d40c->log_num != D40_PHY_CHAN) |
| is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK; |
| else |
| is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE + |
| d40c->phy_chan->num * D40_DREG_PCDELTA + |
| D40_CHAN_REG_SDLNK) & |
| D40_SREG_LNK_PHYS_LNK_MASK; |
| return is_link; |
| } |
| |
| static u32 d40_residue(struct d40_chan *d40c) |
| { |
| u32 num_elt; |
| |
| if (d40c->log_num != D40_PHY_CHAN) |
| num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK) |
| >> D40_MEM_LCSP2_ECNT_POS; |
| else |
| num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE + |
| d40c->phy_chan->num * D40_DREG_PCDELTA + |
| D40_CHAN_REG_SDELT) & |
| D40_SREG_ELEM_PHY_ECNT_MASK) >> |
| D40_SREG_ELEM_PHY_ECNT_POS; |
| return num_elt * (1 << d40c->dma_cfg.dst_info.data_width); |
| } |
| |
| static int d40_resume(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| int res = 0; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| if (d40c->base->rev == 0) |
| if (d40c->log_num != D40_PHY_CHAN) { |
| res = d40_channel_execute_command(d40c, |
| D40_DMA_SUSPEND_REQ); |
| goto no_suspend; |
| } |
| |
| /* If bytes left to transfer or linked tx resume job */ |
| if (d40_residue(d40c) || d40_tx_is_linked(d40c)) { |
| if (d40c->log_num != D40_PHY_CHAN) |
| d40_config_set_event(d40c, true); |
| res = d40_channel_execute_command(d40c, D40_DMA_RUN); |
| } |
| |
| no_suspend: |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return res; |
| } |
| |
| static u32 stedma40_residue(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| u32 bytes_left; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| bytes_left = d40_residue(d40c); |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| |
| return bytes_left; |
| } |
| |
| /* Public DMA functions in addition to the DMA engine framework */ |
| |
| int stedma40_set_psize(struct dma_chan *chan, |
| int src_psize, |
| int dst_psize) |
| { |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| if (d40c->log_num != D40_PHY_CHAN) { |
| d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK; |
| d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK; |
| d40c->log_def.lcsp1 |= src_psize << |
| D40_MEM_LCSP1_SCFG_PSIZE_POS; |
| d40c->log_def.lcsp3 |= dst_psize << |
| D40_MEM_LCSP1_SCFG_PSIZE_POS; |
| goto out; |
| } |
| |
| if (src_psize == STEDMA40_PSIZE_PHY_1) |
| d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS); |
| else { |
| d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS; |
| d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 << |
| D40_SREG_CFG_PSIZE_POS); |
| d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS; |
| } |
| |
| if (dst_psize == STEDMA40_PSIZE_PHY_1) |
| d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS); |
| else { |
| d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS; |
| d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 << |
| D40_SREG_CFG_PSIZE_POS); |
| d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS; |
| } |
| out: |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return 0; |
| } |
| EXPORT_SYMBOL(stedma40_set_psize); |
| |
| struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan, |
| struct scatterlist *sgl_dst, |
| struct scatterlist *sgl_src, |
| unsigned int sgl_len, |
| unsigned long dma_flags) |
| { |
| int res; |
| struct d40_desc *d40d; |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, |
| chan); |
| unsigned long flags; |
| |
| if (d40c->phy_chan == NULL) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Unallocated channel.\n", __func__); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| d40d = d40_desc_get(d40c); |
| |
| if (d40d == NULL) |
| goto err; |
| |
| d40d->lli_len = sgl_len; |
| d40d->lli_tx_len = d40d->lli_len; |
| d40d->txd.flags = dma_flags; |
| |
| if (d40c->log_num != D40_PHY_CHAN) { |
| if (d40d->lli_len > d40c->base->plat_data->llis_per_log) |
| d40d->lli_tx_len = d40c->base->plat_data->llis_per_log; |
| |
| if (sgl_len > 1) |
| /* |
| * Check if there is space available in lcla. If not, |
| * split list into 1-length and run only in lcpa |
| * space. |
| */ |
| if (d40_lcla_id_get(d40c) != 0) |
| d40d->lli_tx_len = 1; |
| |
| if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Out of memory\n", __func__); |
| goto err; |
| } |
| |
| (void) d40_log_sg_to_lli(d40c->lcla.src_id, |
| sgl_src, |
| sgl_len, |
| d40d->lli_log.src, |
| d40c->log_def.lcsp1, |
| d40c->dma_cfg.src_info.data_width, |
| dma_flags & DMA_PREP_INTERRUPT, |
| d40d->lli_tx_len, |
| d40c->base->plat_data->llis_per_log); |
| |
| (void) d40_log_sg_to_lli(d40c->lcla.dst_id, |
| sgl_dst, |
| sgl_len, |
| d40d->lli_log.dst, |
| d40c->log_def.lcsp3, |
| d40c->dma_cfg.dst_info.data_width, |
| dma_flags & DMA_PREP_INTERRUPT, |
| d40d->lli_tx_len, |
| d40c->base->plat_data->llis_per_log); |
| |
| |
| } else { |
