blob: 0f093f14d3482394630b66c8586da5beb455d8c4 [file] [log] [blame]
/*
* NVM Express device driver
* Copyright (c) 2011-2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/aer.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/hdreg.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kdev_t.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/poison.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/t10-pi.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <asm/unaligned.h>
#include "nvme.h"
#define NVME_Q_DEPTH 1024
#define NVME_AQ_DEPTH 256
#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
/*
* We handle AEN commands ourselves and don't even let the
* block layer know about them.
*/
#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
static int use_threaded_interrupts;
module_param(use_threaded_interrupts, int, 0);
static bool use_cmb_sqes = true;
module_param(use_cmb_sqes, bool, 0644);
MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
static struct workqueue_struct *nvme_workq;
struct nvme_dev;
struct nvme_queue;
static int nvme_reset(struct nvme_dev *dev);
static void nvme_process_cq(struct nvme_queue *nvmeq);
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
/*
* Represents an NVM Express device. Each nvme_dev is a PCI function.
*/
struct nvme_dev {
struct nvme_queue **queues;
struct blk_mq_tag_set tagset;
struct blk_mq_tag_set admin_tagset;
u32 __iomem *dbs;
struct device *dev;
struct dma_pool *prp_page_pool;
struct dma_pool *prp_small_pool;
unsigned queue_count;
unsigned online_queues;
unsigned max_qid;
int q_depth;
u32 db_stride;
struct msix_entry *entry;
void __iomem *bar;
struct work_struct reset_work;
struct work_struct remove_work;
struct timer_list watchdog_timer;
struct mutex shutdown_lock;
bool subsystem;
void __iomem *cmb;
dma_addr_t cmb_dma_addr;
u64 cmb_size;
u32 cmbsz;
struct nvme_ctrl ctrl;
struct completion ioq_wait;
};
static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
{
return container_of(ctrl, struct nvme_dev, ctrl);
}
/*
* An NVM Express queue. Each device has at least two (one for admin
* commands and one for I/O commands).
*/
struct nvme_queue {
struct device *q_dmadev;
struct nvme_dev *dev;
char irqname[24]; /* nvme4294967295-65535\0 */
spinlock_t q_lock;
struct nvme_command *sq_cmds;
struct nvme_command __iomem *sq_cmds_io;
volatile struct nvme_completion *cqes;
struct blk_mq_tags **tags;
dma_addr_t sq_dma_addr;
dma_addr_t cq_dma_addr;
u32 __iomem *q_db;
u16 q_depth;
s16 cq_vector;
u16 sq_tail;
u16 cq_head;
u16 qid;
u8 cq_phase;
u8 cqe_seen;
};
/*
* The nvme_iod describes the data in an I/O, including the list of PRP
* entries. You can't see it in this data structure because C doesn't let
* me express that. Use nvme_init_iod to ensure there's enough space
* allocated to store the PRP list.
*/
struct nvme_iod {
struct nvme_queue *nvmeq;
int aborted;
int npages; /* In the PRP list. 0 means small pool in use */
int nents; /* Used in scatterlist */
int length; /* Of data, in bytes */
dma_addr_t first_dma;
struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
struct scatterlist *sg;
struct scatterlist inline_sg[0];
};
/*
* Check we didin't inadvertently grow the command struct
*/
static inline void _nvme_check_size(void)
{
BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
}
/*
* Max size of iod being embedded in the request payload
*/
#define NVME_INT_PAGES 2
#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
/*
* Will slightly overestimate the number of pages needed. This is OK
* as it only leads to a small amount of wasted memory for the lifetime of
* the I/O.
*/
static int nvme_npages(unsigned size, struct nvme_dev *dev)
{
unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
dev->ctrl.page_size);
return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
}
static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
unsigned int size, unsigned int nseg)
{
return sizeof(__le64 *) * nvme_npages(size, dev) +
sizeof(struct scatterlist) * nseg;
}
static unsigned int nvme_cmd_size(struct nvme_dev *dev)
{
return sizeof(struct nvme_iod) +
nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
}
static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_dev *dev = data;
struct nvme_queue *nvmeq = dev->queues[0];
WARN_ON(hctx_idx != 0);
WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
WARN_ON(nvmeq->tags);
hctx->driver_data = nvmeq;
nvmeq->tags = &dev->admin_tagset.tags[0];
return 0;
}
static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
struct nvme_queue *nvmeq = hctx->driver_data;
nvmeq->tags = NULL;
}
static int nvme_admin_init_request(void *data, struct request *req,
unsigned int hctx_idx, unsigned int rq_idx,
unsigned int numa_node)
{
struct nvme_dev *dev = data;
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = dev->queues[0];
BUG_ON(!nvmeq);
iod->nvmeq = nvmeq;
return 0;
}
static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_dev *dev = data;
struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
if (!nvmeq->tags)
nvmeq->tags = &dev->tagset.tags[hctx_idx];
WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
hctx->driver_data = nvmeq;
return 0;
}
static int nvme_init_request(void *data, struct request *req,
unsigned int hctx_idx, unsigned int rq_idx,
unsigned int numa_node)
{
struct nvme_dev *dev = data;
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
BUG_ON(!nvmeq);
iod->nvmeq = nvmeq;
return 0;
}
/**
* __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
* @nvmeq: The queue to use
* @cmd: The command to send
*
* Safe to use from interrupt context
*/
static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
struct nvme_command *cmd)
{
u16 tail = nvmeq->sq_tail;
if (nvmeq->sq_cmds_io)
memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
else
memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
if (++tail == nvmeq->q_depth)
tail = 0;
writel(tail, nvmeq->q_db);
nvmeq->sq_tail = tail;
}
static __le64 **iod_list(struct request *req)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
return (__le64 **)(iod->sg + req->nr_phys_segments);
}
static int nvme_init_iod(struct request *rq, unsigned size,
struct nvme_dev *dev)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
int nseg = rq->nr_phys_segments;
if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
if (!iod->sg)
return BLK_MQ_RQ_QUEUE_BUSY;
} else {
iod->sg = iod->inline_sg;
}
iod->aborted = 0;
iod->npages = -1;
iod->nents = 0;
iod->length = size;
return 0;
}
static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
const int last_prp = dev->ctrl.page_size / 8 - 1;
int i;
__le64 **list = iod_list(req);
dma_addr_t prp_dma = iod->first_dma;
nvme_cleanup_cmd(req);
if (iod->npages == 0)
dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
for (i = 0; i < iod->npages; i++) {
__le64 *prp_list = list[i];
dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
prp_dma = next_prp_dma;
}
if (iod->sg != iod->inline_sg)
kfree(iod->sg);
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
{
if (be32_to_cpu(pi->ref_tag) == v)
pi->ref_tag = cpu_to_be32(p);
}
static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
{
if (be32_to_cpu(pi->ref_tag) == p)
pi->ref_tag = cpu_to_be32(v);
}
/**
* nvme_dif_remap - remaps ref tags to bip seed and physical lba
*
* The virtual start sector is the one that was originally submitted by the
* block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
* start sector may be different. Remap protection information to match the
* physical LBA on writes, and back to the original seed on reads.
