| /* |
| * Copyright © 2010 Daniel Vetter |
| * Copyright © 2011-2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/seq_file.h> |
| #include <linux/stop_machine.h> |
| #include <drm/drmP.h> |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| #include "i915_vgpu.h" |
| #include "i915_trace.h" |
| #include "intel_drv.h" |
| |
| #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM) |
| |
| /** |
| * DOC: Global GTT views |
| * |
| * Background and previous state |
| * |
| * Historically objects could exists (be bound) in global GTT space only as |
| * singular instances with a view representing all of the object's backing pages |
| * in a linear fashion. This view will be called a normal view. |
| * |
| * To support multiple views of the same object, where the number of mapped |
| * pages is not equal to the backing store, or where the layout of the pages |
| * is not linear, concept of a GGTT view was added. |
| * |
| * One example of an alternative view is a stereo display driven by a single |
| * image. In this case we would have a framebuffer looking like this |
| * (2x2 pages): |
| * |
| * 12 |
| * 34 |
| * |
| * Above would represent a normal GGTT view as normally mapped for GPU or CPU |
| * rendering. In contrast, fed to the display engine would be an alternative |
| * view which could look something like this: |
| * |
| * 1212 |
| * 3434 |
| * |
| * In this example both the size and layout of pages in the alternative view is |
| * different from the normal view. |
| * |
| * Implementation and usage |
| * |
| * GGTT views are implemented using VMAs and are distinguished via enum |
| * i915_ggtt_view_type and struct i915_ggtt_view. |
| * |
| * A new flavour of core GEM functions which work with GGTT bound objects were |
| * added with the _ggtt_ infix, and sometimes with _view postfix to avoid |
| * renaming in large amounts of code. They take the struct i915_ggtt_view |
| * parameter encapsulating all metadata required to implement a view. |
| * |
| * As a helper for callers which are only interested in the normal view, |
| * globally const i915_ggtt_view_normal singleton instance exists. All old core |
| * GEM API functions, the ones not taking the view parameter, are operating on, |
| * or with the normal GGTT view. |
| * |
| * Code wanting to add or use a new GGTT view needs to: |
| * |
| * 1. Add a new enum with a suitable name. |
| * 2. Extend the metadata in the i915_ggtt_view structure if required. |
| * 3. Add support to i915_get_vma_pages(). |
| * |
| * New views are required to build a scatter-gather table from within the |
| * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and |
| * exists for the lifetime of an VMA. |
| * |
| * Core API is designed to have copy semantics which means that passed in |
| * struct i915_ggtt_view does not need to be persistent (left around after |
| * calling the core API functions). |
| * |
| */ |
| |
| static inline struct i915_ggtt * |
| i915_vm_to_ggtt(struct i915_address_space *vm) |
| { |
| GEM_BUG_ON(!i915_is_ggtt(vm)); |
| return container_of(vm, struct i915_ggtt, base); |
| } |
| |
| static int |
| i915_get_ggtt_vma_pages(struct i915_vma *vma); |
| |
| const struct i915_ggtt_view i915_ggtt_view_normal = { |
| .type = I915_GGTT_VIEW_NORMAL, |
| }; |
| const struct i915_ggtt_view i915_ggtt_view_rotated = { |
| .type = I915_GGTT_VIEW_ROTATED, |
| }; |
| |
| int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, |
| int enable_ppgtt) |
| { |
| bool has_aliasing_ppgtt; |
| bool has_full_ppgtt; |
| bool has_full_48bit_ppgtt; |
| |
| has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6; |
| has_full_ppgtt = INTEL_GEN(dev_priv) >= 7; |
| has_full_48bit_ppgtt = |
| IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9; |
| |
| if (intel_vgpu_active(dev_priv)) { |
| /* emulation is too hard */ |
| has_full_ppgtt = false; |
| has_full_48bit_ppgtt = false; |
| } |
| |
| if (!has_aliasing_ppgtt) |
| return 0; |
| |
| /* |
| * We don't allow disabling PPGTT for gen9+ as it's a requirement for |
| * execlists, the sole mechanism available to submit work. |
| */ |
| if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9) |
| return 0; |
| |
| if (enable_ppgtt == 1) |
| return 1; |
| |
| if (enable_ppgtt == 2 && has_full_ppgtt) |
| return 2; |
| |
| if (enable_ppgtt == 3 && has_full_48bit_ppgtt) |
| return 3; |
| |
| #ifdef CONFIG_INTEL_IOMMU |
| /* Disable ppgtt on SNB if VT-d is on. */ |
| if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) { |
| DRM_INFO("Disabling PPGTT because VT-d is on\n"); |
| return 0; |
| } |
| #endif |
| |
| /* Early VLV doesn't have this */ |
| if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) { |
| DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); |
| return 0; |
| } |
| |
| if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt) |
| return has_full_48bit_ppgtt ? 3 : 2; |
| else |
| return has_aliasing_ppgtt ? 1 : 0; |
| } |
| |
| static int ppgtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 unused) |
| { |
| u32 pte_flags = 0; |
| |
| vma->pages = vma->obj->pages; |
| |
| /* Currently applicable only to VLV */ |
| if (vma->obj->gt_ro) |
| pte_flags |= PTE_READ_ONLY; |
| |
| vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start, |
| cache_level, pte_flags); |
| |
| return 0; |
| } |
| |
| static void ppgtt_unbind_vma(struct i915_vma *vma) |
| { |
| vma->vm->clear_range(vma->vm, |
| vma->node.start, |
| vma->size, |
| true); |
| } |
| |
| static gen8_pte_t gen8_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid) |
| { |
| gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0; |
| pte |= addr; |
| |
| switch (level) { |
| case I915_CACHE_NONE: |
| pte |= PPAT_UNCACHED_INDEX; |
| break; |
| case I915_CACHE_WT: |
| pte |= PPAT_DISPLAY_ELLC_INDEX; |
| break; |
| default: |
| pte |= PPAT_CACHED_INDEX; |
| break; |
| } |
| |
| return pte; |
| } |
| |
| static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, |
| const enum i915_cache_level level) |
| { |
| gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; |
| pde |= addr; |
| if (level != I915_CACHE_NONE) |
| pde |= PPAT_CACHED_PDE_INDEX; |
| else |
| pde |= PPAT_UNCACHED_INDEX; |
| return pde; |
| } |
| |
| #define gen8_pdpe_encode gen8_pde_encode |
| #define gen8_pml4e_encode gen8_pde_encode |
| |
| static gen6_pte_t snb_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 unused) |
| { |
| gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_L3_LLC: |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| MISSING_CASE(level); |
| } |
| |
| return pte; |
| } |
| |
| static gen6_pte_t ivb_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 unused) |
| { |
| gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_L3_LLC: |
| pte |= GEN7_PTE_CACHE_L3_LLC; |
| break; |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| MISSING_CASE(level); |
| } |
| |
| return pte; |
| } |
| |
| static gen6_pte_t byt_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 flags) |
| { |
| gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| if (!(flags & PTE_READ_ONLY)) |
| pte |= BYT_PTE_WRITEABLE; |
| |
| if (level != I915_CACHE_NONE) |
| pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; |
| |
| return pte; |
| } |
| |
| static gen6_pte_t hsw_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 unused) |
| { |
| gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= HSW_PTE_ADDR_ENCODE(addr); |
| |
| if (level != I915_CACHE_NONE) |
| pte |= HSW_WB_LLC_AGE3; |
| |
| return pte; |
| } |
| |
| static gen6_pte_t iris_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 unused) |
| { |
| gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= HSW_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_NONE: |
| break; |
| case I915_CACHE_WT: |
| pte |= HSW_WT_ELLC_LLC_AGE3; |
| break; |
| default: |
| pte |= HSW_WB_ELLC_LLC_AGE3; |
| break; |
| } |
| |
| return pte; |
| } |
| |
| static int __setup_page_dma(struct drm_device *dev, |
| struct i915_page_dma *p, gfp_t flags) |
| { |
| struct device *kdev = &dev->pdev->dev; |
| |
| p->page = alloc_page(flags); |
| if (!p->page) |
| return -ENOMEM; |
| |
| p->daddr = dma_map_page(kdev, |
| p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL); |