| if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Out of memory\n", __func__); |
| goto err; |
| } |
| |
| res = d40_phy_sg_to_lli(sgl_src, |
| sgl_len, |
| 0, |
| d40d->lli_phy.src, |
| d40d->lli_phy.src_addr, |
| d40c->src_def_cfg, |
| d40c->dma_cfg.src_info.data_width, |
| d40c->dma_cfg.src_info.psize, |
| true); |
| |
| if (res < 0) |
| goto err; |
| |
| res = d40_phy_sg_to_lli(sgl_dst, |
| sgl_len, |
| 0, |
| d40d->lli_phy.dst, |
| d40d->lli_phy.dst_addr, |
| d40c->dst_def_cfg, |
| d40c->dma_cfg.dst_info.data_width, |
| d40c->dma_cfg.dst_info.psize, |
| true); |
| |
| if (res < 0) |
| goto err; |
| |
| (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src, |
| d40d->lli_pool.size, DMA_TO_DEVICE); |
| } |
| |
| dma_async_tx_descriptor_init(&d40d->txd, chan); |
| |
| d40d->txd.tx_submit = d40_tx_submit; |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| |
| return &d40d->txd; |
| err: |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return NULL; |
| } |
| EXPORT_SYMBOL(stedma40_memcpy_sg); |
| |
| bool stedma40_filter(struct dma_chan *chan, void *data) |
| { |
| struct stedma40_chan_cfg *info = data; |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| int err; |
| |
| if (data) { |
| err = d40_validate_conf(d40c, info); |
| if (!err) |
| d40c->dma_cfg = *info; |
| } else |
| err = d40_config_memcpy(d40c); |
| |
| return err == 0; |
| } |
| EXPORT_SYMBOL(stedma40_filter); |
| |
| /* DMA ENGINE functions */ |
| static int d40_alloc_chan_resources(struct dma_chan *chan) |
| { |
| int err; |
| unsigned long flags; |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| bool is_free_phy; |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| d40c->completed = chan->cookie = 1; |
| |
| /* |
| * If no dma configuration is set (channel_type == 0) |
| * use default configuration (memcpy) |
| */ |
| if (d40c->dma_cfg.channel_type == 0) { |
| err = d40_config_memcpy(d40c); |
| if (err) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Failed to configure memcpy channel\n", |
| __func__); |
| goto fail; |
| } |
| } |
| is_free_phy = (d40c->phy_chan == NULL); |
| |
| err = d40_allocate_channel(d40c); |
| if (err) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Failed to allocate channel\n", __func__); |
| goto fail; |
| } |
| |
| /* Fill in basic CFG register values */ |
| d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg, |
| &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN); |
| |
| if (d40c->log_num != D40_PHY_CHAN) { |
| d40_log_cfg(&d40c->dma_cfg, |
| &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); |
| |
| if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) |
| d40c->lcpa = d40c->base->lcpa_base + |
| d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE; |
| else |
| d40c->lcpa = d40c->base->lcpa_base + |
| d40c->dma_cfg.dst_dev_type * |
| D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA; |
| } |
| |
| /* |
| * Only write channel configuration to the DMA if the physical |
| * resource is free. In case of multiple logical channels |
| * on the same physical resource, only the first write is necessary. |
| */ |
| if (is_free_phy) { |
| err = d40_config_write(d40c); |
| if (err) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Failed to configure channel\n", |
| __func__); |
| } |
| } |
| fail: |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return err; |
| } |
| |
| static void d40_free_chan_resources(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = |
| container_of(chan, struct d40_chan, chan); |
| int err; |
| unsigned long flags; |
| |
| if (d40c->phy_chan == NULL) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Cannot free unallocated channel\n", __func__); |
| return; |
| } |
| |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| err = d40_free_dma(d40c); |
| |
| if (err) |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Failed to free channel\n", __func__); |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, |
| dma_addr_t dst, |
| dma_addr_t src, |
| size_t size, |
| unsigned long dma_flags) |
| { |
| struct d40_desc *d40d; |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, |
| chan); |
| unsigned long flags; |
| int err = 0; |
| |
| if (d40c->phy_chan == NULL) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Channel is not allocated.\n", __func__); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| d40d = d40_desc_get(d40c); |
| |
| if (d40d == NULL) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Descriptor is NULL\n", __func__); |
| goto err; |
| } |
| |
| d40d->txd.flags = dma_flags; |
| |
| dma_async_tx_descriptor_init(&d40d->txd, chan); |
| |
| d40d->txd.tx_submit = d40_tx_submit; |
| |
| if (d40c->log_num != D40_PHY_CHAN) { |
| |
| if (d40_pool_lli_alloc(d40d, 1, true) < 0) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Out of memory\n", __func__); |