*
* Type 0 and 3 do not have a ref tag, so no remapping required.
*/
static void nvme_dif_remap(struct request *req,
void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
{
struct nvme_ns *ns = req->rq_disk->private_data;
struct bio_integrity_payload *bip;
struct t10_pi_tuple *pi;
void *p, *pmap;
u32 i, nlb, ts, phys, virt;
if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
return;
bip = bio_integrity(req->bio);
if (!bip)
return;
pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
p = pmap;
virt = bip_get_seed(bip);
phys = nvme_block_nr(ns, blk_rq_pos(req));
nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ts = ns->disk->queue->integrity.tuple_size;
for (i = 0; i < nlb; i++, virt++, phys++) {
pi = (struct t10_pi_tuple *)p;
dif_swap(phys, virt, pi);
p += ts;
}
kunmap_atomic(pmap);
}
#else /* CONFIG_BLK_DEV_INTEGRITY */
static void nvme_dif_remap(struct request *req,
void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
{
}
static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
{
}
static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
{
}
#endif
static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
int total_len)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct dma_pool *pool;
int length = total_len;
struct scatterlist *sg = iod->sg;
int dma_len = sg_dma_len(sg);
u64 dma_addr = sg_dma_address(sg);
u32 page_size = dev->ctrl.page_size;
int offset = dma_addr & (page_size - 1);
__le64 *prp_list;
__le64 **list = iod_list(req);
dma_addr_t prp_dma;
int nprps, i;
length -= (page_size - offset);
if (length <= 0)
return true;
dma_len -= (page_size - offset);
if (dma_len) {
dma_addr += (page_size - offset);
} else {
sg = sg_next(sg);
dma_addr = sg_dma_address(sg);
dma_len = sg_dma_len(sg);
}
if (length <= page_size) {
iod->first_dma = dma_addr;
return true;
}
nprps = DIV_ROUND_UP(length, page_size);
if (nprps <= (256 / 8)) {
pool = dev->prp_small_pool;
iod->npages = 0;
} else {
pool = dev->prp_page_pool;
iod->npages = 1;
}
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
if (!prp_list) {
iod->first_dma = dma_addr;
iod->npages = -1;
return false;
}
list[0] = prp_list;
iod->first_dma = prp_dma;
i = 0;
for (;;) {
if (i == page_size >> 3) {
__le64 *old_prp_list = prp_list;
prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
if (!prp_list)
return false;
list[iod->npages++] = prp_list;
prp_list[0] = old_prp_list[i - 1];
old_prp_list[i - 1] = cpu_to_le64(prp_dma);
i = 1;
}
prp_list[i++] = cpu_to_le64(dma_addr);
dma_len -= page_size;
dma_addr += page_size;
length -= page_size;
if (length <= 0)
break;
if (dma_len > 0)
continue;
BUG_ON(dma_len < 0);
sg = sg_next(sg);
dma_addr = sg_dma_address(sg);
dma_len = sg_dma_len(sg);
}
return true;
}
static int nvme_map_data(struct nvme_dev *dev, struct request *req,
unsigned size, struct nvme_command *cmnd)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct request_queue *q = req->q;
enum dma_data_direction dma_dir = rq_data_dir(req) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE;
int ret = BLK_MQ_RQ_QUEUE_ERROR;
sg_init_table(iod->sg, req->nr_phys_segments);
iod->nents = blk_rq_map_sg(q, req, iod->sg);
if (!iod->nents)
goto out;
ret = BLK_MQ_RQ_QUEUE_BUSY;
if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
goto out;
if (!nvme_setup_prps(dev, req, size))
goto out_unmap;
ret = BLK_MQ_RQ_QUEUE_ERROR;
if (blk_integrity_rq(req)) {
if (blk_rq_count_integrity_sg(q, req->bio) != 1)
goto out_unmap;
sg_init_table(&iod->meta_sg, 1);
if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
goto out_unmap;
if (rq_data_dir(req))
nvme_dif_remap(req, nvme_dif_prep);
if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
goto out_unmap;
}
cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
if (blk_integrity_rq(req))
cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
return BLK_MQ_RQ_QUEUE_OK;
out_unmap:
dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
out:
return ret;
}
static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
enum dma_data_direction dma_dir = rq_data_dir(req) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE;
if (iod->nents) {
dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
if (blk_integrity_rq(req)) {
if (!rq_data_dir(req))
nvme_dif_remap(req, nvme_dif_complete);
dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
}
}
nvme_free_iod(dev, req);
}
/*
* NOTE: ns is NULL when called on the admin queue.
*/
static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct nvme_ns *ns = hctx->queue->queuedata;
struct nvme_queue *nvmeq = hctx->driver_data;
struct nvme_dev *dev = nvmeq->dev;
struct request *req = bd->rq;
struct nvme_command cmnd;
unsigned map_len;
int ret = BLK_MQ_RQ_QUEUE_OK;
/*
* If formated with metadata, require the block layer provide a buffer
* unless this namespace is formated such that the metadata can be
* stripped/generated by the controller with PRACT=1.