| |
| if (dma_mapping_error(kdev, p->daddr)) { |
| __free_page(p->page); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p) |
| { |
| return __setup_page_dma(dev, p, I915_GFP_DMA); |
| } |
| |
| static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p) |
| { |
| struct pci_dev *pdev = dev->pdev; |
| |
| if (WARN_ON(!p->page)) |
| return; |
| |
| dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL); |
| __free_page(p->page); |
| memset(p, 0, sizeof(*p)); |
| } |
| |
| static void *kmap_page_dma(struct i915_page_dma *p) |
| { |
| return kmap_atomic(p->page); |
| } |
| |
| /* We use the flushing unmap only with ppgtt structures: |
| * page directories, page tables and scratch pages. |
| */ |
| static void kunmap_page_dma(struct drm_device *dev, void *vaddr) |
| { |
| /* There are only few exceptions for gen >=6. chv and bxt. |
| * And we are not sure about the latter so play safe for now. |
| */ |
| if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) |
| drm_clflush_virt_range(vaddr, PAGE_SIZE); |
| |
| kunmap_atomic(vaddr); |
| } |
| |
| #define kmap_px(px) kmap_page_dma(px_base(px)) |
| #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr)) |
| |
| #define setup_px(dev, px) setup_page_dma((dev), px_base(px)) |
| #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px)) |
| #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v)) |
| #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v)) |
| |
| static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p, |
| const uint64_t val) |
| { |
| int i; |
| uint64_t * const vaddr = kmap_page_dma(p); |
| |
| for (i = 0; i < 512; i++) |
| vaddr[i] = val; |
| |
| kunmap_page_dma(dev, vaddr); |
| } |
| |
| static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p, |
| const uint32_t val32) |
| { |
| uint64_t v = val32; |
| |
| v = v << 32 | val32; |
| |
| fill_page_dma(dev, p, v); |
| } |
| |
| static int |
| setup_scratch_page(struct drm_device *dev, |
| struct i915_page_dma *scratch, |
| gfp_t gfp) |
| { |
| return __setup_page_dma(dev, scratch, gfp | __GFP_ZERO); |
| } |
| |
| static void cleanup_scratch_page(struct drm_device *dev, |
| struct i915_page_dma *scratch) |
| { |
| cleanup_page_dma(dev, scratch); |
| } |
| |
| static struct i915_page_table *alloc_pt(struct drm_device *dev) |
| { |
| struct i915_page_table *pt; |
| const size_t count = INTEL_INFO(dev)->gen >= 8 ? |
| GEN8_PTES : GEN6_PTES; |
| int ret = -ENOMEM; |
| |
| pt = kzalloc(sizeof(*pt), GFP_KERNEL); |
| if (!pt) |
| return ERR_PTR(-ENOMEM); |
| |
| pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes), |
| GFP_KERNEL); |
| |
| if (!pt->used_ptes) |
| goto fail_bitmap; |
| |
| ret = setup_px(dev, pt); |
| if (ret) |
| goto fail_page_m; |
| |
| return pt; |
| |
| fail_page_m: |
| kfree(pt->used_ptes); |
| fail_bitmap: |
| kfree(pt); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static void free_pt(struct drm_device *dev, struct i915_page_table *pt) |
| { |
| cleanup_px(dev, pt); |
| kfree(pt->used_ptes); |
| kfree(pt); |
| } |
| |
| static void gen8_initialize_pt(struct i915_address_space *vm, |
| struct i915_page_table *pt) |
| { |
| gen8_pte_t scratch_pte; |
| |
| scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, true); |
| |
| fill_px(vm->dev, pt, scratch_pte); |
| } |
| |
| static void gen6_initialize_pt(struct i915_address_space *vm, |
| struct i915_page_table *pt) |
| { |
| gen6_pte_t scratch_pte; |
| |
| WARN_ON(vm->scratch_page.daddr == 0); |
| |
| scratch_pte = vm->pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, true, 0); |
| |
| fill32_px(vm->dev, pt, scratch_pte); |
| } |
| |
| static struct i915_page_directory *alloc_pd(struct drm_device *dev) |
| { |
| struct i915_page_directory *pd; |
| int ret = -ENOMEM; |
| |
| pd = kzalloc(sizeof(*pd), GFP_KERNEL); |
| if (!pd) |
| return ERR_PTR(-ENOMEM); |
| |
| pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES), |
| sizeof(*pd->used_pdes), GFP_KERNEL); |
| if (!pd->used_pdes) |
| goto fail_bitmap; |
| |
| ret = setup_px(dev, pd); |
| if (ret) |
| goto fail_page_m; |
| |
| return pd; |
| |
| fail_page_m: |
| kfree(pd->used_pdes); |
| fail_bitmap: |
| kfree(pd); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static void free_pd(struct drm_device *dev, struct i915_page_directory *pd) |
| { |
| if (px_page(pd)) { |
| cleanup_px(dev, pd); |
| kfree(pd->used_pdes); |
| kfree(pd); |
| } |
| } |
| |
| static void gen8_initialize_pd(struct i915_address_space *vm, |
| struct i915_page_directory *pd) |
| { |
| gen8_pde_t scratch_pde; |
| |
| scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC); |
| |
| fill_px(vm->dev, pd, scratch_pde); |
| } |
| |
| static int __pdp_init(struct drm_device *dev, |
| struct i915_page_directory_pointer *pdp) |
| { |
| size_t pdpes = I915_PDPES_PER_PDP(dev); |
| |
| pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes), |
| sizeof(unsigned long), |
| GFP_KERNEL); |
| if (!pdp->used_pdpes) |
| return -ENOMEM; |
| |
| pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory), |
| GFP_KERNEL); |
| if (!pdp->page_directory) { |
| kfree(pdp->used_pdpes); |
| /* the PDP might be the statically allocated top level. Keep it |
| * as clean as possible */ |
| pdp->used_pdpes = NULL; |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void __pdp_fini(struct i915_page_directory_pointer *pdp) |
| { |
| kfree(pdp->used_pdpes); |
| kfree(pdp->page_directory); |
| pdp->page_directory = NULL; |
| } |
| |
| static struct |
| i915_page_directory_pointer *alloc_pdp(struct drm_device *dev) |
| { |
| struct i915_page_directory_pointer *pdp; |
| int ret = -ENOMEM; |
| |
| WARN_ON(!USES_FULL_48BIT_PPGTT(dev)); |
| |
| pdp = kzalloc(sizeof(*pdp), GFP_KERNEL); |
| if (!pdp) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = __pdp_init(dev, pdp); |
| if (ret) |
| goto fail_bitmap; |
| |
| ret = setup_px(dev, pdp); |
| if (ret) |
| goto fail_page_m; |
| |
| return pdp; |
| |
| fail_page_m: |
| __pdp_fini(pdp); |
| fail_bitmap: |
| kfree(pdp); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static void free_pdp(struct drm_device *dev, |
| struct i915_page_directory_pointer *pdp) |
| { |
| __pdp_fini(pdp); |
| if (USES_FULL_48BIT_PPGTT(dev)) { |
| cleanup_px(dev, pdp); |
| kfree(pdp); |
| } |
| } |
| |
| static void gen8_initialize_pdp(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp) |
| { |
| gen8_ppgtt_pdpe_t scratch_pdpe; |
| |
| scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC); |
| |
| fill_px(vm->dev, pdp, scratch_pdpe); |
| } |
| |
| static void gen8_initialize_pml4(struct i915_address_space *vm, |
| struct i915_pml4 *pml4) |
| { |
| gen8_ppgtt_pml4e_t scratch_pml4e; |
| |
| scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp), |
| I915_CACHE_LLC); |
| |
| fill_px(vm->dev, pml4, scratch_pml4e); |
| } |
| |
| static void |
| gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt, |
| struct i915_page_directory_pointer *pdp, |
| struct i915_page_directory *pd, |
| int index) |
| { |
| gen8_ppgtt_pdpe_t *page_directorypo; |
| |
| if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) |
| return; |
| |
| page_directorypo = kmap_px(pdp); |
| page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); |
| kunmap_px(ppgtt, page_directorypo); |
| } |
| |
| static void |
| gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt, |
| struct i915_pml4 *pml4, |
| struct i915_page_directory_pointer *pdp, |
| int index) |
| { |
| gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4); |
| |
| WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev)); |
| pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); |
| kunmap_px(ppgtt, pagemap); |
| } |
| |
| /* Broadwell Page Directory Pointer Descriptors */ |
| static int gen8_write_pdp(struct drm_i915_gem_request *req, |
| unsigned entry, |
| dma_addr_t addr) |
| { |
| struct intel_ring *ring = req->ring; |
| struct intel_engine_cs *engine = req->engine; |
| int ret; |
| |
| BUG_ON(entry >= 4); |
| |
| ret = intel_ring_begin(req, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry)); |
| intel_ring_emit(ring, upper_32_bits(addr)); |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry)); |
| intel_ring_emit(ring, lower_32_bits(addr)); |