| goto err; |
| } |
| d40d->lli_len = 1; |
| d40d->lli_tx_len = 1; |
| |
| d40_log_fill_lli(d40d->lli_log.src, |
| src, |
| size, |
| 0, |
| d40c->log_def.lcsp1, |
| d40c->dma_cfg.src_info.data_width, |
| false, true); |
| |
| d40_log_fill_lli(d40d->lli_log.dst, |
| dst, |
| size, |
| 0, |
| d40c->log_def.lcsp3, |
| d40c->dma_cfg.dst_info.data_width, |
| true, true); |
| |
| } else { |
| |
| if (d40_pool_lli_alloc(d40d, 1, false) < 0) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Out of memory\n", __func__); |
| goto err; |
| } |
| |
| err = d40_phy_fill_lli(d40d->lli_phy.src, |
| src, |
| size, |
| d40c->dma_cfg.src_info.psize, |
| 0, |
| d40c->src_def_cfg, |
| true, |
| d40c->dma_cfg.src_info.data_width, |
| false); |
| if (err) |
| goto err_fill_lli; |
| |
| err = d40_phy_fill_lli(d40d->lli_phy.dst, |
| dst, |
| size, |
| d40c->dma_cfg.dst_info.psize, |
| 0, |
| d40c->dst_def_cfg, |
| true, |
| d40c->dma_cfg.dst_info.data_width, |
| false); |
| |
| if (err) |
| goto err_fill_lli; |
| |
| (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src, |
| d40d->lli_pool.size, DMA_TO_DEVICE); |
| } |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return &d40d->txd; |
| |
| err_fill_lli: |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Failed filling in PHY LLI\n", __func__); |
| d40_pool_lli_free(d40d); |
| err: |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return NULL; |
| } |
| |
| static int d40_prep_slave_sg_log(struct d40_desc *d40d, |
| struct d40_chan *d40c, |
| struct scatterlist *sgl, |
| unsigned int sg_len, |
| enum dma_data_direction direction, |
| unsigned long dma_flags) |
| { |
| dma_addr_t dev_addr = 0; |
| int total_size; |
| |
| if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Out of memory\n", __func__); |
| return -ENOMEM; |
| } |
| |
| d40d->lli_len = sg_len; |
| if (d40d->lli_len <= d40c->base->plat_data->llis_per_log) |
| d40d->lli_tx_len = d40d->lli_len; |
| else |
| d40d->lli_tx_len = d40c->base->plat_data->llis_per_log; |
| |
| if (sg_len > 1) |
| /* |
| * Check if there is space available in lcla. |
| * If not, split list into 1-length and run only |
| * in lcpa space. |
| */ |
| if (d40_lcla_id_get(d40c) != 0) |
| d40d->lli_tx_len = 1; |
| |
| if (direction == DMA_FROM_DEVICE) |
| if (d40c->runtime_addr) |
| dev_addr = d40c->runtime_addr; |
| else |
| dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type]; |
| else if (direction == DMA_TO_DEVICE) |
| if (d40c->runtime_addr) |
| dev_addr = d40c->runtime_addr; |
| else |
| dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type]; |
| |
| else |
| return -EINVAL; |
| |
| total_size = d40_log_sg_to_dev(&d40c->lcla, |
| sgl, sg_len, |
| &d40d->lli_log, |
| &d40c->log_def, |
| d40c->dma_cfg.src_info.data_width, |
| d40c->dma_cfg.dst_info.data_width, |
| direction, |
| dma_flags & DMA_PREP_INTERRUPT, |
| dev_addr, d40d->lli_tx_len, |
| d40c->base->plat_data->llis_per_log); |
| |
| if (total_size < 0) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int d40_prep_slave_sg_phy(struct d40_desc *d40d, |
| struct d40_chan *d40c, |
| struct scatterlist *sgl, |
| unsigned int sgl_len, |
| enum dma_data_direction direction, |
| unsigned long dma_flags) |
| { |
| dma_addr_t src_dev_addr; |
| dma_addr_t dst_dev_addr; |
| int res; |
| |
| if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Out of memory\n", __func__); |
| return -ENOMEM; |
| } |
| |
| d40d->lli_len = sgl_len; |
| d40d->lli_tx_len = sgl_len; |
| |
| if (direction == DMA_FROM_DEVICE) { |
| dst_dev_addr = 0; |
| if (d40c->runtime_addr) |
| src_dev_addr = d40c->runtime_addr; |
| else |
| src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type]; |
| } else if (direction == DMA_TO_DEVICE) { |
| if (d40c->runtime_addr) |
| dst_dev_addr = d40c->runtime_addr; |
| else |
| dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type]; |
| src_dev_addr = 0; |
| } else |
| return -EINVAL; |
| |
| res = d40_phy_sg_to_lli(sgl, |
| sgl_len, |
| src_dev_addr, |
| d40d->lli_phy.src, |
| d40d->lli_phy.src_addr, |
| d40c->src_def_cfg, |
| d40c->dma_cfg.src_info.data_width, |
| d40c->dma_cfg.src_info.psize, |
| true); |
| if (res < 0) |
| return res; |
| |
| res = d40_phy_sg_to_lli(sgl, |
| sgl_len, |
| dst_dev_addr, |
| d40d->lli_phy.dst, |
| d40d->lli_phy.dst_addr, |
| d40c->dst_def_cfg, |
| d40c->dma_cfg.dst_info.data_width, |
| d40c->dma_cfg.dst_info.psize, |
| true); |
| if (res < 0) |
| return res; |
| |
| (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src, |
| d40d->lli_pool.size, DMA_TO_DEVICE); |
| return 0; |
| } |
| |
| static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan, |
| struct scatterlist *sgl, |
| unsigned int sg_len, |
| enum dma_data_direction direction, |
| unsigned long dma_flags) |
| { |