*/
if (ns && ns->ms && !blk_integrity_rq(req)) {
if (!(ns->pi_type && ns->ms == 8) &&
req->cmd_type != REQ_TYPE_DRV_PRIV) {
blk_mq_end_request(req, -EFAULT);
return BLK_MQ_RQ_QUEUE_OK;
}
}
map_len = nvme_map_len(req);
ret = nvme_init_iod(req, map_len, dev);
if (ret)
return ret;
ret = nvme_setup_cmd(ns, req, &cmnd);
if (ret)
goto out;
if (req->nr_phys_segments)
ret = nvme_map_data(dev, req, map_len, &cmnd);
if (ret)
goto out;
cmnd.common.command_id = req->tag;
blk_mq_start_request(req);
spin_lock_irq(&nvmeq->q_lock);
if (unlikely(nvmeq->cq_vector < 0)) {
if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
ret = BLK_MQ_RQ_QUEUE_BUSY;
else
ret = BLK_MQ_RQ_QUEUE_ERROR;
spin_unlock_irq(&nvmeq->q_lock);
goto out;
}
__nvme_submit_cmd(nvmeq, &cmnd);
nvme_process_cq(nvmeq);
spin_unlock_irq(&nvmeq->q_lock);
return BLK_MQ_RQ_QUEUE_OK;
out:
nvme_free_iod(dev, req);
return ret;
}
static void nvme_complete_rq(struct request *req)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_dev *dev = iod->nvmeq->dev;
int error = 0;
nvme_unmap_data(dev, req);
if (unlikely(req->errors)) {
if (nvme_req_needs_retry(req, req->errors)) {
nvme_requeue_req(req);
return;
}
if (req->cmd_type == REQ_TYPE_DRV_PRIV)
error = req->errors;
else
error = nvme_error_status(req->errors);
}
if (unlikely(iod->aborted)) {
dev_warn(dev->ctrl.device,
"completing aborted command with status: %04x\n",
req->errors);
}
blk_mq_end_request(req, error);
}
/* We read the CQE phase first to check if the rest of the entry is valid */
static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
u16 phase)
{
return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
}
static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
{
u16 head, phase;
head = nvmeq->cq_head;
phase = nvmeq->cq_phase;
while (nvme_cqe_valid(nvmeq, head, phase)) {
struct nvme_completion cqe = nvmeq->cqes[head];
struct request *req;
if (++head == nvmeq->q_depth) {
head = 0;
phase = !phase;
}
if (tag && *tag == cqe.command_id)
*tag = -1;
if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
dev_warn(nvmeq->dev->ctrl.device,
"invalid id %d completed on queue %d\n",
cqe.command_id, le16_to_cpu(cqe.sq_id));
continue;
}
/*
* AEN requests are special as they don't time out and can
* survive any kind of queue freeze and often don't respond to
* aborts. We don't even bother to allocate a struct request
* for them but rather special case them here.
*/
if (unlikely(nvmeq->qid == 0 &&
cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
continue;
}
req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
memcpy(req->special, &cqe, sizeof(cqe));
blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
}
/* If the controller ignores the cq head doorbell and continuously
* writes to the queue, it is theoretically possible to wrap around
* the queue twice and mistakenly return IRQ_NONE. Linux only
* requires that 0.1% of your interrupts are handled, so this isn't
* a big problem.
*/
if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
return;
if (likely(nvmeq->cq_vector >= 0))
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
nvmeq->cq_head = head;
nvmeq->cq_phase = phase;
nvmeq->cqe_seen = 1;
}
static void nvme_process_cq(struct nvme_queue *nvmeq)
{
__nvme_process_cq(nvmeq, NULL);
}
static irqreturn_t nvme_irq(int irq, void *data)
{
irqreturn_t result;
struct nvme_queue *nvmeq = data;
spin_lock(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
nvmeq->cqe_seen = 0;
spin_unlock(&nvmeq->q_lock);
return result;
}
static irqreturn_t nvme_irq_check(int irq, void *data)
{
struct nvme_queue *nvmeq = data;
if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
return IRQ_WAKE_THREAD;
return IRQ_NONE;
}
static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
{
struct nvme_queue *nvmeq = hctx->driver_data;
if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
spin_lock_irq(&nvmeq->q_lock);
__nvme_process_cq(nvmeq, &tag);
spin_unlock_irq(&nvmeq->q_lock);
if (tag == -1)
return 1;
}
return 0;
}
static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
{
struct nvme_dev *dev = to_nvme_dev(ctrl);
struct nvme_queue *nvmeq = dev->queues[0];
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.common.opcode = nvme_admin_async_event;
c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
spin_lock_irq(&nvmeq->q_lock);
__nvme_submit_cmd(nvmeq, &c);
spin_unlock_irq(&nvmeq->q_lock);
}
static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.delete_queue.opcode = opcode;
c.delete_queue.qid = cpu_to_le16(id);
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
}
static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
/*
* Note: we (ab)use the fact the the prp fields survive if no data
* is attached to the request.
*/
memset(&c, 0, sizeof(c));
c.create_cq.opcode = nvme_admin_create_cq;
c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
c.create_cq.cqid = cpu_to_le16(qid);
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_cq.cq_flags = cpu_to_le16(flags);
c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
}
static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
/*
* Note: we (ab)use the fact the the prp fields survive if no data
* is attached to the request.
*/
memset(&c, 0, sizeof(c));
c.create_sq.opcode = nvme_admin_create_sq;
c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
c.create_sq.sqid = cpu_to_le16(qid);
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_sq.sq_flags = cpu_to_le16(flags);
c.create_sq.cqid = cpu_to_le16(qid);
return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
}
static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
{
return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
}
static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
{
return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
}
static void abort_endio(struct request *req, int error)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = iod->nvmeq;
u16 status = req->errors;
dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
atomic_inc(&nvmeq->dev->ctrl.abort_limit);
blk_mq_free_request(req);
}
static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
{
struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = iod->nvmeq;
struct nvme_dev *dev = nvmeq->dev;
struct request *abort_req;
struct nvme_command cmd;
/*
* Shutdown immediately if controller times out while starting. The
* reset work will see the pci device disabled when it gets the forced
* cancellation error. All outstanding requests are completed on
* shutdown, so we return BLK_EH_HANDLED.
