| /* |
| * linux/fs/file.c |
| * |
| * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes |
| * |
| * Manage the dynamic fd arrays in the process files_struct. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/time.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/file.h> |
| #include <linux/fdtable.h> |
| #include <linux/bitops.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/rcupdate.h> |
| #include <linux/workqueue.h> |
| |
| struct fdtable_defer { |
| spinlock_t lock; |
| struct work_struct wq; |
| struct fdtable *next; |
| }; |
| |
| int sysctl_nr_open __read_mostly = 1024*1024; |
| int sysctl_nr_open_min = BITS_PER_LONG; |
| int sysctl_nr_open_max = 1024 * 1024; /* raised later */ |
| |
| /* |
| * We use this list to defer free fdtables that have vmalloced |
| * sets/arrays. By keeping a per-cpu list, we avoid having to embed |
| * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in |
| * this per-task structure. |
| */ |
| static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list); |
| |
| static inline void * alloc_fdmem(unsigned int size) |
| { |
| if (size <= PAGE_SIZE) |
| return kmalloc(size, GFP_KERNEL); |
| else |
| return vmalloc(size); |
| } |
| |
| static inline void free_fdarr(struct fdtable *fdt) |
| { |
| if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) |
| kfree(fdt->fd); |
| else |
| vfree(fdt->fd); |
| } |
| |
| static inline void free_fdset(struct fdtable *fdt) |
| { |
| if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2)) |
| kfree(fdt->open_fds); |
| else |
| vfree(fdt->open_fds); |
| } |
| |
| static void free_fdtable_work(struct work_struct *work) |
| { |
| struct fdtable_defer *f = |
| container_of(work, struct fdtable_defer, wq); |
| struct fdtable *fdt; |
| |
| spin_lock_bh(&f->lock); |
| fdt = f->next; |
| f->next = NULL; |
| spin_unlock_bh(&f->lock); |
| while(fdt) { |
| struct fdtable *next = fdt->next; |
| vfree(fdt->fd); |
| free_fdset(fdt); |
| kfree(fdt); |
| fdt = next; |
| } |
| } |
| |
| void free_fdtable_rcu(struct rcu_head *rcu) |
| { |
| struct fdtable *fdt = container_of(rcu, struct fdtable, rcu); |
| struct fdtable_defer *fddef; |
| |
| BUG_ON(!fdt); |
| |
| if (fdt->max_fds <= NR_OPEN_DEFAULT) { |
| /* |
| * This fdtable is embedded in the files structure and that |
| * structure itself is getting destroyed. |
| */ |
| kmem_cache_free(files_cachep, |
| container_of(fdt, struct files_struct, fdtab)); |
| return; |
| } |
| if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) { |
| kfree(fdt->fd); |
| kfree(fdt->open_fds); |
| kfree(fdt); |
| } else { |
| fddef = &get_cpu_var(fdtable_defer_list); |
| spin_lock(&fddef->lock); |
| fdt->next = fddef->next; |
| fddef->next = fdt; |
| /* vmallocs are handled from the workqueue context */ |
| schedule_work(&fddef->wq); |
| spin_unlock(&fddef->lock); |
| put_cpu_var(fdtable_defer_list); |
| } |
| } |
| |
| /* |
| * Expand the fdset in the files_struct. Called with the files spinlock |
| * held for write. |
| */ |
| static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) |
| { |
| unsigned int cpy, set; |
| |
| BUG_ON(nfdt->max_fds < ofdt->max_fds); |
| |
| cpy = ofdt->max_fds * sizeof(struct file *); |
| set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); |
| memcpy(nfdt->fd, ofdt->fd, cpy); |
| memset((char *)(nfdt->fd) + cpy, 0, set); |
| |
| cpy = ofdt->max_fds / BITS_PER_BYTE; |