| struct d40_desc *d40d; |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, |
| chan); |
| unsigned long flags; |
| int err; |
| |
| if (d40c->phy_chan == NULL) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Cannot prepare unallocated channel\n", __func__); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (d40c->dma_cfg.pre_transfer) |
| d40c->dma_cfg.pre_transfer(chan, |
| d40c->dma_cfg.pre_transfer_data, |
| sg_dma_len(sgl)); |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| d40d = d40_desc_get(d40c); |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| |
| if (d40d == NULL) |
| return NULL; |
| |
| if (d40c->log_num != D40_PHY_CHAN) |
| err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len, |
| direction, dma_flags); |
| else |
| err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len, |
| direction, dma_flags); |
| if (err) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Failed to prepare %s slave sg job: %d\n", |
| __func__, |
| d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err); |
| return NULL; |
| } |
| |
| d40d->txd.flags = dma_flags; |
| |
| dma_async_tx_descriptor_init(&d40d->txd, chan); |
| |
| d40d->txd.tx_submit = d40_tx_submit; |
| |
| return &d40d->txd; |
| } |
| |
| static enum dma_status d40_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| dma_cookie_t last_used; |
| dma_cookie_t last_complete; |
| int ret; |
| |
| if (d40c->phy_chan == NULL) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Cannot read status of unallocated channel\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| last_complete = d40c->completed; |
| last_used = chan->cookie; |
| |
| if (d40_is_paused(d40c)) |
| ret = DMA_PAUSED; |
| else |
| ret = dma_async_is_complete(cookie, last_complete, last_used); |
| |
| dma_set_tx_state(txstate, last_complete, last_used, |
| stedma40_residue(chan)); |
| |
| return ret; |
| } |
| |
| static void d40_issue_pending(struct dma_chan *chan) |
| { |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| unsigned long flags; |
| |
| if (d40c->phy_chan == NULL) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Channel is not allocated!\n", __func__); |
| return; |
| } |
| |
| spin_lock_irqsave(&d40c->lock, flags); |
| |
| /* Busy means that pending jobs are already being processed */ |
| if (!d40c->busy) |
| (void) d40_queue_start(d40c); |
| |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| } |
| |
| /* Runtime reconfiguration extension */ |
| static void d40_set_runtime_config(struct dma_chan *chan, |
| struct dma_slave_config *config) |
| { |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| struct stedma40_chan_cfg *cfg = &d40c->dma_cfg; |
| enum dma_slave_buswidth config_addr_width; |
| dma_addr_t config_addr; |
| u32 config_maxburst; |
| enum stedma40_periph_data_width addr_width; |
| int psize; |
| |
| if (config->direction == DMA_FROM_DEVICE) { |
| dma_addr_t dev_addr_rx = |
| d40c->base->plat_data->dev_rx[cfg->src_dev_type]; |
| |
| config_addr = config->src_addr; |
| if (dev_addr_rx) |
| dev_dbg(d40c->base->dev, |
| "channel has a pre-wired RX address %08x " |
| "overriding with %08x\n", |
| dev_addr_rx, config_addr); |
| if (cfg->dir != STEDMA40_PERIPH_TO_MEM) |
| dev_dbg(d40c->base->dev, |
| "channel was not configured for peripheral " |
| "to memory transfer (%d) overriding\n", |
| cfg->dir); |
| cfg->dir = STEDMA40_PERIPH_TO_MEM; |
| |
| config_addr_width = config->src_addr_width; |
| config_maxburst = config->src_maxburst; |
| |
| } else if (config->direction == DMA_TO_DEVICE) { |
| dma_addr_t dev_addr_tx = |
| d40c->base->plat_data->dev_tx[cfg->dst_dev_type]; |
| |
| config_addr = config->dst_addr; |
| if (dev_addr_tx) |
| dev_dbg(d40c->base->dev, |
| "channel has a pre-wired TX address %08x " |
| "overriding with %08x\n", |
| dev_addr_tx, config_addr); |
| if (cfg->dir != STEDMA40_MEM_TO_PERIPH) |
| dev_dbg(d40c->base->dev, |
| "channel was not configured for memory " |
| "to peripheral transfer (%d) overriding\n", |
| cfg->dir); |
| cfg->dir = STEDMA40_MEM_TO_PERIPH; |
| |
| config_addr_width = config->dst_addr_width; |
| config_maxburst = config->dst_maxburst; |
| |
| } else { |
| dev_err(d40c->base->dev, |
| "unrecognized channel direction %d\n", |
| config->direction); |
| return; |
| } |
| |
| switch (config_addr_width) { |
| case DMA_SLAVE_BUSWIDTH_1_BYTE: |
| addr_width = STEDMA40_BYTE_WIDTH; |
| break; |
| case DMA_SLAVE_BUSWIDTH_2_BYTES: |
| addr_width = STEDMA40_HALFWORD_WIDTH; |
| break; |
| case DMA_SLAVE_BUSWIDTH_4_BYTES: |
| addr_width = STEDMA40_WORD_WIDTH; |
| break; |
| case DMA_SLAVE_BUSWIDTH_8_BYTES: |
| addr_width = STEDMA40_DOUBLEWORD_WIDTH; |
| break; |
| default: |
| dev_err(d40c->base->dev, |
| "illegal peripheral address width " |
| "requested (%d)\n", |
| config->src_addr_width); |
| return; |
| } |
| |
| if (config_maxburst >= 16) |