*/
if (dev->ctrl.state == NVME_CTRL_RESETTING) {
dev_warn(dev->ctrl.device,
"I/O %d QID %d timeout, disable controller\n",
req->tag, nvmeq->qid);
nvme_dev_disable(dev, false);
req->errors = NVME_SC_CANCELLED;
return BLK_EH_HANDLED;
}
/*
* Shutdown the controller immediately and schedule a reset if the
* command was already aborted once before and still hasn't been
* returned to the driver, or if this is the admin queue.
*/
if (!nvmeq->qid || iod->aborted) {
dev_warn(dev->ctrl.device,
"I/O %d QID %d timeout, reset controller\n",
req->tag, nvmeq->qid);
nvme_dev_disable(dev, false);
queue_work(nvme_workq, &dev->reset_work);
/*
* Mark the request as handled, since the inline shutdown
* forces all outstanding requests to complete.
*/
req->errors = NVME_SC_CANCELLED;
return BLK_EH_HANDLED;
}
iod->aborted = 1;
if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
atomic_inc(&dev->ctrl.abort_limit);
return BLK_EH_RESET_TIMER;
}
memset(&cmd, 0, sizeof(cmd));
cmd.abort.opcode = nvme_admin_abort_cmd;
cmd.abort.cid = req->tag;
cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
dev_warn(nvmeq->dev->ctrl.device,
"I/O %d QID %d timeout, aborting\n",
req->tag, nvmeq->qid);
abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
BLK_MQ_REQ_NOWAIT);
if (IS_ERR(abort_req)) {
atomic_inc(&dev->ctrl.abort_limit);
return BLK_EH_RESET_TIMER;
}
abort_req->timeout = ADMIN_TIMEOUT;
abort_req->end_io_data = NULL;
blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
/*
* The aborted req will be completed on receiving the abort req.
* We enable the timer again. If hit twice, it'll cause a device reset,
* as the device then is in a faulty state.
*/
return BLK_EH_RESET_TIMER;
}
static void nvme_cancel_io(struct request *req, void *data, bool reserved)
{
int status;
if (!blk_mq_request_started(req))
return;
dev_dbg_ratelimited(((struct nvme_dev *) data)->ctrl.device,
"Cancelling I/O %d", req->tag);
status = NVME_SC_ABORT_REQ;
if (blk_queue_dying(req->q))
status |= NVME_SC_DNR;
blk_mq_complete_request(req, status);
}
static void nvme_free_queue(struct nvme_queue *nvmeq)
{
dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
if (nvmeq->sq_cmds)
dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
nvmeq->sq_cmds, nvmeq->sq_dma_addr);
kfree(nvmeq);
}
static void nvme_free_queues(struct nvme_dev *dev, int lowest)
{
int i;
for (i = dev->queue_count - 1; i >= lowest; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
dev->queue_count--;
dev->queues[i] = NULL;
nvme_free_queue(nvmeq);
}
}
/**
* nvme_suspend_queue - put queue into suspended state
* @nvmeq - queue to suspend
*/
static int nvme_suspend_queue(struct nvme_queue *nvmeq)
{
int vector;
spin_lock_irq(&nvmeq->q_lock);
if (nvmeq->cq_vector == -1) {
spin_unlock_irq(&nvmeq->q_lock);
return 1;
}
vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
nvmeq->dev->online_queues--;
nvmeq->cq_vector = -1;
spin_unlock_irq(&nvmeq->q_lock);
if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
irq_set_affinity_hint(vector, NULL);
free_irq(vector, nvmeq);
return 0;
}
static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
{
struct nvme_queue *nvmeq = dev->queues[0];
if (!nvmeq)
return;
if (nvme_suspend_queue(nvmeq))
return;
if (shutdown)
nvme_shutdown_ctrl(&dev->ctrl);
else
nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
dev->bar + NVME_REG_CAP));
spin_lock_irq(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
spin_unlock_irq(&nvmeq->q_lock);
}
static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
int entry_size)
{
int q_depth = dev->q_depth;
unsigned q_size_aligned = roundup(q_depth * entry_size,
dev->ctrl.page_size);
if (q_size_aligned * nr_io_queues > dev->cmb_size) {
u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
q_depth = div_u64(mem_per_q, entry_size);
/*
* Ensure the reduced q_depth is above some threshold where it
* would be better to map queues in system memory with the
* original depth
*/
if (q_depth < 64)
return -ENOMEM;
}
return q_depth;
}
static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
int qid, int depth)
{
if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
dev->ctrl.page_size);
nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
nvmeq->sq_cmds_io = dev->cmb + offset;
} else {
nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
&nvmeq->sq_dma_addr, GFP_KERNEL);
if (!nvmeq->sq_cmds)
return -ENOMEM;
}
return 0;
}
static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
int depth)
{
struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
if (!nvmeq)
return NULL;
nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
&nvmeq->cq_dma_addr, GFP_KERNEL);
if (!nvmeq->cqes)
goto free_nvmeq;
if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
goto free_cqdma;
nvmeq->q_dmadev = dev->dev;
nvmeq->dev = dev;
snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
dev->ctrl.instance, qid);
spin_lock_init(&nvmeq->q_lock);
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
nvmeq->q_depth = depth;
nvmeq->qid = qid;
nvmeq->cq_vector = -1;
dev->queues[qid] = nvmeq;
dev->queue_count++;
return nvmeq;
free_cqdma:
dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
nvmeq->cq_dma_addr);
free_nvmeq:
kfree(nvmeq);
return NULL;
}
static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
const char *name)
{
if (use_threaded_interrupts)
return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
nvme_irq_check, nvme_irq, IRQF_SHARED,
name, nvmeq);
return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
IRQF_SHARED, name, nvmeq);
}
static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
{
struct nvme_dev *dev = nvmeq->dev;
spin_lock_irq(&nvmeq->q_lock);
nvmeq->sq_tail = 0;
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
dev->online_queues++;
spin_unlock_irq(&nvmeq->q_lock);
}
static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
{
struct nvme_dev *dev = nvmeq->dev;
int result;
nvmeq->cq_vector = qid - 1;
result = adapter_alloc_cq(dev, qid, nvmeq);
if (result < 0)
return result;
result = adapter_alloc_sq(dev, qid, nvmeq);
if (result < 0)
goto release_cq;
result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
if (result < 0)
goto release_sq;
nvme_init_queue(nvmeq, qid);
return result;
release_sq:
adapter_delete_sq(dev, qid);
release_cq:
adapter_delete_cq(dev, qid);
return result;
}
static struct blk_mq_ops nvme_mq_admin_ops = {
.queue_rq = nvme_queue_rq,
.complete = nvme_complete_rq,
.map_queue = blk_mq_map_queue,
.init_hctx = nvme_admin_init_hctx,
.exit_hctx = nvme_admin_exit_hctx,
.init_request = nvme_admin_init_request,
.timeout = nvme_timeout,
};
static struct blk_mq_ops nvme_mq_ops = {
.queue_rq = nvme_queue_rq,
.complete = nvme_complete_rq,
.map_queue = blk_mq_map_queue,
.init_hctx = nvme_init_hctx,
.init_request = nvme_init_request,
.timeout = nvme_timeout,
.poll = nvme_poll,
};
static void nvme_dev_remove_admin(struct nvme_dev *dev)
{
if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
/*
* If the controller was reset during removal, it's possible
* user requests may be waiting on a stopped queue. Start the
* queue to flush these to completion.