| intel_ring_advance(ring); |
| |
| return 0; |
| } |
| |
| static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_gem_request *req) |
| { |
| int i, ret; |
| |
| for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) { |
| const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); |
| |
| ret = gen8_write_pdp(req, i, pd_daddr); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_gem_request *req) |
| { |
| return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4)); |
| } |
| |
| static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp, |
| uint64_t start, |
| uint64_t length, |
| gen8_pte_t scratch_pte) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| gen8_pte_t *pt_vaddr; |
| unsigned pdpe = gen8_pdpe_index(start); |
| unsigned pde = gen8_pde_index(start); |
| unsigned pte = gen8_pte_index(start); |
| unsigned num_entries = length >> PAGE_SHIFT; |
| unsigned last_pte, i; |
| |
| if (WARN_ON(!pdp)) |
| return; |
| |
| while (num_entries) { |
| struct i915_page_directory *pd; |
| struct i915_page_table *pt; |
| |
| if (WARN_ON(!pdp->page_directory[pdpe])) |
| break; |
| |
| pd = pdp->page_directory[pdpe]; |
| |
| if (WARN_ON(!pd->page_table[pde])) |
| break; |
| |
| pt = pd->page_table[pde]; |
| |
| if (WARN_ON(!px_page(pt))) |
| break; |
| |
| last_pte = pte + num_entries; |
| if (last_pte > GEN8_PTES) |
| last_pte = GEN8_PTES; |
| |
| pt_vaddr = kmap_px(pt); |
| |
| for (i = pte; i < last_pte; i++) { |
| pt_vaddr[i] = scratch_pte; |
| num_entries--; |
| } |
| |
| kunmap_px(ppgtt, pt_vaddr); |
| |
| pte = 0; |
| if (++pde == I915_PDES) { |
| if (++pdpe == I915_PDPES_PER_PDP(vm->dev)) |
| break; |
| pde = 0; |
| } |
| } |
| } |
| |
| static void gen8_ppgtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, use_scratch); |
| |
| if (!USES_FULL_48BIT_PPGTT(vm->dev)) { |
| gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length, |
| scratch_pte); |
| } else { |
| uint64_t pml4e; |
| struct i915_page_directory_pointer *pdp; |
| |
| gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) { |
| gen8_ppgtt_clear_pte_range(vm, pdp, start, length, |
| scratch_pte); |
| } |
| } |
| } |
| |
| static void |
| gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp, |
| struct sg_page_iter *sg_iter, |
| uint64_t start, |
| enum i915_cache_level cache_level) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| gen8_pte_t *pt_vaddr; |
| unsigned pdpe = gen8_pdpe_index(start); |
| unsigned pde = gen8_pde_index(start); |
| unsigned pte = gen8_pte_index(start); |
| |
| pt_vaddr = NULL; |
| |
| while (__sg_page_iter_next(sg_iter)) { |
| if (pt_vaddr == NULL) { |
| struct i915_page_directory *pd = pdp->page_directory[pdpe]; |
| struct i915_page_table *pt = pd->page_table[pde]; |
| pt_vaddr = kmap_px(pt); |
| } |
| |
| pt_vaddr[pte] = |
| gen8_pte_encode(sg_page_iter_dma_address(sg_iter), |
| cache_level, true); |
| if (++pte == GEN8_PTES) { |
| kunmap_px(ppgtt, pt_vaddr); |
| pt_vaddr = NULL; |
| if (++pde == I915_PDES) { |
| if (++pdpe == I915_PDPES_PER_PDP(vm->dev)) |
| break; |
| pde = 0; |
| } |
| pte = 0; |
| } |
| } |
| |
| if (pt_vaddr) |
| kunmap_px(ppgtt, pt_vaddr); |
| } |
| |
| static void gen8_ppgtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| uint64_t start, |
| enum i915_cache_level cache_level, |
| u32 unused) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct sg_page_iter sg_iter; |
| |
| __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0); |
| |
| if (!USES_FULL_48BIT_PPGTT(vm->dev)) { |
| gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start, |
| cache_level); |
| } else { |
| struct i915_page_directory_pointer *pdp; |
| uint64_t pml4e; |
| uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT; |
| |
| gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) { |
| gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter, |
| start, cache_level); |
| } |
| } |
| } |
| |
| static void gen8_free_page_tables(struct drm_device *dev, |
| struct i915_page_directory *pd) |
| { |
| int i; |
| |
| if (!px_page(pd)) |
| return; |
| |
| for_each_set_bit(i, pd->used_pdes, I915_PDES) { |
| if (WARN_ON(!pd->page_table[i])) |
| continue; |
| |
| free_pt(dev, pd->page_table[i]); |
| pd->page_table[i] = NULL; |
| } |
| } |
| |
| static int gen8_init_scratch(struct i915_address_space *vm) |
| { |
| struct drm_device *dev = vm->dev; |
| int ret; |
| |
| ret = setup_scratch_page(dev, &vm->scratch_page, I915_GFP_DMA); |
| if (ret) |
| return ret; |
| |
| vm->scratch_pt = alloc_pt(dev); |
| if (IS_ERR(vm->scratch_pt)) { |
| ret = PTR_ERR(vm->scratch_pt); |
| goto free_scratch_page; |
| } |
| |
| vm->scratch_pd = alloc_pd(dev); |
| if (IS_ERR(vm->scratch_pd)) { |
| ret = PTR_ERR(vm->scratch_pd); |
| goto free_pt; |
| } |
| |
| if (USES_FULL_48BIT_PPGTT(dev)) { |
| vm->scratch_pdp = alloc_pdp(dev); |
| if (IS_ERR(vm->scratch_pdp)) { |
| ret = PTR_ERR(vm->scratch_pdp); |
| goto free_pd; |
| } |
| } |
| |
| gen8_initialize_pt(vm, vm->scratch_pt); |
| gen8_initialize_pd(vm, vm->scratch_pd); |
| if (USES_FULL_48BIT_PPGTT(dev)) |
| gen8_initialize_pdp(vm, vm->scratch_pdp); |
| |
| return 0; |
| |
| free_pd: |
| free_pd(dev, vm->scratch_pd); |
| free_pt: |
| free_pt(dev, vm->scratch_pt); |
| free_scratch_page: |
| cleanup_scratch_page(dev, &vm->scratch_page); |
| |
| return ret; |
| } |
| |
| static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create) |
| { |
| enum vgt_g2v_type msg; |
| struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev); |
| int i; |
| |
| if (USES_FULL_48BIT_PPGTT(dev_priv)) { |
| u64 daddr = px_dma(&ppgtt->pml4); |
| |
| I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); |
| I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); |
| |
| msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : |
| VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); |
| } else { |
| for (i = 0; i < GEN8_LEGACY_PDPES; i++) { |
| u64 daddr = i915_page_dir_dma_addr(ppgtt, i); |
| |
| I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); |
| I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); |
| } |
| |
| msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : |
| VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); |
| } |
| |
| I915_WRITE(vgtif_reg(g2v_notify), msg); |
| |
| return 0; |
| } |
| |
| static void gen8_free_scratch(struct i915_address_space *vm) |
| { |
| struct drm_device *dev = vm->dev; |
| |
| if (USES_FULL_48BIT_PPGTT(dev)) |
| free_pdp(dev, vm->scratch_pdp); |
| free_pd(dev, vm->scratch_pd); |
| free_pt(dev, vm->scratch_pt); |
| cleanup_scratch_page(dev, &vm->scratch_page); |
| } |
| |
| static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev, |
| struct i915_page_directory_pointer *pdp) |
| { |
| int i; |
| |
| for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) { |
| if (WARN_ON(!pdp->page_directory[i])) |
| continue; |
| |
| gen8_free_page_tables(dev, pdp->page_directory[i]); |
| free_pd(dev, pdp->page_directory[i]); |
| } |
| |
| free_pdp(dev, pdp); |
| } |
| |
| static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt) |
| { |
| int i; |
| |
| for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) { |
| if (WARN_ON(!ppgtt->pml4.pdps[i])) |
| continue; |
| |
| gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]); |
| } |
| |
| cleanup_px(ppgtt->base.dev, &ppgtt->pml4); |
| } |
| |
| static void gen8_ppgtt_cleanup(struct i915_address_space *vm) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| |
| if (intel_vgpu_active(to_i915(vm->dev))) |
| gen8_ppgtt_notify_vgt(ppgtt, false); |
| |
| if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) |
| gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp); |
| else |
| gen8_ppgtt_cleanup_4lvl(ppgtt); |
| |
| gen8_free_scratch(vm); |
| } |
| |
| /** |
| * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range. |
| * @vm: Master vm structure. |
| * @pd: Page directory for this address range. |
| * @start: Starting virtual address to begin allocations. |
| * @length: Size of the allocations. |
| * @new_pts: Bitmap set by function with new allocations. Likely used by the |
| * caller to free on error. |
| * |
| * Allocate the required number of page tables. Extremely similar to |
| * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by |
| * the page directory boundary (instead of the page directory pointer). That |
| * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is |
| * possible, and likely that the caller will need to use multiple calls of this |
| * function to achieve the appropriate allocation. |
| * |
| * Return: 0 if success; negative error code otherwise. |
| */ |
| static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm, |
| struct i915_page_directory *pd, |
| uint64_t start, |
| uint64_t length, |
| unsigned long *new_pts) |
| { |
| struct drm_device *dev = vm->dev; |
| struct i915_page_table *pt; |
| uint32_t pde; |
| |
| gen8_for_each_pde(pt, pd, start, length, pde) { |
| /* Don't reallocate page tables */ |
| if (test_bit(pde, pd->used_pdes)) { |
| /* Scratch is never allocated this way */ |
| WARN_ON(pt == vm->scratch_pt); |
| continue; |
| } |
| |
| pt = alloc_pt(dev); |
| if (IS_ERR(pt)) |
| goto unwind_out; |
| |
| gen8_initialize_pt(vm, pt); |
| pd->page_table[pde] = pt; |
| __set_bit(pde, new_pts); |
| trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT); |
| } |
| |
| return 0; |
| |
| unwind_out: |
| for_each_set_bit(pde, new_pts, I915_PDES) |
| free_pt(dev, pd->page_table[pde]); |
| |
| return -ENOMEM; |
| } |
| |
| /** |
| * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range. |
| * @vm: Master vm structure. |
| * @pdp: Page directory pointer for this address range. |
| * @start: Starting virtual address to begin allocations. |
| * @length: Size of the allocations. |
| * @new_pds: Bitmap set by function with new allocations. Likely used by the |
| * caller to free on error. |
| * |
| * Allocate the required number of page directories starting at the pde index of |
| * @start, and ending at the pde index @start + @length. This function will skip |
| * over already allocated page directories within the range, and only allocate |
| * new ones, setting the appropriate pointer within the pdp as well as the |
| * correct position in the bitmap @new_pds. |
| * |
| * The function will only allocate the pages within the range for a give page |
| * directory pointer. In other words, if @start + @length straddles a virtually |
| * addressed PDP boundary (512GB for 4k pages), there will be more allocations |
| * required by the caller, This is not currently possible, and the BUG in the |
| * code will prevent it. |
| * |
| * Return: 0 if success; negative error code otherwise. |
| */ |
| static int |
| gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp, |
| uint64_t start, |
| uint64_t length, |
| unsigned long *new_pds) |
| { |
| struct drm_device *dev = vm->dev; |
| struct i915_page_directory *pd; |
| uint32_t pdpe; |
| uint32_t pdpes = I915_PDPES_PER_PDP(dev); |
| |
| WARN_ON(!bitmap_empty(new_pds, pdpes)); |
| |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| if (test_bit(pdpe, pdp->used_pdpes)) |
| continue; |
| |
| pd = alloc_pd(dev); |
| if (IS_ERR(pd)) |
| goto unwind_out; |
| |
| gen8_initialize_pd(vm, pd); |
| pdp->page_directory[pdpe] = pd; |
| __set_bit(pdpe, new_pds); |
| trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT); |
| } |
| |
| return 0; |
| |
| unwind_out: |
| for_each_set_bit(pdpe, new_pds, pdpes) |
| free_pd(dev, pdp->page_directory[pdpe]); |
| |
| return -ENOMEM; |
| } |
| |
| /** |
| * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range. |
| * @vm: Master vm structure. |
| * @pml4: Page map level 4 for this address range. |
| * @start: Starting virtual address to begin allocations. |
| * @length: Size of the allocations. |
| * @new_pdps: Bitmap set by function with new allocations. Likely used by the |
| * caller to free on error. |
| * |
| * Allocate the required number of page directory pointers. Extremely similar to |
| * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs(). |
| * The main difference is here we are limited by the pml4 boundary (instead of |
| * the page directory pointer). |
| * |
| * Return: 0 if success; negative error code otherwise. |
| */ |
| static int |
| gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm, |
| struct i915_pml4 *pml4, |
| uint64_t start, |
| uint64_t length, |
| unsigned long *new_pdps) |
| { |
| struct drm_device *dev = vm->dev; |
| struct i915_page_directory_pointer *pdp; |
| uint32_t pml4e; |
| |
| WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4)); |
| |
| gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { |
| if (!test_bit(pml4e, pml4->used_pml4es)) { |
| pdp = alloc_pdp(dev); |
| if (IS_ERR(pdp)) |
| goto unwind_out; |
| |
| gen8_initialize_pdp(vm, pdp); |
| pml4->pdps[pml4e] = pdp; |
| __set_bit(pml4e, new_pdps); |
| trace_i915_page_directory_pointer_entry_alloc(vm, |
| pml4e, |
| start, |
| GEN8_PML4E_SHIFT); |
| } |
| } |
| |
| return 0; |
| |
| unwind_out: |
| for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4) |
| free_pdp(dev, pml4->pdps[pml4e]); |
| |
| return -ENOMEM; |
| } |
| |
| static void |
| free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts) |
| { |
| kfree(new_pts); |
| kfree(new_pds); |
| } |
| |
| /* Fills in the page directory bitmap, and the array of page tables bitmap. Both |
| * of these are based on the number of PDPEs in the system. |
| */ |
| static |
| int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds, |
| unsigned long **new_pts, |
| uint32_t pdpes) |
| { |
| unsigned long *pds; |
| unsigned long *pts; |
| |
| pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY); |
| if (!pds) |
| return -ENOMEM; |
| |
| pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long), |
| GFP_TEMPORARY); |
| if (!pts) |
| goto err_out; |
| |
| *new_pds = pds; |
| *new_pts = pts; |
| |
| return 0; |
| |
| err_out: |
| free_gen8_temp_bitmaps(pds, pts); |
| return -ENOMEM; |
| } |
| |
| /* PDE TLBs are a pain to invalidate on GEN8+. When we modify |
| * the page table structures, we mark them dirty so that |
| * context switching/execlist queuing code takes extra steps |
| * to ensure that tlbs are flushed. |
| */ |
| static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) |
| { |
| ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask; |
| } |
| |
| static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm, |
| struct i915_page_directory_pointer *pdp, |
| uint64_t start, |
| uint64_t length) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| unsigned long *new_page_dirs, *new_page_tables; |
| struct drm_device *dev = vm->dev; |
| struct i915_page_directory *pd; |
| const uint64_t orig_start = start; |
| const uint64_t orig_length = length; |
| uint32_t pdpe; |
| uint32_t pdpes = I915_PDPES_PER_PDP(dev); |
| int ret; |
| |
| /* Wrap is never okay since we can only represent 48b, and we don't |
| * actually use the other side of the canonical address space. |
| */ |
| if (WARN_ON(start + length < start)) |
| return -ENODEV; |
| |
| if (WARN_ON(start + length > vm->total)) |
| return -ENODEV; |
| |
| ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes); |
| if (ret) |
| return ret; |
| |
| /* Do the allocations first so we can easily bail out */ |
| ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length, |
| new_page_dirs); |
| if (ret) { |
| free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); |
| return ret; |
| } |
| |
| /* For every page directory referenced, allocate page tables */ |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length, |
| new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES)); |
| if (ret) |
| goto err_out; |
| } |
| |
| start = orig_start; |
| length = orig_length; |
| |
| /* Allocations have completed successfully, so set the bitmaps, and do |
| * the mappings. */ |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| gen8_pde_t *const page_directory = kmap_px(pd); |
| struct i915_page_table *pt; |
| uint64_t pd_len = length; |
| uint64_t pd_start = start; |
| uint32_t pde; |
| |
| /* Every pd should be allocated, we just did that above. */ |
| WARN_ON(!pd); |
| |
| gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { |
| /* Same reasoning as pd */ |
| WARN_ON(!pt); |
| WARN_ON(!pd_len); |
| WARN_ON(!gen8_pte_count(pd_start, pd_len)); |
| |
| /* Set our used ptes within the page table */ |