| psize = STEDMA40_PSIZE_LOG_16; |
| else if (config_maxburst >= 8) |
| psize = STEDMA40_PSIZE_LOG_8; |
| else if (config_maxburst >= 4) |
| psize = STEDMA40_PSIZE_LOG_4; |
| else |
| psize = STEDMA40_PSIZE_LOG_1; |
| |
| /* Set up all the endpoint configs */ |
| cfg->src_info.data_width = addr_width; |
| cfg->src_info.psize = psize; |
| cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN; |
| cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL; |
| cfg->dst_info.data_width = addr_width; |
| cfg->dst_info.psize = psize; |
| cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN; |
| cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL; |
| |
| /* These settings will take precedence later */ |
| d40c->runtime_addr = config_addr; |
| d40c->runtime_direction = config->direction; |
| dev_dbg(d40c->base->dev, |
| "configured channel %s for %s, data width %d, " |
| "maxburst %d bytes, LE, no flow control\n", |
| dma_chan_name(chan), |
| (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX", |
| config_addr_width, |
| config_maxburst); |
| } |
| |
| static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, |
| unsigned long arg) |
| { |
| unsigned long flags; |
| struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); |
| |
| if (d40c->phy_chan == NULL) { |
| dev_err(&d40c->chan.dev->device, |
| "[%s] Channel is not allocated!\n", __func__); |
| return -EINVAL; |
| } |
| |
| switch (cmd) { |
| case DMA_TERMINATE_ALL: |
| spin_lock_irqsave(&d40c->lock, flags); |
| d40_term_all(d40c); |
| spin_unlock_irqrestore(&d40c->lock, flags); |
| return 0; |
| case DMA_PAUSE: |
| return d40_pause(chan); |
| case DMA_RESUME: |
| return d40_resume(chan); |
| case DMA_SLAVE_CONFIG: |
| d40_set_runtime_config(chan, |
| (struct dma_slave_config *) arg); |
| return 0; |
| default: |
| break; |
| } |
| |
| /* Other commands are unimplemented */ |
| return -ENXIO; |
| } |
| |
| /* Initialization functions */ |
| |
| static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, |
| struct d40_chan *chans, int offset, |
| int num_chans) |
| { |
| int i = 0; |
| struct d40_chan *d40c; |
| |
| INIT_LIST_HEAD(&dma->channels); |
| |
| for (i = offset; i < offset + num_chans; i++) { |
| d40c = &chans[i]; |
| d40c->base = base; |
| d40c->chan.device = dma; |
| |
| /* Invalidate lcla element */ |
| d40c->lcla.src_id = -1; |
| d40c->lcla.dst_id = -1; |
| |
| spin_lock_init(&d40c->lock); |
| |
| d40c->log_num = D40_PHY_CHAN; |
| |
| INIT_LIST_HEAD(&d40c->active); |
| INIT_LIST_HEAD(&d40c->queue); |
| INIT_LIST_HEAD(&d40c->client); |
| |
| tasklet_init(&d40c->tasklet, dma_tasklet, |
| (unsigned long) d40c); |
| |
| list_add_tail(&d40c->chan.device_node, |
| &dma->channels); |
| } |
| } |
| |
| static int __init d40_dmaengine_init(struct d40_base *base, |
| int num_reserved_chans) |
| { |
| int err ; |
| |
| d40_chan_init(base, &base->dma_slave, base->log_chans, |
| 0, base->num_log_chans); |
| |
| dma_cap_zero(base->dma_slave.cap_mask); |
| dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); |
| |
| base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources; |
| base->dma_slave.device_free_chan_resources = d40_free_chan_resources; |
| base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy; |
| base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg; |
| base->dma_slave.device_tx_status = d40_tx_status; |
| base->dma_slave.device_issue_pending = d40_issue_pending; |
| base->dma_slave.device_control = d40_control; |
| base->dma_slave.dev = base->dev; |
| |
| err = dma_async_device_register(&base->dma_slave); |
| |
| if (err) { |
| dev_err(base->dev, |
| "[%s] Failed to register slave channels\n", |
| __func__); |
| goto failure1; |
| } |
| |
| d40_chan_init(base, &base->dma_memcpy, base->log_chans, |
| base->num_log_chans, base->plat_data->memcpy_len); |
| |
| dma_cap_zero(base->dma_memcpy.cap_mask); |
| dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); |
| |
| base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources; |
| base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources; |
| base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy; |
| base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg; |
| base->dma_memcpy.device_tx_status = d40_tx_status; |
| base->dma_memcpy.device_issue_pending = d40_issue_pending; |
| base->dma_memcpy.device_control = d40_control; |
| base->dma_memcpy.dev = base->dev; |
| /* |
| * This controller can only access address at even |
| * 32bit boundaries, i.e. 2^2 |
| */ |
| base->dma_memcpy.copy_align = 2; |
| |
| err = dma_async_device_register(&base->dma_memcpy); |
| |
| if (err) { |
| dev_err(base->dev, |
| "[%s] Failed to regsiter memcpy only channels\n", |
| __func__); |
| goto failure2; |
| } |
| |
| d40_chan_init(base, &base->dma_both, base->phy_chans, |
