| /* |
| * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_types.h" |
| #include "xfs_log.h" |
| #include "xfs_inum.h" |
| #include "xfs_trans.h" |
| #include "xfs_trans_priv.h" |
| |
| STATIC int xfs_trans_unlock_chunk(xfs_log_item_chunk_t *, |
| int, int, xfs_lsn_t); |
| |
| /* |
| * This is called to add the given log item to the transaction's |
| * list of log items. It must find a free log item descriptor |
| * or allocate a new one and add the item to that descriptor. |
| * The function returns a pointer to item descriptor used to point |
| * to the new item. The log item will now point to its new descriptor |
| * with its li_desc field. |
| */ |
| xfs_log_item_desc_t * |
| xfs_trans_add_item(xfs_trans_t *tp, xfs_log_item_t *lip) |
| { |
| xfs_log_item_desc_t *lidp; |
| xfs_log_item_chunk_t *licp; |
| int i=0; |
| |
| /* |
| * If there are no free descriptors, allocate a new chunk |
| * of them and put it at the front of the chunk list. |
| */ |
| if (tp->t_items_free == 0) { |
| licp = (xfs_log_item_chunk_t*) |
| kmem_alloc(sizeof(xfs_log_item_chunk_t), KM_SLEEP); |
| ASSERT(licp != NULL); |
| /* |
| * Initialize the chunk, and then |
| * claim the first slot in the newly allocated chunk. |
| */ |
| XFS_LIC_INIT(licp); |
| XFS_LIC_CLAIM(licp, 0); |
| licp->lic_unused = 1; |
| XFS_LIC_INIT_SLOT(licp, 0); |
| lidp = XFS_LIC_SLOT(licp, 0); |
| |
| /* |
| * Link in the new chunk and update the free count. |
| */ |
| licp->lic_next = tp->t_items.lic_next; |
| tp->t_items.lic_next = licp; |
| tp->t_items_free = XFS_LIC_NUM_SLOTS - 1; |
| |
| /* |
| * Initialize the descriptor and the generic portion |
| * of the log item. |
| * |
| * Point the new slot at this item and return it. |
| * Also point the log item at its currently active |
| * descriptor and set the item's mount pointer. |
| */ |
| lidp->lid_item = lip; |
| lidp->lid_flags = 0; |
| lidp->lid_size = 0; |
| lip->li_desc = lidp; |
| lip->li_mountp = tp->t_mountp; |
| return lidp; |
| } |
| |
| /* |
| * Find the free descriptor. It is somewhere in the chunklist |
| * of descriptors. |
| */ |
| licp = &tp->t_items; |
| while (licp != NULL) { |
| if (XFS_LIC_VACANCY(licp)) { |
| if (licp->lic_unused <= XFS_LIC_MAX_SLOT) { |
| i = licp->lic_unused; |
| ASSERT(XFS_LIC_ISFREE(licp, i)); |
| break; |
| } |
| for (i = 0; i <= XFS_LIC_MAX_SLOT; i++) { |
| if (XFS_LIC_ISFREE(licp, i)) |
| break; |
| } |
| ASSERT(i <= XFS_LIC_MAX_SLOT); |
| break; |
| } |
| licp = licp->lic_next; |
| } |
| ASSERT(licp != NULL); |
| /* |
| * If we find a free descriptor, claim it, |
| * initialize it, and return it. |
| */ |
| XFS_LIC_CLAIM(licp, i); |
| if (licp->lic_unused <= i) { |
| licp->lic_unused = i + 1; |
| XFS_LIC_INIT_SLOT(licp, i); |
| } |
| lidp = XFS_LIC_SLOT(licp, i); |
| tp->t_items_free--; |
| lidp->lid_item = lip; |
| lidp->lid_flags = 0; |
| lidp->lid_size = 0; |
| lip->li_desc = lidp; |
| lip->li_mountp = tp->t_mountp; |
| return lidp; |
| } |
| |
| /* |
| * Free the given descriptor. |
| * |
| * This requires setting the bit in the chunk's free mask corresponding |
| * to the given slot. |
| */ |
| void |
| xfs_trans_free_item(xfs_trans_t *tp, xfs_log_item_desc_t *lidp) |
| { |
| uint slot; |
| xfs_log_item_chunk_t *licp; |
| xfs_log_item_chunk_t **licpp; |
| |
| slot = XFS_LIC_DESC_TO_SLOT(lidp); |
| licp = XFS_LIC_DESC_TO_CHUNK(lidp); |
| XFS_LIC_RELSE(licp, slot); |
| lidp->lid_item->li_desc = NULL; |
| tp->t_items_free++; |
| |
| /* |
| * If there are no more used items in the chunk and this is not |