*/
blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
blk_cleanup_queue(dev->ctrl.admin_q);
blk_mq_free_tag_set(&dev->admin_tagset);
}
}
static int nvme_alloc_admin_tags(struct nvme_dev *dev)
{
if (!dev->ctrl.admin_q) {
dev->admin_tagset.ops = &nvme_mq_admin_ops;
dev->admin_tagset.nr_hw_queues = 1;
/*
* Subtract one to leave an empty queue entry for 'Full Queue'
* condition. See NVM-Express 1.2 specification, section 4.1.2.
*/
dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
dev->admin_tagset.timeout = ADMIN_TIMEOUT;
dev->admin_tagset.numa_node = dev_to_node(dev->dev);
dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
dev->admin_tagset.driver_data = dev;
if (blk_mq_alloc_tag_set(&dev->admin_tagset))
return -ENOMEM;
dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
if (IS_ERR(dev->ctrl.admin_q)) {
blk_mq_free_tag_set(&dev->admin_tagset);
return -ENOMEM;
}
if (!blk_get_queue(dev->ctrl.admin_q)) {
nvme_dev_remove_admin(dev);
dev->ctrl.admin_q = NULL;
return -ENODEV;
}
} else
blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
return 0;
}
static int nvme_configure_admin_queue(struct nvme_dev *dev)
{
int result;
u32 aqa;
u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
struct nvme_queue *nvmeq;
dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
NVME_CAP_NSSRC(cap) : 0;
if (dev->subsystem &&
(readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
result = nvme_disable_ctrl(&dev->ctrl, cap);
if (result < 0)
return result;
nvmeq = dev->queues[0];
if (!nvmeq) {
nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
if (!nvmeq)
return -ENOMEM;
}
aqa = nvmeq->q_depth - 1;
aqa |= aqa << 16;
writel(aqa, dev->bar + NVME_REG_AQA);
lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
result = nvme_enable_ctrl(&dev->ctrl, cap);
if (result)
goto free_nvmeq;
nvmeq->cq_vector = 0;
result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
if (result) {
nvmeq->cq_vector = -1;
goto free_nvmeq;
}
return result;
free_nvmeq:
nvme_free_queues(dev, 0);
return result;
}
static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
{
/* If true, indicates loss of adapter communication, possibly by a
* NVMe Subsystem reset.
*/
bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
/* If there is a reset ongoing, we shouldn't reset again. */
if (work_busy(&dev->reset_work))
return false;
/* We shouldn't reset unless the controller is on fatal error state
* _or_ if we lost the communication with it.
*/
if (!(csts & NVME_CSTS_CFS) && !nssro)
return false;
/* If PCI error recovery process is happening, we cannot reset or
* the recovery mechanism will surely fail.
*/
if (pci_channel_offline(to_pci_dev(dev->dev)))
return false;
return true;
}
static void nvme_watchdog_timer(unsigned long data)
{
struct nvme_dev *dev = (struct nvme_dev *)data;
u32 csts = readl(dev->bar + NVME_REG_CSTS);
/* Skip controllers under certain specific conditions. */
if (nvme_should_reset(dev, csts)) {
if (queue_work(nvme_workq, &dev->reset_work))
dev_warn(dev->dev,
"Failed status: 0x%x, reset controller.\n",
csts);
return;
}
mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
}
static int nvme_create_io_queues(struct nvme_dev *dev)
{
unsigned i, max;
int ret = 0;
for (i = dev->queue_count; i <= dev->max_qid; i++) {
if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
ret = -ENOMEM;
break;
}
}
max = min(dev->max_qid, dev->queue_count - 1);
for (i = dev->online_queues; i <= max; i++) {
ret = nvme_create_queue(dev->queues[i], i);
if (ret) {
nvme_free_queues(dev, i);
break;
}
}
/*
* Ignore failing Create SQ/CQ commands, we can continue with less
* than the desired aount of queues, and even a controller without
* I/O queues an still be used to issue admin commands. This might
* be useful to upgrade a buggy firmware for example.