| 0, num_reserved_chans); |
| |
| dma_cap_zero(base->dma_both.cap_mask); |
| dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); |
| dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); |
| |
| base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources; |
| base->dma_both.device_free_chan_resources = d40_free_chan_resources; |
| base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy; |
| base->dma_both.device_prep_slave_sg = d40_prep_slave_sg; |
| base->dma_both.device_tx_status = d40_tx_status; |
| base->dma_both.device_issue_pending = d40_issue_pending; |
| base->dma_both.device_control = d40_control; |
| base->dma_both.dev = base->dev; |
| base->dma_both.copy_align = 2; |
| err = dma_async_device_register(&base->dma_both); |
| |
| if (err) { |
| dev_err(base->dev, |
| "[%s] Failed to register logical and physical capable channels\n", |
| __func__); |
| goto failure3; |
| } |
| return 0; |
| failure3: |
| dma_async_device_unregister(&base->dma_memcpy); |
| failure2: |
| dma_async_device_unregister(&base->dma_slave); |
| failure1: |
| return err; |
| } |
| |
| /* Initialization functions. */ |
| |
| static int __init d40_phy_res_init(struct d40_base *base) |
| { |
| int i; |
| int num_phy_chans_avail = 0; |
| u32 val[2]; |
| int odd_even_bit = -2; |
| |
| val[0] = readl(base->virtbase + D40_DREG_PRSME); |
| val[1] = readl(base->virtbase + D40_DREG_PRSMO); |
| |
| for (i = 0; i < base->num_phy_chans; i++) { |
| base->phy_res[i].num = i; |
| odd_even_bit += 2 * ((i % 2) == 0); |
| if (((val[i % 2] >> odd_even_bit) & 3) == 1) { |
| /* Mark security only channels as occupied */ |
| base->phy_res[i].allocated_src = D40_ALLOC_PHY; |
| base->phy_res[i].allocated_dst = D40_ALLOC_PHY; |
| } else { |
| base->phy_res[i].allocated_src = D40_ALLOC_FREE; |
| base->phy_res[i].allocated_dst = D40_ALLOC_FREE; |
| num_phy_chans_avail++; |
| } |
| spin_lock_init(&base->phy_res[i].lock); |
| } |
| |
| /* Mark disabled channels as occupied */ |
| for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) { |
| base->phy_res[i].allocated_src = D40_ALLOC_PHY; |
| base->phy_res[i].allocated_dst = D40_ALLOC_PHY; |
| num_phy_chans_avail--; |
| } |
| |
| dev_info(base->dev, "%d of %d physical DMA channels available\n", |
| num_phy_chans_avail, base->num_phy_chans); |
| |
| /* Verify settings extended vs standard */ |
| val[0] = readl(base->virtbase + D40_DREG_PRTYP); |
| |
| for (i = 0; i < base->num_phy_chans; i++) { |
| |
| if (base->phy_res[i].allocated_src == D40_ALLOC_FREE && |
| (val[0] & 0x3) != 1) |
| dev_info(base->dev, |
| "[%s] INFO: channel %d is misconfigured (%d)\n", |
| __func__, i, val[0] & 0x3); |
| |
| val[0] = val[0] >> 2; |
| } |
| |
| return num_phy_chans_avail; |
| } |
| |
| static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) |
| { |
| static const struct d40_reg_val dma_id_regs[] = { |
| /* Peripheral Id */ |
| { .reg = D40_DREG_PERIPHID0, .val = 0x0040}, |
| { .reg = D40_DREG_PERIPHID1, .val = 0x0000}, |
| /* |
| * D40_DREG_PERIPHID2 Depends on HW revision: |
| * MOP500/HREF ED has 0x0008, |
| * ? has 0x0018, |
| * HREF V1 has 0x0028 |
| */ |
| { .reg = D40_DREG_PERIPHID3, .val = 0x0000}, |
| |
| /* PCell Id */ |
| { .reg = D40_DREG_CELLID0, .val = 0x000d}, |
| { .reg = D40_DREG_CELLID1, .val = 0x00f0}, |
| { .reg = D40_DREG_CELLID2, .val = 0x0005}, |
| { .reg = D40_DREG_CELLID3, .val = 0x00b1} |
| }; |
| struct stedma40_platform_data *plat_data; |
| struct clk *clk = NULL; |
| void __iomem *virtbase = NULL; |
| struct resource *res = NULL; |
| struct d40_base *base = NULL; |
| int num_log_chans = 0; |
| int num_phy_chans; |
| int i; |
| u32 val; |
| |
| clk = clk_get(&pdev->dev, NULL); |
| |
| if (IS_ERR(clk)) { |
| dev_err(&pdev->dev, "[%s] No matching clock found\n", |
| __func__); |
| goto failure; |
| } |
| |
| clk_enable(clk); |
| |
| /* Get IO for DMAC base address */ |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); |
| if (!res) |
| goto failure; |
| |
| if (request_mem_region(res->start, resource_size(res), |
| D40_NAME " I/O base") == NULL) |
| goto failure; |
| |
| virtbase = ioremap(res->start, resource_size(res)); |
| if (!virtbase) |
| goto failure; |
| |
| /* HW version check */ |
| for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) { |
| if (dma_id_regs[i].val != |
| readl(virtbase + dma_id_regs[i].reg)) { |
| dev_err(&pdev->dev, |
| "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n", |
| __func__, |
| dma_id_regs[i].val, |
| dma_id_regs[i].reg, |
| readl(virtbase + dma_id_regs[i].reg)); |
| goto failure; |
| } |
| } |
| |
| /* Get silicon revision */ |
| val = readl(virtbase + D40_DREG_PERIPHID2); |
| |
| if ((val & 0xf) != D40_PERIPHID2_DESIGNER) { |
| dev_err(&pdev->dev, |
| "[%s] Unknown designer! Got %x wanted %x\n", |
| __func__, val & 0xf, D40_PERIPHID2_DESIGNER); |
| goto failure; |