| set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE; |
| memcpy(nfdt->open_fds, ofdt->open_fds, cpy); |
| memset((char *)(nfdt->open_fds) + cpy, 0, set); |
| memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); |
| memset((char *)(nfdt->close_on_exec) + cpy, 0, set); |
| } |
| |
| static struct fdtable * alloc_fdtable(unsigned int nr) |
| { |
| struct fdtable *fdt; |
| char *data; |
| |
| /* |
| * Figure out how many fds we actually want to support in this fdtable. |
| * Allocation steps are keyed to the size of the fdarray, since it |
| * grows far faster than any of the other dynamic data. We try to fit |
| * the fdarray into comfortable page-tuned chunks: starting at 1024B |
| * and growing in powers of two from there on. |
| */ |
| nr /= (1024 / sizeof(struct file *)); |
| nr = roundup_pow_of_two(nr + 1); |
| nr *= (1024 / sizeof(struct file *)); |
| /* |
| * Note that this can drive nr *below* what we had passed if sysctl_nr_open |
| * had been set lower between the check in expand_files() and here. Deal |
| * with that in caller, it's cheaper that way. |
| * |
| * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise |
| * bitmaps handling below becomes unpleasant, to put it mildly... |
| */ |
| if (unlikely(nr > sysctl_nr_open)) |
| nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; |
| |
| fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL); |
| if (!fdt) |
| goto out; |
| fdt->max_fds = nr; |
| data = alloc_fdmem(nr * sizeof(struct file *)); |
| if (!data) |
| goto out_fdt; |
| fdt->fd = (struct file **)data; |
| data = alloc_fdmem(max_t(unsigned int, |
| 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES)); |
| if (!data) |
| goto out_arr; |
| fdt->open_fds = (fd_set *)data; |
| data += nr / BITS_PER_BYTE; |
| fdt->close_on_exec = (fd_set *)data; |
| INIT_RCU_HEAD(&fdt->rcu); |
| fdt->next = NULL; |
| |
| return fdt; |
| |
| out_arr: |
| free_fdarr(fdt); |
| out_fdt: |
| kfree(fdt); |
| out: |
| return NULL; |
| } |
| |
| /* |
| * Expand the file descriptor table. |
| * This function will allocate a new fdtable and both fd array and fdset, of |
| * the given size. |
| * Return <0 error code on error; 1 on successful completion. |
| * The files->file_lock should be held on entry, and will be held on exit. |
| */ |
| static int expand_fdtable(struct files_struct *files, int nr) |
| __releases(files->file_lock) |
| __acquires(files->file_lock) |
| { |
| struct fdtable *new_fdt, *cur_fdt; |
| |
| spin_unlock(&files->file_lock); |
| new_fdt = alloc_fdtable(nr); |
| spin_lock(&files->file_lock); |
| if (!new_fdt) |
| return -ENOMEM; |
| /* |
| * extremely unlikely race - sysctl_nr_open decreased between the check in |
| * caller and alloc_fdtable(). Cheaper to catch it here... |
| */ |
| if (unlikely(new_fdt->max_fds <= nr)) { |
| free_fdarr(new_fdt); |
| free_fdset(new_fdt); |
| kfree(new_fdt); |
| return -EMFILE; |
| } |
| /* |
| * Check again since another task may have expanded the fd table while |
| * we dropped the lock |
| */ |
| cur_fdt = files_fdtable(files); |
| if (nr >= cur_fdt->max_fds) { |
| /* Continue as planned */ |
| copy_fdtable(new_fdt, cur_fdt); |
| rcu_assign_pointer(files->fdt, new_fdt); |
| if (cur_fdt->max_fds > NR_OPEN_DEFAULT) |
| free_fdtable(cur_fdt); |
| } else { |
| /* Somebody else expanded, so undo our attempt */ |
| free_fdarr(new_fdt); |
| free_fdset(new_fdt); |