| * the chunk embedded in the transaction structure, then free |
| * the chunk. First pull it from the chunk list and then |
| * free it back to the heap. We didn't bother with a doubly |
| * linked list here because the lists should be very short |
| * and this is not a performance path. It's better to save |
| * the memory of the extra pointer. |
| * |
| * Also decrement the transaction structure's count of free items |
| * by the number in a chunk since we are freeing an empty chunk. |
| */ |
| if (XFS_LIC_ARE_ALL_FREE(licp) && (licp != &(tp->t_items))) { |
| licpp = &(tp->t_items.lic_next); |
| while (*licpp != licp) { |
| ASSERT(*licpp != NULL); |
| licpp = &((*licpp)->lic_next); |
| } |
| *licpp = licp->lic_next; |
| kmem_free(licp); |
| tp->t_items_free -= XFS_LIC_NUM_SLOTS; |
| } |
| } |
| |
| /* |
| * This is called to find the descriptor corresponding to the given |
| * log item. It returns a pointer to the descriptor. |
| * The log item MUST have a corresponding descriptor in the given |
| * transaction. This routine does not return NULL, it panics. |
| * |
| * The descriptor pointer is kept in the log item's li_desc field. |
| * Just return it. |
| */ |
| /*ARGSUSED*/ |
| xfs_log_item_desc_t * |
| xfs_trans_find_item(xfs_trans_t *tp, xfs_log_item_t *lip) |
| { |
| ASSERT(lip->li_desc != NULL); |
| |
| return lip->li_desc; |
| } |
| |
| |
| /* |
| * Return a pointer to the first descriptor in the chunk list. |
| * This does not return NULL if there are none, it panics. |
| * |
| * The first descriptor must be in either the first or second chunk. |
| * This is because the only chunk allowed to be empty is the first. |
| * All others are freed when they become empty. |
| * |
| * At some point this and xfs_trans_next_item() should be optimized |
| * to quickly look at the mask to determine if there is anything to |
| * look at. |
| */ |
| xfs_log_item_desc_t * |
| xfs_trans_first_item(xfs_trans_t *tp) |
| { |
| xfs_log_item_chunk_t *licp; |
| int i; |
| |
| licp = &tp->t_items; |
| /* |
| * If it's not in the first chunk, skip to the second. |
| */ |
| if (XFS_LIC_ARE_ALL_FREE(licp)) { |
| licp = licp->lic_next; |
| } |
| |
| /* |
| * Return the first non-free descriptor in the chunk. |
| */ |
| ASSERT(!XFS_LIC_ARE_ALL_FREE(licp)); |
| for (i = 0; i < licp->lic_unused; i++) { |
| if (XFS_LIC_ISFREE(licp, i)) { |
| continue; |
| } |
| |
| return XFS_LIC_SLOT(licp, i); |
| } |
| cmn_err(CE_WARN, "xfs_trans_first_item() -- no first item"); |
| return NULL; |
| } |
| |
| |
| /* |
| * Given a descriptor, return the next descriptor in the chunk list. |
| * This returns NULL if there are no more used descriptors in the list. |
| * |
| * We do this by first locating the chunk in which the descriptor resides, |
| * and then scanning forward in the chunk and the list for the next |
| * used descriptor. |
| */ |
| /*ARGSUSED*/ |
| xfs_log_item_desc_t * |
| xfs_trans_next_item(xfs_trans_t *tp, xfs_log_item_desc_t *lidp) |
| { |
| xfs_log_item_chunk_t *licp; |
| int i; |
| |
| licp = XFS_LIC_DESC_TO_CHUNK(lidp); |
| |
| /* |
| * First search the rest of the chunk. The for loop keeps us |
| * from referencing things beyond the end of the chunk. |
| */ |
| for (i = (int)XFS_LIC_DESC_TO_SLOT(lidp) + 1; i < licp->lic_unused; i++) { |
| if (XFS_LIC_ISFREE(licp, i)) { |
| continue; |
| } |
| |
| return XFS_LIC_SLOT(licp, i); |
| } |
| |
| /* |
| * Now search the next chunk. It must be there, because the |
| * next chunk would have been freed if it were empty. |
| * If there is no next chunk, return NULL. |