*/
return ret >= 0 ? 0 : ret;
}
static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
{
u64 szu, size, offset;
u32 cmbloc;
resource_size_t bar_size;
struct pci_dev *pdev = to_pci_dev(dev->dev);
void __iomem *cmb;
dma_addr_t dma_addr;
if (!use_cmb_sqes)
return NULL;
dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
if (!(NVME_CMB_SZ(dev->cmbsz)))
return NULL;
cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
size = szu * NVME_CMB_SZ(dev->cmbsz);
offset = szu * NVME_CMB_OFST(cmbloc);
bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
if (offset > bar_size)
return NULL;
/*
* Controllers may support a CMB size larger than their BAR,
* for example, due to being behind a bridge. Reduce the CMB to
* the reported size of the BAR
*/
if (size > bar_size - offset)
size = bar_size - offset;
dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
cmb = ioremap_wc(dma_addr, size);
if (!cmb)
return NULL;
dev->cmb_dma_addr = dma_addr;
dev->cmb_size = size;
return cmb;
}
static inline void nvme_release_cmb(struct nvme_dev *dev)
{
if (dev->cmb) {
iounmap(dev->cmb);
dev->cmb = NULL;
}
}
static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
{
return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
}
static int nvme_setup_io_queues(struct nvme_dev *dev)
{
struct nvme_queue *adminq = dev->queues[0];
struct pci_dev *pdev = to_pci_dev(dev->dev);
int result, i, vecs, nr_io_queues, size;
nr_io_queues = num_possible_cpus();
result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
if (result < 0)
return result;
/*
* Degraded controllers might return an error when setting the queue
* count. We still want to be able to bring them online and offer
* access to the admin queue, as that might be only way to fix them up.
*/
if (result > 0) {
dev_err(dev->ctrl.device,
"Could not set queue count (%d)\n", result);
return 0;
}
if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
result = nvme_cmb_qdepth(dev, nr_io_queues,
sizeof(struct nvme_command));
if (result > 0)
dev->q_depth = result;
else
nvme_release_cmb(dev);
}
size = db_bar_size(dev, nr_io_queues);
if (size > 8192) {
iounmap(dev->bar);
do {
dev->bar = ioremap(pci_resource_start(pdev, 0), size);
if (dev->bar)
break;
if (!--nr_io_queues)
return -ENOMEM;
size = db_bar_size(dev, nr_io_queues);
} while (1);
dev->dbs = dev->bar + 4096;
adminq->q_db = dev->dbs;
}
/* Deregister the admin queue's interrupt */
free_irq(dev->entry[0].vector, adminq);
/*
* If we enable msix early due to not intx, disable it again before
* setting up the full range we need.
*/
if (pdev->msi_enabled)
pci_disable_msi(pdev);
else if (pdev->msix_enabled)
pci_disable_msix(pdev);
for (i = 0; i < nr_io_queues; i++)
dev->entry[i].entry = i;
vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
if (vecs < 0) {
vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
if (vecs < 0) {
vecs = 1;
} else {
for (i = 0; i < vecs; i++)
dev->entry[i].vector = i + pdev->irq;
}
}
/*
* Should investigate if there's a performance win from allocating
* more queues than interrupt vectors; it might allow the submission
* path to scale better, even if the receive path is limited by the
* number of interrupts.
*/
nr_io_queues = vecs;
dev->max_qid = nr_io_queues;
result = queue_request_irq(dev, adminq, adminq->irqname);
if (result) {
adminq->cq_vector = -1;
goto free_queues;
}
return nvme_create_io_queues(dev);
free_queues:
nvme_free_queues(dev, 1);
return result;
}
static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
{
struct nvme_dev *dev = to_nvme_dev(ctrl);
struct nvme_queue *nvmeq;
int i;
for (i = 0; i < dev->online_queues; i++) {
nvmeq = dev->queues[i];
if (!nvmeq->tags || !(*nvmeq->tags))
continue;
irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
blk_mq_tags_cpumask(*nvmeq->tags));
}
}
static void nvme_del_queue_end(struct request *req, int error)
{
struct nvme_queue *nvmeq = req->end_io_data;
blk_mq_free_request(req);
complete(&nvmeq->dev->ioq_wait);
}
static void nvme_del_cq_end(struct request *req, int error)
{
struct nvme_queue *nvmeq = req->end_io_data;
if (!error) {
unsigned long flags;
/*
* We might be called with the AQ q_lock held
* and the I/O queue q_lock should always
* nest inside the AQ one.
*/
spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
SINGLE_DEPTH_NESTING);
nvme_process_cq(nvmeq);
spin_unlock_irqrestore(&nvmeq->q_lock, flags);
}
nvme_del_queue_end(req, error);
}
static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
{
struct request_queue *q = nvmeq->dev->ctrl.admin_q;
struct request *req;
struct nvme_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.delete_queue.opcode = opcode;
cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
if (IS_ERR(req))
return PTR_ERR(req);
req->timeout = ADMIN_TIMEOUT;
req->end_io_data = nvmeq;
blk_execute_rq_nowait(q, NULL, req, false,
opcode == nvme_admin_delete_cq ?
nvme_del_cq_end : nvme_del_queue_end);
return 0;
}
static void nvme_disable_io_queues(struct nvme_dev *dev)
{
int pass;
unsigned long timeout;
u8 opcode = nvme_admin_delete_sq;
for (pass = 0; pass < 2; pass++) {
int sent = 0, i = dev->queue_count - 1;
reinit_completion(&dev->ioq_wait);
retry:
timeout = ADMIN_TIMEOUT;
for (; i > 0; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
if (!pass)
nvme_suspend_queue(nvmeq);
if (nvme_delete_queue(nvmeq, opcode))
break;
++sent;
}
while (sent--) {
timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
if (timeout == 0)
return;
if (i)
goto retry;
}
opcode = nvme_admin_delete_cq;
}
}
/*
* Return: error value if an error occurred setting up the queues or calling
* Identify Device. 0 if these succeeded, even if adding some of the
* namespaces failed. At the moment, these failures are silent. TBD which
* failures should be reported.