| kfree(new_fdt); |
| } |
| return 1; |
| } |
| |
| /* |
| * Expand files. |
| * This function will expand the file structures, if the requested size exceeds |
| * the current capacity and there is room for expansion. |
| * Return <0 error code on error; 0 when nothing done; 1 when files were |
| * expanded and execution may have blocked. |
| * The files->file_lock should be held on entry, and will be held on exit. |
| */ |
| int expand_files(struct files_struct *files, int nr) |
| { |
| struct fdtable *fdt; |
| |
| fdt = files_fdtable(files); |
| |
| /* |
| * N.B. For clone tasks sharing a files structure, this test |
| * will limit the total number of files that can be opened. |
| */ |
| if (nr >= current->signal->rlim[RLIMIT_NOFILE].rlim_cur) |
| return -EMFILE; |
| |
| /* Do we need to expand? */ |
| if (nr < fdt->max_fds) |
| return 0; |
| |
| /* Can we expand? */ |
| if (nr >= sysctl_nr_open) |
| return -EMFILE; |
| |
| /* All good, so we try */ |
| return expand_fdtable(files, nr); |
| } |
| |
| static int count_open_files(struct fdtable *fdt) |
| { |
| int size = fdt->max_fds; |
| int i; |
| |
| /* Find the last open fd */ |
| for (i = size/(8*sizeof(long)); i > 0; ) { |
| if (fdt->open_fds->fds_bits[--i]) |
| break; |
| } |
| i = (i+1) * 8 * sizeof(long); |
| return i; |
| } |
| |
| /* |
| * Allocate a new files structure and copy contents from the |
| * passed in files structure. |
| * errorp will be valid only when the returned files_struct is NULL. |
| */ |
| struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) |
| { |
| struct files_struct *newf; |
| struct file **old_fds, **new_fds; |
| int open_files, size, i; |
| struct fdtable *old_fdt, *new_fdt; |
| |
| *errorp = -ENOMEM; |
| newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); |
| if (!newf) |
| goto out; |
| |
| atomic_set(&newf->count, 1); |
| |
| spin_lock_init(&newf->file_lock); |
| newf->next_fd = 0; |
| new_fdt = &newf->fdtab; |
| new_fdt->max_fds = NR_OPEN_DEFAULT; |
| new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; |
| new_fdt->open_fds = (fd_set *)&newf->open_fds_init; |
| new_fdt->fd = &newf->fd_array[0]; |
| INIT_RCU_HEAD(&new_fdt->rcu); |
| new_fdt->next = NULL; |
| |
| spin_lock(&oldf->file_lock); |
| old_fdt = files_fdtable(oldf); |
| open_files = count_open_files(old_fdt); |
| |
| /* |
| * Check whether we need to allocate a larger fd array and fd set. |
| */ |
| while (unlikely(open_files > new_fdt->max_fds)) { |
| spin_unlock(&oldf->file_lock); |
| |
| if (new_fdt != &newf->fdtab) { |
| free_fdarr(new_fdt); |
| free_fdset(new_fdt); |
| kfree(new_fdt); |
| } |
| |
| new_fdt = alloc_fdtable(open_files - 1); |
| if (!new_fdt) { |
| *errorp = -ENOMEM; |
| goto out_release; |
| } |
| |
| /* beyond sysctl_nr_open; nothing to do */ |
| if (unlikely(new_fdt->max_fds < open_files)) { |
| free_fdarr(new_fdt); |
| free_fdset(new_fdt); |
| kfree(new_fdt); |
| *errorp = -EMFILE; |
| goto out_release; |
| } |
| |
| /* |
| * Reacquire the oldf lock and a pointer to its fd table |
| * who knows it may have a new bigger fd table. We need |
| * the latest pointer. |
| */ |
| spin_lock(&oldf->file_lock); |
| old_fdt = files_fdtable(oldf); |
| open_files = count_open_files(old_fdt); |
| } |
| |
| old_fds = old_fdt->fd; |
| new_fds = new_fdt->fd; |
| |
| memcpy(new_fdt->open_fds->fds_bits, |
| old_fdt->open_fds->fds_bits, open_files/8); |