| */ |
| if (licp->lic_next == NULL) { |
| return NULL; |
| } |
| |
| licp = licp->lic_next; |
| ASSERT(!XFS_LIC_ARE_ALL_FREE(licp)); |
| for (i = 0; i < licp->lic_unused; i++) { |
| if (XFS_LIC_ISFREE(licp, i)) { |
| continue; |
| } |
| |
| return XFS_LIC_SLOT(licp, i); |
| } |
| ASSERT(0); |
| /* NOTREACHED */ |
| return NULL; /* keep gcc quite */ |
| } |
| |
| /* |
| * This is called to unlock all of the items of a transaction and to free |
| * all the descriptors of that transaction. |
| * |
| * It walks the list of descriptors and unlocks each item. It frees |
| * each chunk except that embedded in the transaction as it goes along. |
| */ |
| void |
| xfs_trans_free_items( |
| xfs_trans_t *tp, |
| int flags) |
| { |
| xfs_log_item_chunk_t *licp; |
| xfs_log_item_chunk_t *next_licp; |
| int abort; |
| |
| abort = flags & XFS_TRANS_ABORT; |
| licp = &tp->t_items; |
| /* |
| * Special case the embedded chunk so we don't free it below. |
| */ |
| if (!XFS_LIC_ARE_ALL_FREE(licp)) { |
| (void) xfs_trans_unlock_chunk(licp, 1, abort, NULLCOMMITLSN); |
| XFS_LIC_ALL_FREE(licp); |
| licp->lic_unused = 0; |
| } |
| licp = licp->lic_next; |
| |
| /* |
| * Unlock each item in each chunk and free the chunks. |
| */ |
| while (licp != NULL) { |
| ASSERT(!XFS_LIC_ARE_ALL_FREE(licp)); |
| (void) xfs_trans_unlock_chunk(licp, 1, abort, NULLCOMMITLSN); |
| next_licp = licp->lic_next; |
| kmem_free(licp); |
| licp = next_licp; |
| } |
| |
| /* |
| * Reset the transaction structure's free item count. |
| */ |
| tp->t_items_free = XFS_LIC_NUM_SLOTS; |
| tp->t_items.lic_next = NULL; |
| } |
| |
| |
| |
| /* |
| * This is called to unlock the items associated with a transaction. |
| * Items which were not logged should be freed. |
| * Those which were logged must still be tracked so they can be unpinned |
| * when the transaction commits. |
| */ |
| void |
| xfs_trans_unlock_items(xfs_trans_t *tp, xfs_lsn_t commit_lsn) |
| { |
| xfs_log_item_chunk_t *licp; |
| xfs_log_item_chunk_t *next_licp; |
| xfs_log_item_chunk_t **licpp; |
| int freed; |
| |
| freed = 0; |
| licp = &tp->t_items; |
| |
| /* |
| * Special case the embedded chunk so we don't free. |
| */ |
| if (!XFS_LIC_ARE_ALL_FREE(licp)) { |
| freed = xfs_trans_unlock_chunk(licp, 0, 0, commit_lsn); |
| } |
| licpp = &(tp->t_items.lic_next); |
| licp = licp->lic_next; |
| |
| /* |
| * Unlock each item in each chunk, free non-dirty descriptors, |
| * and free empty chunks. |
| */ |
| while (licp != NULL) { |
| ASSERT(!XFS_LIC_ARE_ALL_FREE(licp)); |
| freed += xfs_trans_unlock_chunk(licp, 0, 0, commit_lsn); |
| next_licp = licp->lic_next; |
| if (XFS_LIC_ARE_ALL_FREE(licp)) { |
| *licpp = next_licp; |
| kmem_free(licp); |
| freed -= XFS_LIC_NUM_SLOTS; |
| } else { |
| licpp = &(licp->lic_next); |
| } |
| ASSERT(*licpp == next_licp); |
| licp = next_licp; |
| } |
| |
| /* |
| * Fix the free descriptor count in the transaction. |
| */ |
| tp->t_items_free += freed; |
| } |
| |
| /* |
| * Unlock each item pointed to by a descriptor in the given chunk. |
| * Stamp the commit lsn into each item if necessary. |
| * Free descriptors pointing to items which are not dirty if freeing_chunk |
| * is zero. If freeing_chunk is non-zero, then we need to unlock all |
| * items in the chunk. |
| * |
| * Return the number of descriptors freed. |
| */ |
| STATIC int |
| xfs_trans_unlock_chunk( |
| xfs_log_item_chunk_t *licp, |
| int freeing_chunk, |
| int abort, |
| xfs_lsn_t commit_lsn) |
| { |
| xfs_log_item_desc_t *lidp; |
| xfs_log_item_t *lip; |