| } |
| |
| /* The number of physical channels on this HW */ |
| num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; |
| |
| dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n", |
| (val >> 4) & 0xf, res->start); |
| |
| plat_data = pdev->dev.platform_data; |
| |
| /* Count the number of logical channels in use */ |
| for (i = 0; i < plat_data->dev_len; i++) |
| if (plat_data->dev_rx[i] != 0) |
| num_log_chans++; |
| |
| for (i = 0; i < plat_data->dev_len; i++) |
| if (plat_data->dev_tx[i] != 0) |
| num_log_chans++; |
| |
| base = kzalloc(ALIGN(sizeof(struct d40_base), 4) + |
| (num_phy_chans + num_log_chans + plat_data->memcpy_len) * |
| sizeof(struct d40_chan), GFP_KERNEL); |
| |
| if (base == NULL) { |
| dev_err(&pdev->dev, "[%s] Out of memory\n", __func__); |
| goto failure; |
| } |
| |
| base->rev = (val >> 4) & 0xf; |
| base->clk = clk; |
| base->num_phy_chans = num_phy_chans; |
| base->num_log_chans = num_log_chans; |
| base->phy_start = res->start; |
| base->phy_size = resource_size(res); |
| base->virtbase = virtbase; |
| base->plat_data = plat_data; |
| base->dev = &pdev->dev; |
| base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4); |
| base->log_chans = &base->phy_chans[num_phy_chans]; |
| |
| base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res), |
| GFP_KERNEL); |
| if (!base->phy_res) |
| goto failure; |
| |
| base->lookup_phy_chans = kzalloc(num_phy_chans * |
| sizeof(struct d40_chan *), |
| GFP_KERNEL); |
| if (!base->lookup_phy_chans) |
| goto failure; |
| |
| if (num_log_chans + plat_data->memcpy_len) { |
| /* |
| * The max number of logical channels are event lines for all |
| * src devices and dst devices |
| */ |
| base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 * |
| sizeof(struct d40_chan *), |
| GFP_KERNEL); |
| if (!base->lookup_log_chans) |
| goto failure; |
| } |
| base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32), |
| GFP_KERNEL); |
| if (!base->lcla_pool.alloc_map) |
| goto failure; |
| |
| base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc), |
| 0, SLAB_HWCACHE_ALIGN, |
| NULL); |
| if (base->desc_slab == NULL) |
| goto failure; |
| |
| return base; |
| |
| failure: |
| if (clk) { |
| clk_disable(clk); |
| clk_put(clk); |
| } |
| if (virtbase) |
| iounmap(virtbase); |
| if (res) |
| release_mem_region(res->start, |
| resource_size(res)); |
| if (virtbase) |
| iounmap(virtbase); |
| |
| if (base) { |
| kfree(base->lcla_pool.alloc_map); |
| kfree(base->lookup_log_chans); |
| kfree(base->lookup_phy_chans); |
| kfree(base->phy_res); |
| kfree(base); |
| } |
| |
| return NULL; |
| } |
| |
| static void __init d40_hw_init(struct d40_base *base) |
| { |
| |
| static const struct d40_reg_val dma_init_reg[] = { |
| /* Clock every part of the DMA block from start */ |
| { .reg = D40_DREG_GCC, .val = 0x0000ff01}, |
| |
| /* Interrupts on all logical channels */ |
| { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF}, |
| { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF} |
| }; |
| int i; |
| u32 prmseo[2] = {0, 0}; |
| u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF}; |
| u32 pcmis = 0; |
| u32 pcicr = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++) |
| writel(dma_init_reg[i].val, |
| base->virtbase + dma_init_reg[i].reg); |
| |
| /* Configure all our dma channels to default settings */ |
| for (i = 0; i < base->num_phy_chans; i++) { |
| |
| activeo[i % 2] = activeo[i % 2] << 2; |
| |
| if (base->phy_res[base->num_phy_chans - i - 1].allocated_src |
| == D40_ALLOC_PHY) { |
| activeo[i % 2] |= 3; |
| continue; |
| } |
| |
| /* Enable interrupt # */ |
| pcmis = (pcmis << 1) | 1; |
| |
| /* Clear interrupt # */ |
| pcicr = (pcicr << 1) | 1; |
| |
| /* Set channel to physical mode */ |
| prmseo[i % 2] = prmseo[i % 2] << 2; |
| prmseo[i % 2] |= 1; |
| |
| } |
| |
| writel(prmseo[1], base->virtbase + D40_DREG_PRMSE); |
| writel(prmseo[0], base->virtbase + D40_DREG_PRMSO); |
| writel(activeo[1], base->virtbase + D40_DREG_ACTIVE); |
| writel(activeo[0], base->virtbase + D40_DREG_ACTIVO); |
| |
| /* Write which interrupt to enable */ |
| writel(pcmis, base->virtbase + D40_DREG_PCMIS); |
| |
| /* Write which interrupt to clear */ |
| writel(pcicr, base->virtbase + D40_DREG_PCICR); |
| |
| } |
| |
| static int __init d40_lcla_allocate(struct d40_base *base) |
| { |
| unsigned long *page_list; |
| int i, j; |
| int ret = 0; |
| |
| /* |
| * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned, |
| * To full fill this hardware requirement without wasting 256 kb |
| * we allocate pages until we get an aligned one. |
| */ |
| page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS, |
| GFP_KERNEL); |
| |
| if (!page_list) { |
| ret = -ENOMEM; |
| goto failure; |
| } |
| |
| /* Calculating how many pages that are required */ |