| memcpy(new_fdt->close_on_exec->fds_bits, |
| old_fdt->close_on_exec->fds_bits, open_files/8); |
| |
| for (i = open_files; i != 0; i--) { |
| struct file *f = *old_fds++; |
| if (f) { |
| get_file(f); |
| } else { |
| /* |
| * The fd may be claimed in the fd bitmap but not yet |
| * instantiated in the files array if a sibling thread |
| * is partway through open(). So make sure that this |
| * fd is available to the new process. |
| */ |
| FD_CLR(open_files - i, new_fdt->open_fds); |
| } |
| rcu_assign_pointer(*new_fds++, f); |
| } |
| spin_unlock(&oldf->file_lock); |
| |
| /* compute the remainder to be cleared */ |
| size = (new_fdt->max_fds - open_files) * sizeof(struct file *); |
| |
| /* This is long word aligned thus could use a optimized version */ |
| memset(new_fds, 0, size); |
| |
| if (new_fdt->max_fds > open_files) { |
| int left = (new_fdt->max_fds-open_files)/8; |
| int start = open_files / (8 * sizeof(unsigned long)); |
| |
| memset(&new_fdt->open_fds->fds_bits[start], 0, left); |
| memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); |
| } |
| |
| rcu_assign_pointer(newf->fdt, new_fdt); |
| |
| return newf; |
| |
| out_release: |
| kmem_cache_free(files_cachep, newf); |
| out: |
| return NULL; |
| } |
| |
| static void __devinit fdtable_defer_list_init(int cpu) |
| { |
| struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu); |
| spin_lock_init(&fddef->lock); |
| INIT_WORK(&fddef->wq, free_fdtable_work); |
| fddef->next = NULL; |
| } |
| |
| void __init files_defer_init(void) |
| { |
| int i; |
| for_each_possible_cpu(i) |
| fdtable_defer_list_init(i); |
| sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) & |
| -BITS_PER_LONG; |
| } |
| |
| struct files_struct init_files = { |
| .count = ATOMIC_INIT(1), |
| .fdt = &init_files.fdtab, |
| .fdtab = { |
| .max_fds = NR_OPEN_DEFAULT, |
| .fd = &init_files.fd_array[0], |
| .close_on_exec = (fd_set *)&init_files.close_on_exec_init, |
| .open_fds = (fd_set *)&init_files.open_fds_init, |
| .rcu = RCU_HEAD_INIT, |
| }, |
| .file_lock = __SPIN_LOCK_UNLOCKED(init_task.file_lock), |
| }; |
| |
| /* |
| * allocate a file descriptor, mark it busy. |
| */ |
| int alloc_fd(unsigned start, unsigned flags) |
| { |
| struct files_struct *files = current->files; |
| unsigned int fd; |
| int error; |
| struct fdtable *fdt; |
| |
| spin_lock(&files->file_lock); |
| repeat: |
| fdt = files_fdtable(files); |
| fd = start; |
| if (fd < files->next_fd) |
| fd = files->next_fd; |
| |
| if (fd < fdt->max_fds) |
| fd = find_next_zero_bit(fdt->open_fds->fds_bits, |
| fdt->max_fds, fd); |
| |
| error = expand_files(files, fd); |
| if (error < 0) |
| goto out; |
| |
| /* |
| * If we needed to expand the fs array we |
| * might have blocked - try again. |
| */ |
| if (error) |
| goto repeat; |
| |
| if (start <= files->next_fd) |
| files->next_fd = fd + 1; |
| |
| FD_SET(fd, fdt->open_fds); |
| if (flags & O_CLOEXEC) |
| FD_SET(fd, fdt->close_on_exec); |
| else |
| FD_CLR(fd, fdt->close_on_exec); |
| error = fd; |
| #if 1 |
| /* Sanity check */ |
| if (rcu_dereference(fdt->fd[fd]) != NULL) { |
| printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); |
| rcu_assign_pointer(fdt->fd[fd], NULL); |
| } |
| #endif |
| |
| out: |
| spin_unlock(&files->file_lock); |
| return error; |
| } |
| |
| int get_unused_fd(void) |
| { |
| return alloc_fd(0, 0); |
| } |
| EXPORT_SYMBOL(get_unused_fd); |