| int i; |
| int freed; |
| |
| freed = 0; |
| lidp = licp->lic_descs; |
| for (i = 0; i < licp->lic_unused; i++, lidp++) { |
| if (XFS_LIC_ISFREE(licp, i)) { |
| continue; |
| } |
| lip = lidp->lid_item; |
| lip->li_desc = NULL; |
| |
| if (commit_lsn != NULLCOMMITLSN) |
| IOP_COMMITTING(lip, commit_lsn); |
| if (abort) |
| lip->li_flags |= XFS_LI_ABORTED; |
| IOP_UNLOCK(lip); |
| |
| /* |
| * Free the descriptor if the item is not dirty |
| * within this transaction and the caller is not |
| * going to just free the entire thing regardless. |
| */ |
| if (!(freeing_chunk) && |
| (!(lidp->lid_flags & XFS_LID_DIRTY) || abort)) { |
| XFS_LIC_RELSE(licp, i); |
| freed++; |
| } |
| } |
| |
| return freed; |
| } |
| |
| |
| /* |
| * This is called to add the given busy item to the transaction's |
| * list of busy items. It must find a free busy item descriptor |
| * or allocate a new one and add the item to that descriptor. |
| * The function returns a pointer to busy descriptor used to point |
| * to the new busy entry. The log busy entry will now point to its new |
| * descriptor with its ???? field. |
| */ |
| xfs_log_busy_slot_t * |
| xfs_trans_add_busy(xfs_trans_t *tp, xfs_agnumber_t ag, xfs_extlen_t idx) |
| { |
| xfs_log_busy_chunk_t *lbcp; |
| xfs_log_busy_slot_t *lbsp; |
| int i=0; |
| |
| /* |
| * If there are no free descriptors, allocate a new chunk |
| * of them and put it at the front of the chunk list. |
| */ |
| if (tp->t_busy_free == 0) { |
| lbcp = (xfs_log_busy_chunk_t*) |
| kmem_alloc(sizeof(xfs_log_busy_chunk_t), KM_SLEEP); |
| ASSERT(lbcp != NULL); |
| /* |
| * Initialize the chunk, and then |
| * claim the first slot in the newly allocated chunk. |
| */ |
| XFS_LBC_INIT(lbcp); |
| XFS_LBC_CLAIM(lbcp, 0); |
| lbcp->lbc_unused = 1; |
| lbsp = XFS_LBC_SLOT(lbcp, 0); |
| |
| /* |
| * Link in the new chunk and update the free count. |
| */ |
| lbcp->lbc_next = tp->t_busy.lbc_next; |
| tp->t_busy.lbc_next = lbcp; |
| tp->t_busy_free = XFS_LIC_NUM_SLOTS - 1; |
| |
| /* |
| * Initialize the descriptor and the generic portion |
| * of the log item. |
| * |
| * Point the new slot at this item and return it. |
| * Also point the log item at its currently active |
| * descriptor and set the item's mount pointer. |
| */ |
| lbsp->lbc_ag = ag; |
| lbsp->lbc_idx = idx; |
| return lbsp; |
| } |
| |
| /* |
| * Find the free descriptor. It is somewhere in the chunklist |
| * of descriptors. |
| */ |
| lbcp = &tp->t_busy; |
| while (lbcp != NULL) { |
| if (XFS_LBC_VACANCY(lbcp)) { |
| if (lbcp->lbc_unused <= XFS_LBC_MAX_SLOT) { |
| i = lbcp->lbc_unused; |
| break; |
| } else { |
| /* out-of-order vacancy */ |
| cmn_err(CE_DEBUG, "OOO vacancy lbcp 0x%p\n", lbcp); |
| ASSERT(0); |
| } |
| } |
| lbcp = lbcp->lbc_next; |
| } |
| ASSERT(lbcp != NULL); |
| /* |
| * If we find a free descriptor, claim it, |
| * initialize it, and return it. |
| */ |
| XFS_LBC_CLAIM(lbcp, i); |
| if (lbcp->lbc_unused <= i) { |
| lbcp->lbc_unused = i + 1; |
| } |
| lbsp = XFS_LBC_SLOT(lbcp, i); |
| tp->t_busy_free--; |
| lbsp->lbc_ag = ag; |
| lbsp->lbc_idx = idx; |
| return lbsp; |
| } |
| |
| |
| /* |
| * xfs_trans_free_busy |
| * Free all of the busy lists from a transaction |
| */ |
| void |
| xfs_trans_free_busy(xfs_trans_t *tp) |
| { |
| xfs_log_busy_chunk_t *lbcp; |
| xfs_log_busy_chunk_t *lbcq; |
| |
| lbcp = tp->t_busy.lbc_next; |
| while (lbcp != NULL) { |
| lbcq = lbcp->lbc_next; |
| kmem_free(lbcp); |
| lbcp = lbcq; |
| } |
| |
| XFS_LBC_INIT(&tp->t_busy); |
| tp->t_busy.lbc_unused = 0; |
| } |