| bitmap_set(pt->used_ptes, |
| gen8_pte_index(pd_start), |
| gen8_pte_count(pd_start, pd_len)); |
| |
| /* Our pde is now pointing to the pagetable, pt */ |
| __set_bit(pde, pd->used_pdes); |
| |
| /* Map the PDE to the page table */ |
| page_directory[pde] = gen8_pde_encode(px_dma(pt), |
| I915_CACHE_LLC); |
| trace_i915_page_table_entry_map(&ppgtt->base, pde, pt, |
| gen8_pte_index(start), |
| gen8_pte_count(start, length), |
| GEN8_PTES); |
| |
| /* NB: We haven't yet mapped ptes to pages. At this |
| * point we're still relying on insert_entries() */ |
| } |
| |
| kunmap_px(ppgtt, page_directory); |
| __set_bit(pdpe, pdp->used_pdpes); |
| gen8_setup_page_directory(ppgtt, pdp, pd, pdpe); |
| } |
| |
| free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); |
| mark_tlbs_dirty(ppgtt); |
| return 0; |
| |
| err_out: |
| while (pdpe--) { |
| unsigned long temp; |
| |
| for_each_set_bit(temp, new_page_tables + pdpe * |
| BITS_TO_LONGS(I915_PDES), I915_PDES) |
| free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]); |
| } |
| |
| for_each_set_bit(pdpe, new_page_dirs, pdpes) |
| free_pd(dev, pdp->page_directory[pdpe]); |
| |
| free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); |
| mark_tlbs_dirty(ppgtt); |
| return ret; |
| } |
| |
| static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm, |
| struct i915_pml4 *pml4, |
| uint64_t start, |
| uint64_t length) |
| { |
| DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4); |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct i915_page_directory_pointer *pdp; |
| uint64_t pml4e; |
| int ret = 0; |
| |
| /* Do the pml4 allocations first, so we don't need to track the newly |
| * allocated tables below the pdp */ |
| bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4); |
| |
| /* The pagedirectory and pagetable allocations are done in the shared 3 |
| * and 4 level code. Just allocate the pdps. |
| */ |
| ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length, |
| new_pdps); |
| if (ret) |
| return ret; |
| |
| WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2, |
| "The allocation has spanned more than 512GB. " |
| "It is highly likely this is incorrect."); |
| |
| gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { |
| WARN_ON(!pdp); |
| |
| ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length); |
| if (ret) |
| goto err_out; |
| |
| gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e); |
| } |
| |
| bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es, |
| GEN8_PML4ES_PER_PML4); |
| |
| return 0; |
| |
| err_out: |
| for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4) |
| gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]); |
| |
| return ret; |
| } |
| |
| static int gen8_alloc_va_range(struct i915_address_space *vm, |
| uint64_t start, uint64_t length) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| |
| if (USES_FULL_48BIT_PPGTT(vm->dev)) |
| return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length); |
| else |
| return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length); |
| } |
| |
| static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp, |
| uint64_t start, uint64_t length, |
| gen8_pte_t scratch_pte, |
| struct seq_file *m) |
| { |
| struct i915_page_directory *pd; |
| uint32_t pdpe; |
| |
| gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { |
| struct i915_page_table *pt; |
| uint64_t pd_len = length; |
| uint64_t pd_start = start; |
| uint32_t pde; |
| |
| if (!test_bit(pdpe, pdp->used_pdpes)) |
| continue; |
| |
| seq_printf(m, "\tPDPE #%d\n", pdpe); |
| gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { |
| uint32_t pte; |
| gen8_pte_t *pt_vaddr; |
| |
| if (!test_bit(pde, pd->used_pdes)) |
| continue; |
| |
| pt_vaddr = kmap_px(pt); |
| for (pte = 0; pte < GEN8_PTES; pte += 4) { |
| uint64_t va = |
| (pdpe << GEN8_PDPE_SHIFT) | |
| (pde << GEN8_PDE_SHIFT) | |
| (pte << GEN8_PTE_SHIFT); |
| int i; |
| bool found = false; |
| |
| for (i = 0; i < 4; i++) |
| if (pt_vaddr[pte + i] != scratch_pte) |
| found = true; |
| if (!found) |
| continue; |
| |
| seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte); |
| for (i = 0; i < 4; i++) { |
| if (pt_vaddr[pte + i] != scratch_pte) |
| seq_printf(m, " %llx", pt_vaddr[pte + i]); |
| else |
| seq_puts(m, " SCRATCH "); |
| } |
| seq_puts(m, "\n"); |
| } |
| /* don't use kunmap_px, it could trigger |
| * an unnecessary flush. |
| */ |
| kunmap_atomic(pt_vaddr); |
| } |
| } |
| } |
| |
| static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) |
| { |
| struct i915_address_space *vm = &ppgtt->base; |
| uint64_t start = ppgtt->base.start; |
| uint64_t length = ppgtt->base.total; |
| gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, true); |
| |
| if (!USES_FULL_48BIT_PPGTT(vm->dev)) { |
| gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m); |
| } else { |
| uint64_t pml4e; |
| struct i915_pml4 *pml4 = &ppgtt->pml4; |
| struct i915_page_directory_pointer *pdp; |
| |
| gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { |
| if (!test_bit(pml4e, pml4->used_pml4es)) |
| continue; |
| |
| seq_printf(m, " PML4E #%llu\n", pml4e); |
| gen8_dump_pdp(pdp, start, length, scratch_pte, m); |
| } |
| } |
| } |
| |
| static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt) |
| { |
| unsigned long *new_page_dirs, *new_page_tables; |
| uint32_t pdpes = I915_PDPES_PER_PDP(dev); |
| int ret; |
| |
| /* We allocate temp bitmap for page tables for no gain |
| * but as this is for init only, lets keep the things simple |
| */ |
| ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes); |
| if (ret) |
| return ret; |
| |
| /* Allocate for all pdps regardless of how the ppgtt |
| * was defined. |
| */ |
| ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp, |
| 0, 1ULL << 32, |
| new_page_dirs); |
| if (!ret) |
| *ppgtt->pdp.used_pdpes = *new_page_dirs; |
| |
| free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); |
| |
| return ret; |
| } |
| |
| /* |
| * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers |
| * with a net effect resembling a 2-level page table in normal x86 terms. Each |
| * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address |
| * space. |
| * |
| */ |
| static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt) |
| { |
| int ret; |
| |
| ret = gen8_init_scratch(&ppgtt->base); |
| if (ret) |
| return ret; |
| |
| ppgtt->base.start = 0; |
| ppgtt->base.cleanup = gen8_ppgtt_cleanup; |
| ppgtt->base.allocate_va_range = gen8_alloc_va_range; |
| ppgtt->base.insert_entries = gen8_ppgtt_insert_entries; |
| ppgtt->base.clear_range = gen8_ppgtt_clear_range; |
| ppgtt->base.unbind_vma = ppgtt_unbind_vma; |
| ppgtt->base.bind_vma = ppgtt_bind_vma; |
| ppgtt->debug_dump = gen8_dump_ppgtt; |
| |
| if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) { |
| ret = setup_px(ppgtt->base.dev, &ppgtt->pml4); |
| if (ret) |
| goto free_scratch; |
| |
| gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4); |
| |
| ppgtt->base.total = 1ULL << 48; |
| ppgtt->switch_mm = gen8_48b_mm_switch; |
| } else { |
| ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp); |
| if (ret) |
| goto free_scratch; |
| |
| ppgtt->base.total = 1ULL << 32; |
| ppgtt->switch_mm = gen8_legacy_mm_switch; |
| trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base, |
| 0, 0, |
| GEN8_PML4E_SHIFT); |
| |
| if (intel_vgpu_active(to_i915(ppgtt->base.dev))) { |
| ret = gen8_preallocate_top_level_pdps(ppgtt); |
| if (ret) |
| goto free_scratch; |
| } |
| } |
| |
| if (intel_vgpu_active(to_i915(ppgtt->base.dev))) |
| gen8_ppgtt_notify_vgt(ppgtt, true); |
| |
| return 0; |
| |
| free_scratch: |
| gen8_free_scratch(&ppgtt->base); |
| return ret; |
| } |
| |
| static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) |
| { |
| struct i915_address_space *vm = &ppgtt->base; |
| struct i915_page_table *unused; |
| gen6_pte_t scratch_pte; |
| uint32_t pd_entry; |
| uint32_t pte, pde; |
| uint32_t start = ppgtt->base.start, length = ppgtt->base.total; |
| |
| scratch_pte = vm->pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, true, 0); |
| |
| gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) { |
| u32 expected; |
| gen6_pte_t *pt_vaddr; |