*/
static int nvme_dev_add(struct nvme_dev *dev)
{
if (!dev->ctrl.tagset) {
dev->tagset.ops = &nvme_mq_ops;
dev->tagset.nr_hw_queues = dev->online_queues - 1;
dev->tagset.timeout = NVME_IO_TIMEOUT;
dev->tagset.numa_node = dev_to_node(dev->dev);
dev->tagset.queue_depth =
min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
dev->tagset.cmd_size = nvme_cmd_size(dev);
dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
dev->tagset.driver_data = dev;
if (blk_mq_alloc_tag_set(&dev->tagset))
return 0;
dev->ctrl.tagset = &dev->tagset;
} else {
blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
/* Free previously allocated queues that are no longer usable */
nvme_free_queues(dev, dev->online_queues);
}
return 0;
}
static int nvme_pci_enable(struct nvme_dev *dev)
{
u64 cap;
int result = -ENOMEM;
struct pci_dev *pdev = to_pci_dev(dev->dev);
if (pci_enable_device_mem(pdev))
return result;
pci_set_master(pdev);
if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
goto disable;
if (readl(dev->bar + NVME_REG_CSTS) == -1) {
result = -ENODEV;
goto disable;
}
/*
* Some devices and/or platforms don't advertise or work with INTx
* interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
* adjust this later.
*/
if (pci_enable_msix(pdev, dev->entry, 1)) {
pci_enable_msi(pdev);
dev->entry[0].vector = pdev->irq;
}
if (!dev->entry[0].vector) {
result = -ENODEV;
goto disable;
}
cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
dev->dbs = dev->bar + 4096;
/*
* Temporary fix for the Apple controller found in the MacBook8,1 and
* some MacBook7,1 to avoid controller resets and data loss.
*/
if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
dev->q_depth = 2;
dev_warn(dev->dev, "detected Apple NVMe controller, set "
"queue depth=%u to work around controller resets\n",
dev->q_depth);
}
if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
dev->cmb = nvme_map_cmb(dev);
pci_enable_pcie_error_reporting(pdev);
pci_save_state(pdev);
return 0;
disable:
pci_disable_device(pdev);
return result;
}
static void nvme_dev_unmap(struct nvme_dev *dev)
{
if (dev->bar)
iounmap(dev->bar);
pci_release_regions(to_pci_dev(dev->dev));
}
static void nvme_pci_disable(struct nvme_dev *dev)
{
struct pci_dev *pdev = to_pci_dev(dev->dev);
if (pdev->msi_enabled)
pci_disable_msi(pdev);
else if (pdev->msix_enabled)
pci_disable_msix(pdev);
if (pci_is_enabled(pdev)) {
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
}
static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
{
int i;
u32 csts = -1;
del_timer_sync(&dev->watchdog_timer);
mutex_lock(&dev->shutdown_lock);
if (pci_is_enabled(to_pci_dev(dev->dev))) {
nvme_stop_queues(&dev->ctrl);
csts = readl(dev->bar + NVME_REG_CSTS);
}
if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
for (i = dev->queue_count - 1; i >= 0; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
nvme_suspend_queue(nvmeq);
}
} else {
nvme_disable_io_queues(dev);
nvme_disable_admin_queue(dev, shutdown);
}
nvme_pci_disable(dev);
blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_io, dev);
blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_io, dev);
mutex_unlock(&dev->shutdown_lock);
}
static int nvme_setup_prp_pools(struct nvme_dev *dev)
{
dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
PAGE_SIZE, PAGE_SIZE, 0);
if (!dev->prp_page_pool)
return -ENOMEM;
/* Optimisation for I/Os between 4k and 128k */
dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
256, 256, 0);
if (!dev->prp_small_pool) {
dma_pool_destroy(dev->prp_page_pool);
return -ENOMEM;
}
return 0;
}
static void nvme_release_prp_pools(struct nvme_dev *dev)
{
dma_pool_destroy(dev->prp_page_pool);
dma_pool_destroy(dev->prp_small_pool);
}
static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
{
struct nvme_dev *dev = to_nvme_dev(ctrl);
put_device(dev->dev);
if (dev->tagset.tags)
blk_mq_free_tag_set(&dev->tagset);
if (dev->ctrl.admin_q)
blk_put_queue(dev->ctrl.admin_q);
kfree(dev->queues);
kfree(dev->entry);
kfree(dev);
}
static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
{
dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
kref_get(&dev->ctrl.kref);
nvme_dev_disable(dev, false);
if (!schedule_work(&dev->remove_work))
nvme_put_ctrl(&dev->ctrl);
}
static void nvme_reset_work(struct work_struct *work)
{
struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
int result = -ENODEV;
if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
goto out;
/*
* If we're called to reset a live controller first shut it down before
* moving on.
*/
if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
nvme_dev_disable(dev, false);
if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
goto out;
result = nvme_pci_enable(dev);
if (result)
goto out;
result = nvme_configure_admin_queue(dev);
if (result)
goto out;
nvme_init_queue(dev->queues[0], 0);
result = nvme_alloc_admin_tags(dev);
if (result)
goto out;
result = nvme_init_identify(&dev->ctrl);
if (result)
goto out;
result = nvme_setup_io_queues(dev);
if (result)
goto out;
/*
* A controller that can not execute IO typically requires user
* intervention to correct. For such degraded controllers, the driver
* should not submit commands the user did not request, so skip
* registering for asynchronous event notification on this condition.
*/
if (dev->online_queues > 1)
nvme_queue_async_events(&dev->ctrl);
mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
/*
* Keep the controller around but remove all namespaces if we don't have
* any working I/O queue.