| base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE; |
| |
| for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) { |
| page_list[i] = __get_free_pages(GFP_KERNEL, |
| base->lcla_pool.pages); |
| if (!page_list[i]) { |
| |
| dev_err(base->dev, |
| "[%s] Failed to allocate %d pages.\n", |
| __func__, base->lcla_pool.pages); |
| |
| for (j = 0; j < i; j++) |
| free_pages(page_list[j], base->lcla_pool.pages); |
| goto failure; |
| } |
| |
| if ((virt_to_phys((void *)page_list[i]) & |
| (LCLA_ALIGNMENT - 1)) == 0) |
| break; |
| } |
| |
| for (j = 0; j < i; j++) |
| free_pages(page_list[j], base->lcla_pool.pages); |
| |
| if (i < MAX_LCLA_ALLOC_ATTEMPTS) { |
| base->lcla_pool.base = (void *)page_list[i]; |
| } else { |
| /* After many attempts, no succees with finding the correct |
| * alignment try with allocating a big buffer */ |
| dev_warn(base->dev, |
| "[%s] Failed to get %d pages @ 18 bit align.\n", |
| __func__, base->lcla_pool.pages); |
| base->lcla_pool.base_unaligned = kmalloc(SZ_1K * |
| base->num_phy_chans + |
| LCLA_ALIGNMENT, |
| GFP_KERNEL); |
| if (!base->lcla_pool.base_unaligned) { |
| ret = -ENOMEM; |
| goto failure; |
| } |
| |
| base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned, |
| LCLA_ALIGNMENT); |
| } |
| |
| writel(virt_to_phys(base->lcla_pool.base), |
| base->virtbase + D40_DREG_LCLA); |
| failure: |
| kfree(page_list); |
| return ret; |
| } |
| |
| static int __init d40_probe(struct platform_device *pdev) |
| { |
| int err; |
| int ret = -ENOENT; |
| struct d40_base *base; |
| struct resource *res = NULL; |
| int num_reserved_chans; |
| u32 val; |
| |
| base = d40_hw_detect_init(pdev); |
| |
| if (!base) |
| goto failure; |
| |
| num_reserved_chans = d40_phy_res_init(base); |
| |
| platform_set_drvdata(pdev, base); |
| |
| spin_lock_init(&base->interrupt_lock); |
| spin_lock_init(&base->execmd_lock); |
| |
| /* Get IO for logical channel parameter address */ |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa"); |
| if (!res) { |
| ret = -ENOENT; |
| dev_err(&pdev->dev, |
| "[%s] No \"lcpa\" memory resource\n", |
| __func__); |
| goto failure; |
| } |
| base->lcpa_size = resource_size(res); |
| base->phy_lcpa = res->start; |
| |
| if (request_mem_region(res->start, resource_size(res), |
| D40_NAME " I/O lcpa") == NULL) { |
| ret = -EBUSY; |
| dev_err(&pdev->dev, |
| "[%s] Failed to request LCPA region 0x%x-0x%x\n", |
| __func__, res->start, res->end); |
| goto failure; |
| } |
| |
| /* We make use of ESRAM memory for this. */ |
| val = readl(base->virtbase + D40_DREG_LCPA); |
| if (res->start != val && val != 0) { |
| dev_warn(&pdev->dev, |
| "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n", |
| __func__, val, res->start); |
| } else |
| writel(res->start, base->virtbase + D40_DREG_LCPA); |
| |
| base->lcpa_base = ioremap(res->start, resource_size(res)); |
| if (!base->lcpa_base) { |
| ret = -ENOMEM; |
| dev_err(&pdev->dev, |
| "[%s] Failed to ioremap LCPA region\n", |
| __func__); |
| goto failure; |
| } |
| |
| ret = d40_lcla_allocate(base); |
| if (ret) { |
| dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n", |
| __func__); |
| goto failure; |
| } |
| |
| spin_lock_init(&base->lcla_pool.lock); |
| |
| base->lcla_pool.num_blocks = base->num_phy_chans; |
| |
| base->irq = platform_get_irq(pdev, 0); |
| |
| ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base); |
| |
| if (ret) { |
| dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__); |
| goto failure; |
| } |
| |
| err = d40_dmaengine_init(base, num_reserved_chans); |
| if (err) |
| goto failure; |
| |
| d40_hw_init(base); |
| |
| dev_info(base->dev, "initialized\n"); |
| return 0; |
| |
| failure: |
| if (base) { |
| if (base->desc_slab) |
| kmem_cache_destroy(base->desc_slab); |
| if (base->virtbase) |
| iounmap(base->virtbase); |
| if (!base->lcla_pool.base_unaligned && base->lcla_pool.base) |
| free_pages((unsigned long)base->lcla_pool.base, |
| base->lcla_pool.pages); |
| if (base->lcla_pool.base_unaligned) |
| kfree(base->lcla_pool.base_unaligned); |
| if (base->phy_lcpa) |
| release_mem_region(base->phy_lcpa, |
| base->lcpa_size); |
| if (base->phy_start) |
| release_mem_region(base->phy_start, |
| base->phy_size); |
| if (base->clk) { |
| clk_disable(base->clk); |
| clk_put(base->clk); |
| } |
| |
| kfree(base->lcla_pool.alloc_map); |
| kfree(base->lookup_log_chans); |
| kfree(base->lookup_phy_chans); |
| kfree(base->phy_res); |
| kfree(base); |
| } |
| |
| dev_err(&pdev->dev, "[%s] probe failed\n", __func__); |
| return ret; |
| } |
| |
| static struct platform_driver d40_driver = { |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = D40_NAME, |
| }, |
| }; |
| |
| int __init stedma40_init(void) |
| { |
| return platform_driver_probe(&d40_driver, d40_probe); |
| } |
| arch_initcall(stedma40_init); |