| const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]); |
| pd_entry = readl(ppgtt->pd_addr + pde); |
| expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID); |
| |
| if (pd_entry != expected) |
| seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", |
| pde, |
| pd_entry, |
| expected); |
| seq_printf(m, "\tPDE: %x\n", pd_entry); |
| |
| pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]); |
| |
| for (pte = 0; pte < GEN6_PTES; pte+=4) { |
| unsigned long va = |
| (pde * PAGE_SIZE * GEN6_PTES) + |
| (pte * PAGE_SIZE); |
| int i; |
| bool found = false; |
| for (i = 0; i < 4; i++) |
| if (pt_vaddr[pte + i] != scratch_pte) |
| found = true; |
| if (!found) |
| continue; |
| |
| seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte); |
| for (i = 0; i < 4; i++) { |
| if (pt_vaddr[pte + i] != scratch_pte) |
| seq_printf(m, " %08x", pt_vaddr[pte + i]); |
| else |
| seq_puts(m, " SCRATCH "); |
| } |
| seq_puts(m, "\n"); |
| } |
| kunmap_px(ppgtt, pt_vaddr); |
| } |
| } |
| |
| /* Write pde (index) from the page directory @pd to the page table @pt */ |
| static void gen6_write_pde(struct i915_page_directory *pd, |
| const int pde, struct i915_page_table *pt) |
| { |
| /* Caller needs to make sure the write completes if necessary */ |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(pd, struct i915_hw_ppgtt, pd); |
| u32 pd_entry; |
| |
| pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt)); |
| pd_entry |= GEN6_PDE_VALID; |
| |
| writel(pd_entry, ppgtt->pd_addr + pde); |
| } |
| |
| /* Write all the page tables found in the ppgtt structure to incrementing page |
| * directories. */ |
| static void gen6_write_page_range(struct drm_i915_private *dev_priv, |
| struct i915_page_directory *pd, |
| uint32_t start, uint32_t length) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| struct i915_page_table *pt; |
| uint32_t pde; |
| |
| gen6_for_each_pde(pt, pd, start, length, pde) |
| gen6_write_pde(pd, pde, pt); |
| |
| /* Make sure write is complete before other code can use this page |
| * table. Also require for WC mapped PTEs */ |
| readl(ggtt->gsm); |
| } |
| |
| static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt) |
| { |
| BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f); |
| |
| return (ppgtt->pd.base.ggtt_offset / 64) << 16; |
| } |
| |
| static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_gem_request *req) |
| { |
| struct intel_ring *ring = req->ring; |
| struct intel_engine_cs *engine = req->engine; |
| int ret; |
| |
| /* NB: TLBs must be flushed and invalidated before a switch */ |
| ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH); |
| if (ret) |
| return ret; |
| |
| ret = intel_ring_begin(req, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); |
| intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine)); |
| intel_ring_emit(ring, PP_DIR_DCLV_2G); |
| intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine)); |
| intel_ring_emit(ring, get_pd_offset(ppgtt)); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_advance(ring); |
| |
| return 0; |
| } |
| |
| static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_gem_request *req) |
| { |
| struct intel_ring *ring = req->ring; |
| struct intel_engine_cs *engine = req->engine; |
| int ret; |
| |
| /* NB: TLBs must be flushed and invalidated before a switch */ |
| ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH); |
| if (ret) |
| return ret; |
| |
| ret = intel_ring_begin(req, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); |
| intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine)); |
| intel_ring_emit(ring, PP_DIR_DCLV_2G); |
| intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine)); |
| intel_ring_emit(ring, get_pd_offset(ppgtt)); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_advance(ring); |
| |
| /* XXX: RCS is the only one to auto invalidate the TLBs? */ |
| if (engine->id != RCS) { |
| ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_gem_request *req) |
| { |
| struct intel_engine_cs *engine = req->engine; |
| struct drm_i915_private *dev_priv = req->i915; |
| |
| I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G); |
| I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt)); |
| return 0; |
| } |
| |
| static void gen8_ppgtt_enable(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_engine_cs *engine; |
| |
| for_each_engine(engine, dev_priv) { |
| u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0; |
| I915_WRITE(RING_MODE_GEN7(engine), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level)); |
| } |
| } |
| |
| static void gen7_ppgtt_enable(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_engine_cs *engine; |
| uint32_t ecochk, ecobits; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| if (IS_HASWELL(dev)) { |
| ecochk |= ECOCHK_PPGTT_WB_HSW; |
| } else { |
| ecochk |= ECOCHK_PPGTT_LLC_IVB; |
| ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; |
| } |
| I915_WRITE(GAM_ECOCHK, ecochk); |
| |
| for_each_engine(engine, dev_priv) { |
| /* GFX_MODE is per-ring on gen7+ */ |
| I915_WRITE(RING_MODE_GEN7(engine), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| } |
| } |
| |
| static void gen6_ppgtt_enable(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t ecochk, gab_ctl, ecobits; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | |
| ECOBITS_PPGTT_CACHE64B); |
| |
| gab_ctl = I915_READ(GAB_CTL); |
| I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); |
| |
| I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| } |
| |
| /* PPGTT support for Sandybdrige/Gen6 and later */ |
| static void gen6_ppgtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| gen6_pte_t *pt_vaddr, scratch_pte; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| unsigned act_pt = first_entry / GEN6_PTES; |
| unsigned first_pte = first_entry % GEN6_PTES; |
| unsigned last_pte, i; |
| |
| scratch_pte = vm->pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, true, 0); |
| |
| while (num_entries) { |
| last_pte = first_pte + num_entries; |
| if (last_pte > GEN6_PTES) |
| last_pte = GEN6_PTES; |
| |
| pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]); |
| |
| for (i = first_pte; i < last_pte; i++) |
| pt_vaddr[i] = scratch_pte; |
| |
| kunmap_px(ppgtt, pt_vaddr); |
| |
| num_entries -= last_pte - first_pte; |
| first_pte = 0; |
| act_pt++; |
| } |
| } |
| |
| static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| uint64_t start, |
| enum i915_cache_level cache_level, u32 flags) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned act_pt = first_entry / GEN6_PTES; |
| unsigned act_pte = first_entry % GEN6_PTES; |
| gen6_pte_t *pt_vaddr = NULL; |
| struct sgt_iter sgt_iter; |
| dma_addr_t addr; |
| |
| for_each_sgt_dma(addr, sgt_iter, pages) { |
| if (pt_vaddr == NULL) |
| pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]); |
| |
| pt_vaddr[act_pte] = |
| vm->pte_encode(addr, cache_level, true, flags); |
| |
| if (++act_pte == GEN6_PTES) { |
| kunmap_px(ppgtt, pt_vaddr); |
| pt_vaddr = NULL; |
| act_pt++; |
| act_pte = 0; |
| } |
| } |
| |
| if (pt_vaddr) |
| kunmap_px(ppgtt, pt_vaddr); |
| } |
| |
| static int gen6_alloc_va_range(struct i915_address_space *vm, |
| uint64_t start_in, uint64_t length_in) |
| { |
| DECLARE_BITMAP(new_page_tables, I915_PDES); |
| struct drm_device *dev = vm->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct i915_page_table *pt; |
| uint32_t start, length, start_save, length_save; |
| uint32_t pde; |
| int ret; |
| |
| if (WARN_ON(start_in + length_in > ppgtt->base.total)) |
| return -ENODEV; |
| |
| start = start_save = start_in; |
| length = length_save = length_in; |
| |
| bitmap_zero(new_page_tables, I915_PDES); |
| |
| /* The allocation is done in two stages so that we can bail out with |
| * minimal amount of pain. The first stage finds new page tables that |
| * need allocation. The second stage marks use ptes within the page |
| * tables. |
| */ |
| gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) { |
| if (pt != vm->scratch_pt) { |
| WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES)); |
| continue; |
| } |
| |
| /* We've already allocated a page table */ |
| WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES)); |