*/
if (dev->online_queues < 2) {
dev_warn(dev->ctrl.device, "IO queues not created\n");
nvme_kill_queues(&dev->ctrl);
nvme_remove_namespaces(&dev->ctrl);
} else {
nvme_start_queues(&dev->ctrl);
nvme_dev_add(dev);
}
if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
dev_warn(dev->ctrl.device, "failed to mark controller live\n");
goto out;
}
if (dev->online_queues > 1)
nvme_queue_scan(&dev->ctrl);
return;
out:
nvme_remove_dead_ctrl(dev, result);
}
static void nvme_remove_dead_ctrl_work(struct work_struct *work)
{
struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
struct pci_dev *pdev = to_pci_dev(dev->dev);
nvme_kill_queues(&dev->ctrl);
if (pci_get_drvdata(pdev))
pci_stop_and_remove_bus_device_locked(pdev);
nvme_put_ctrl(&dev->ctrl);
}
static int nvme_reset(struct nvme_dev *dev)
{
if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
return -ENODEV;
if (!queue_work(nvme_workq, &dev->reset_work))
return -EBUSY;
flush_work(&dev->reset_work);
return 0;
}
static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
{
*val = readl(to_nvme_dev(ctrl)->bar + off);
return 0;
}
static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
{
writel(val, to_nvme_dev(ctrl)->bar + off);
return 0;
}
static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
{
*val = readq(to_nvme_dev(ctrl)->bar + off);
return 0;
}
static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
{
return nvme_reset(to_nvme_dev(ctrl));
}
static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
.module = THIS_MODULE,
.reg_read32 = nvme_pci_reg_read32,
.reg_write32 = nvme_pci_reg_write32,
.reg_read64 = nvme_pci_reg_read64,
.reset_ctrl = nvme_pci_reset_ctrl,
.free_ctrl = nvme_pci_free_ctrl,
.post_scan = nvme_pci_post_scan,
.submit_async_event = nvme_pci_submit_async_event,
};
static int nvme_dev_map(struct nvme_dev *dev)
{
int bars;
struct pci_dev *pdev = to_pci_dev(dev->dev);
bars = pci_select_bars(pdev, IORESOURCE_MEM);
if (!bars)
return -ENODEV;
if (pci_request_selected_regions(pdev, bars, "nvme"))
return -ENODEV;
dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
if (!dev->bar)
goto release;
return 0;
release:
pci_release_regions(pdev);
return -ENODEV;
}
static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int node, result = -ENOMEM;
struct nvme_dev *dev;
node = dev_to_node(&pdev->dev);
if (node == NUMA_NO_NODE)
set_dev_node(&pdev->dev, 0);
dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
if (!dev)
return -ENOMEM;
dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
GFP_KERNEL, node);
if (!dev->entry)
goto free;
dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
GFP_KERNEL, node);
if (!dev->queues)
goto free;
dev->dev = get_device(&pdev->dev);
pci_set_drvdata(pdev, dev);
result = nvme_dev_map(dev);
if (result)
goto free;
INIT_WORK(&dev->reset_work, nvme_reset_work);
INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
(unsigned long)dev);
mutex_init(&dev->shutdown_lock);
init_completion(&dev->ioq_wait);
result = nvme_setup_prp_pools(dev);
if (result)
goto put_pci;
result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
id->driver_data);
if (result)
goto release_pools;
dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
queue_work(nvme_workq, &dev->reset_work);
return 0;
release_pools:
nvme_release_prp_pools(dev);
put_pci:
put_device(dev->dev);
nvme_dev_unmap(dev);
free:
kfree(dev->queues);
kfree(dev->entry);
kfree(dev);
return result;
}
static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
if (prepare)
nvme_dev_disable(dev, false);
else
queue_work(nvme_workq, &dev->reset_work);
}
static void nvme_shutdown(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
nvme_dev_disable(dev, true);
}
/*
* The driver's remove may be called on a device in a partially initialized
* state. This function must not have any dependencies on the device state in
* order to proceed.
*/
static void nvme_remove(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
pci_set_drvdata(pdev, NULL);
flush_work(&dev->reset_work);
nvme_uninit_ctrl(&dev->ctrl);
nvme_dev_disable(dev, true);
nvme_dev_remove_admin(dev);
nvme_free_queues(dev, 0);
nvme_release_cmb(dev);
nvme_release_prp_pools(dev);
nvme_dev_unmap(dev);
nvme_put_ctrl(&dev->ctrl);
}
#ifdef CONFIG_PM_SLEEP
static int nvme_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct nvme_dev *ndev = pci_get_drvdata(pdev);
nvme_dev_disable(ndev, true);
return 0;
}
static int nvme_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct nvme_dev *ndev = pci_get_drvdata(pdev);
queue_work(nvme_workq, &ndev->reset_work);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
/*
* A frozen channel requires a reset. When detected, this method will
* shutdown the controller to quiesce. The controller will be restarted
* after the slot reset through driver's slot_reset callback.
*/
dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
switch (state) {
case pci_channel_io_normal:
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
nvme_dev_disable(dev, false);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_NEED_RESET;
}
static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
dev_info(dev->ctrl.device, "restart after slot reset\n");
pci_restore_state(pdev);
queue_work(nvme_workq, &dev->reset_work);
return PCI_ERS_RESULT_RECOVERED;
}
static void nvme_error_resume(struct pci_dev *pdev)
{
pci_cleanup_aer_uncorrect_error_status(pdev);
}
static const struct pci_error_handlers nvme_err_handler = {
.error_detected = nvme_error_detected,
.slot_reset = nvme_slot_reset,
.resume = nvme_error_resume,
.reset_notify = nvme_reset_notify,
};
/* Move to pci_ids.h later */
#define PCI_CLASS_STORAGE_EXPRESS 0x010802
static const struct pci_device_id nvme_id_table[] = {
{ PCI_VDEVICE(INTEL, 0x0953),
.driver_data = NVME_QUIRK_STRIPE_SIZE |
NVME_QUIRK_DISCARD_ZEROES, },
{ PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, nvme_id_table);
static struct pci_driver nvme_driver = {
.name = "nvme",
.id_table = nvme_id_table,
.probe = nvme_probe,
.remove = nvme_remove,
.shutdown = nvme_shutdown,
.driver = {
.pm = &nvme_dev_pm_ops,
},
.err_handler = &nvme_err_handler,
};
static int __init nvme_init(void)
{
int result;
nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
if (!nvme_workq)
return -ENOMEM;
result = pci_register_driver(&nvme_driver);
if (result)
destroy_workqueue(nvme_workq);
return result;
}
static void __exit nvme_exit(void)
{
pci_unregister_driver(&nvme_driver);
destroy_workqueue(nvme_workq);
_nvme_check_size();
}
MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_init);
module_exit(nvme_exit);