| |
| pt = alloc_pt(dev); |
| if (IS_ERR(pt)) { |
| ret = PTR_ERR(pt); |
| goto unwind_out; |
| } |
| |
| gen6_initialize_pt(vm, pt); |
| |
| ppgtt->pd.page_table[pde] = pt; |
| __set_bit(pde, new_page_tables); |
| trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT); |
| } |
| |
| start = start_save; |
| length = length_save; |
| |
| gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) { |
| DECLARE_BITMAP(tmp_bitmap, GEN6_PTES); |
| |
| bitmap_zero(tmp_bitmap, GEN6_PTES); |
| bitmap_set(tmp_bitmap, gen6_pte_index(start), |
| gen6_pte_count(start, length)); |
| |
| if (__test_and_clear_bit(pde, new_page_tables)) |
| gen6_write_pde(&ppgtt->pd, pde, pt); |
| |
| trace_i915_page_table_entry_map(vm, pde, pt, |
| gen6_pte_index(start), |
| gen6_pte_count(start, length), |
| GEN6_PTES); |
| bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes, |
| GEN6_PTES); |
| } |
| |
| WARN_ON(!bitmap_empty(new_page_tables, I915_PDES)); |
| |
| /* Make sure write is complete before other code can use this page |
| * table. Also require for WC mapped PTEs */ |
| readl(ggtt->gsm); |
| |
| mark_tlbs_dirty(ppgtt); |
| return 0; |
| |
| unwind_out: |
| for_each_set_bit(pde, new_page_tables, I915_PDES) { |
| struct i915_page_table *pt = ppgtt->pd.page_table[pde]; |
| |
| ppgtt->pd.page_table[pde] = vm->scratch_pt; |
| free_pt(vm->dev, pt); |
| } |
| |
| mark_tlbs_dirty(ppgtt); |
| return ret; |
| } |
| |
| static int gen6_init_scratch(struct i915_address_space *vm) |
| { |
| struct drm_device *dev = vm->dev; |
| int ret; |
| |
| ret = setup_scratch_page(dev, &vm->scratch_page, I915_GFP_DMA); |
| if (ret) |
| return ret; |
| |
| vm->scratch_pt = alloc_pt(dev); |
| if (IS_ERR(vm->scratch_pt)) { |
| cleanup_scratch_page(dev, &vm->scratch_page); |
| return PTR_ERR(vm->scratch_pt); |
| } |
| |
| gen6_initialize_pt(vm, vm->scratch_pt); |
| |
| return 0; |
| } |
| |
| static void gen6_free_scratch(struct i915_address_space *vm) |
| { |
| struct drm_device *dev = vm->dev; |
| |
| free_pt(dev, vm->scratch_pt); |
| cleanup_scratch_page(dev, &vm->scratch_page); |
| } |
| |
| static void gen6_ppgtt_cleanup(struct i915_address_space *vm) |
| { |
| struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); |
| struct i915_page_directory *pd = &ppgtt->pd; |
| struct drm_device *dev = vm->dev; |
| struct i915_page_table *pt; |
| uint32_t pde; |
| |
| drm_mm_remove_node(&ppgtt->node); |
| |
| gen6_for_all_pdes(pt, pd, pde) |
| if (pt != vm->scratch_pt) |
| free_pt(dev, pt); |
| |
| gen6_free_scratch(vm); |
| } |
| |
| static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct i915_address_space *vm = &ppgtt->base; |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| bool retried = false; |
| int ret; |
| |
| /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The |
| * allocator works in address space sizes, so it's multiplied by page |
| * size. We allocate at the top of the GTT to avoid fragmentation. |
| */ |
| BUG_ON(!drm_mm_initialized(&ggtt->base.mm)); |
| |
| ret = gen6_init_scratch(vm); |
| if (ret) |
| return ret; |
| |
| alloc: |
| ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm, |
| &ppgtt->node, GEN6_PD_SIZE, |
| GEN6_PD_ALIGN, 0, |
| 0, ggtt->base.total, |
| DRM_MM_TOPDOWN); |
| if (ret == -ENOSPC && !retried) { |
| ret = i915_gem_evict_something(&ggtt->base, |
| GEN6_PD_SIZE, GEN6_PD_ALIGN, |
| I915_CACHE_NONE, |
| 0, ggtt->base.total, |
| 0); |
| if (ret) |
| goto err_out; |
| |
| retried = true; |
| goto alloc; |
| } |
| |
| if (ret) |
| goto err_out; |
| |
| |
| if (ppgtt->node.start < ggtt->mappable_end) |
| DRM_DEBUG("Forced to use aperture for PDEs\n"); |
| |
| return 0; |
| |
| err_out: |
| gen6_free_scratch(vm); |
| return ret; |
| } |
| |
| static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt) |
| { |
| return gen6_ppgtt_allocate_page_directories(ppgtt); |
| } |
| |
| static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt, |
| uint64_t start, uint64_t length) |
| { |
| struct i915_page_table *unused; |
| uint32_t pde; |
| |
| gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) |
| ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt; |
| } |
| |
| static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| int ret; |
| |
| ppgtt->base.pte_encode = ggtt->base.pte_encode; |
| if (intel_vgpu_active(dev_priv) || IS_GEN6(dev)) |
| ppgtt->switch_mm = gen6_mm_switch; |
| else if (IS_HASWELL(dev)) |
| ppgtt->switch_mm = hsw_mm_switch; |
| else if (IS_GEN7(dev)) |
| ppgtt->switch_mm = gen7_mm_switch; |
| else |
| BUG(); |
| |
| ret = gen6_ppgtt_alloc(ppgtt); |
| if (ret) |
| return ret; |
| |
| ppgtt->base.allocate_va_range = gen6_alloc_va_range; |
| ppgtt->base.clear_range = gen6_ppgtt_clear_range; |
| ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; |
| ppgtt->base.unbind_vma = ppgtt_unbind_vma; |
| ppgtt->base.bind_vma = ppgtt_bind_vma; |
| ppgtt->base.cleanup = gen6_ppgtt_cleanup; |
| ppgtt->base.start = 0; |
| ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE; |
| ppgtt->debug_dump = gen6_dump_ppgtt; |
| |
| ppgtt->pd.base.ggtt_offset = |
| ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t); |
| |
| ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + |
| ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t); |
| |
| gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total); |
| |
| gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total); |
| |
| DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n", |
| ppgtt->node.size >> 20, |
| ppgtt->node.start / PAGE_SIZE); |
| |
| DRM_DEBUG("Adding PPGTT at offset %x\n", |
| ppgtt->pd.base.ggtt_offset << 10); |
| |
| return 0; |
| } |
| |
| static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_private *dev_priv) |
| { |
| ppgtt->base.dev = &dev_priv->drm; |
| |
| if (INTEL_INFO(dev_priv)->gen < 8) |
| return gen6_ppgtt_init(ppgtt); |
| else |
| return gen8_ppgtt_init(ppgtt); |
| } |
| |
| static void i915_address_space_init(struct i915_address_space *vm, |
| struct drm_i915_private *dev_priv) |
| { |
| drm_mm_init(&vm->mm, vm->start, vm->total); |
| INIT_LIST_HEAD(&vm->active_list); |
| INIT_LIST_HEAD(&vm->inactive_list); |
| INIT_LIST_HEAD(&vm->unbound_list); |
| list_add_tail(&vm->global_link, &dev_priv->vm_list); |
| } |
| |
| static void gtt_write_workarounds(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| /* This function is for gtt related workarounds. This function is |
| * called on driver load and after a GPU reset, so you can place |
| * workarounds here even if they get overwritten by GPU reset. |
| */ |
| /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */ |
| if (IS_BROADWELL(dev)) |
| I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); |
| else if (IS_CHERRYVIEW(dev)) |
| I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); |
| else if (IS_SKYLAKE(dev)) |
| I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); |
| else if (IS_BROXTON(dev)) |
| I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); |
| } |
| |
| static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt, |
| struct drm_i915_private *dev_priv, |
| struct drm_i915_file_private *file_priv) |
| { |
| int ret; |
| |
| ret = __hw_ppgtt_init(ppgtt, dev_priv); |
| if (ret == 0) { |
| kref_init(&ppgtt->ref); |
| i915_address_space_init(&ppgtt->base, dev_priv); |
| ppgtt->base.file = file_priv; |
| } |
| |
| return ret; |
| } |
| |
| int i915_ppgtt_init_hw(struct drm_device *dev) |
| { |
| gtt_write_workarounds(dev); |
| |
| /* In the case of execlists, PPGTT is enabled by the context descriptor |
| * and the PDPs are contained within the context itself. We don't |
| * need to do anything here. */ |
| if (i915.enable_execlists) |
| return 0; |
| |
| if (!USES_PPGTT(dev)) |
| return 0; |
| |
| if (IS_GEN6(dev)) |
| gen6_ppgtt_enable(dev); |
| else if (IS_GEN7(dev)) |
| gen7_ppgtt_enable(dev); |
| else if (INTEL_INFO(dev)->gen >= 8) |
| gen8_ppgtt_enable(dev); |
| else |
| MISSING_CASE(INTEL_INFO(dev)->gen); |
| |
| return 0; |
| } |
| |
| struct i915_hw_ppgtt * |
| i915_ppgtt_create(struct drm_i915_private *dev_priv, |
| struct drm_i915_file_private *fpriv) |
| { |
| struct i915_hw_ppgtt *ppgtt; |
| int ret; |
| |
| ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); |
| if (!ppgtt) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv); |
| if (ret) { |
| kfree(ppgtt); |
| return ERR_PTR(ret); |
| } |
| |
| trace_i915_ppgtt_create(&ppgtt->base); |
| |
| return ppgtt; |
| } |
| |
| void i915_ppgtt_release(struct kref *kref) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(kref, struct i915_hw_ppgtt, ref); |
| |
| trace_i915_ppgtt_release(&ppgtt->base); |
| |
| /* vmas should already be unbound and destroyed */ |
| WARN_ON(!list_empty(&ppgtt->base.active_list)); |
| WARN_ON(!list_empty(&ppgtt->base.inactive_list)); |
| WARN_ON(!list_empty(&ppgtt->base.unbound_list)); |
| |
| list_del(&ppgtt->base.global_link); |
| drm_mm_takedown(&ppgtt->base.mm); |
| |
| ppgtt->base.cleanup(&ppgtt->base); |
| kfree(ppgtt); |
| } |
| |
| /* Certain Gen5 chipsets require require idling the GPU before |
| * unmapping anything from the GTT when VT-d is enabled. |
| */ |
| static bool needs_idle_maps(struct drm_i915_private *dev_priv) |
| { |
| #ifdef CONFIG_INTEL_IOMMU |
| /* Query intel_iommu to see if we need the workaround. Presumably that |
| * was loaded first. |
| */ |
| if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped) |
| return true; |
| #endif |
| return false; |
| } |
| |
| void i915_check_and_clear_faults(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| |
| if (INTEL_INFO(dev_priv)->gen < 6) |
| return; |
| |
| for_each_engine(engine, dev_priv) { |
| u32 fault_reg; |
| fault_reg = I915_READ(RING_FAULT_REG(engine)); |
| if (fault_reg & RING_FAULT_VALID) { |
| DRM_DEBUG_DRIVER("Unexpected fault\n" |
| "\tAddr: 0x%08lx\n" |
| "\tAddress space: %s\n" |
| "\tSource ID: %d\n" |
| "\tType: %d\n", |
| fault_reg & PAGE_MASK, |
| fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", |
| RING_FAULT_SRCID(fault_reg), |
| RING_FAULT_FAULT_TYPE(fault_reg)); |
| I915_WRITE(RING_FAULT_REG(engine), |
| fault_reg & ~RING_FAULT_VALID); |
| } |
| } |
| POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS])); |
| } |
| |
| static void i915_ggtt_flush(struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_INFO(dev_priv)->gen < 6) { |
| intel_gtt_chipset_flush(); |
| } else { |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| } |
| } |
| |
| void i915_gem_suspend_gtt_mappings(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| |
| /* Don't bother messing with faults pre GEN6 as we have little |
| * documentation supporting that it's a good idea. |
| */ |
| if (INTEL_INFO(dev)->gen < 6) |
| return; |
| |
| i915_check_and_clear_faults(dev_priv); |
| |
| ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total, |
| true); |
| |
| i915_ggtt_flush(dev_priv); |
| } |
| |
| int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj) |
| { |
| if (!dma_map_sg(&obj->base.dev->pdev->dev, |
| obj->pages->sgl, obj->pages->nents, |
| PCI_DMA_BIDIRECTIONAL)) |
| return -ENOSPC; |
| |
| return 0; |
| } |
| |
| static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) |
| { |
| writeq(pte, addr); |
| } |
| |
| static void gen8_ggtt_insert_page(struct i915_address_space *vm, |
| dma_addr_t addr, |
| uint64_t offset, |
| enum i915_cache_level level, |
| u32 unused) |
| { |
| struct drm_i915_private *dev_priv = to_i915(vm->dev); |
| gen8_pte_t __iomem *pte = |
| (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + |
| (offset >> PAGE_SHIFT); |
| int rpm_atomic_seq; |
| |
| rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv); |
| |
| gen8_set_pte(pte, gen8_pte_encode(addr, level, true)); |
| |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| |
| assert_rpm_atomic_end(dev_priv, rpm_atomic_seq); |
| } |
| |
| static void gen8_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *st, |
| uint64_t start, |
| enum i915_cache_level level, u32 unused) |
| { |
| struct drm_i915_private *dev_priv = to_i915(vm->dev); |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| struct sgt_iter sgt_iter; |
| gen8_pte_t __iomem *gtt_entries; |
| gen8_pte_t gtt_entry; |
| dma_addr_t addr; |
| int rpm_atomic_seq; |
| int i = 0; |
| |
| rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv); |
| |
| gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT); |
| |
| for_each_sgt_dma(addr, sgt_iter, st) { |
| gtt_entry = gen8_pte_encode(addr, level, true); |
| gen8_set_pte(>t_entries[i++], gtt_entry); |
| } |
| |
| /* |
| * XXX: This serves as a posting read to make sure that the PTE has |
| * actually been updated. There is some concern that even though |
| * registers and PTEs are within the same BAR that they are potentially |
| * of NUMA access patterns. Therefore, even with the way we assume |
| * hardware should work, we must keep this posting read for paranoia. |
| */ |
| if (i != 0) |
| WARN_ON(readq(>t_entries[i-1]) != gtt_entry); |
| |
| /* This next bit makes the above posting read even more important. We |
| * want to flush the TLBs only after we're certain all the PTE updates |
| * have finished. |
| */ |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| |
| assert_rpm_atomic_end(dev_priv, rpm_atomic_seq); |
| } |
| |
| struct insert_entries { |
| struct i915_address_space *vm; |
| struct sg_table *st; |
| uint64_t start; |
| enum i915_cache_level level; |
| u32 flags; |
| }; |
| |
| static int gen8_ggtt_insert_entries__cb(void *_arg) |
| { |
| struct insert_entries *arg = _arg; |
| gen8_ggtt_insert_entries(arg->vm, arg->st, |
| arg->start, arg->level, arg->flags); |
| return 0; |
| } |
| |
| static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm, |
| struct sg_table *st, |
| uint64_t start, |
| enum i915_cache_level level, |
| u32 flags) |
| { |
| struct insert_entries arg = { vm, st, start, level, flags }; |
| stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL); |
| } |
| |
| static void gen6_ggtt_insert_page(struct i915_address_space *vm, |
| dma_addr_t addr, |
| uint64_t offset, |
| enum i915_cache_level level, |
| u32 flags) |
| { |
| struct drm_i915_private *dev_priv = to_i915(vm->dev); |
| gen6_pte_t __iomem *pte = |
| (gen6_pte_t __iomem *)dev_priv->ggtt.gsm + |
| (offset >> PAGE_SHIFT); |
| int rpm_atomic_seq; |
| |
| rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv); |
| |
| iowrite32(vm->pte_encode(addr, level, true, flags), pte); |
| |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| |
| assert_rpm_atomic_end(dev_priv, rpm_atomic_seq); |
| } |
| |
| /* |
| * Binds an object into the global gtt with the specified cache level. The object |
| * will be accessible to the GPU via commands whose operands reference offsets |
| * within the global GTT as well as accessible by the GPU through the GMADR |
| * mapped BAR (dev_priv->mm.gtt->gtt). |
| */ |
| static void gen6_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *st, |
| uint64_t start, |
| enum i915_cache_level level, u32 flags) |
| { |
| struct drm_i915_private *dev_priv = to_i915(vm->dev); |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| struct sgt_iter sgt_iter; |
| gen6_pte_t __iomem *gtt_entries; |
| gen6_pte_t gtt_entry; |
| dma_addr_t addr; |
| int rpm_atomic_seq; |
| int i = 0; |
| |
| rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv); |
| |
| gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT); |
| |
| for_each_sgt_dma(addr, sgt_iter, st) { |
| gtt_entry = vm->pte_encode(addr, level, true, flags); |
| iowrite32(gtt_entry, >t_entries[i++]); |
| } |
| |
| /* XXX: This serves as a posting read to make sure that the PTE has |
| * actually been updated. There is some concern that even though |
| * registers and PTEs are within the same BAR that they are potentially |
| * of NUMA access patterns. Therefore, even with the way we assume |
| * hardware should work, we must keep this posting read for paranoia. |
| */ |
| if (i != 0) |
| WARN_ON(readl(>t_entries[i-1]) != gtt_entry); |
| |
| /* This next bit makes the above posting read even more important. We |
| * want to flush the TLBs only after we're certain all the PTE updates |
| * have finished. |
| */ |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| |
| assert_rpm_atomic_end(dev_priv, rpm_atomic_seq); |
| } |
| |
| static void nop_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| } |
| |
| static void gen8_ggtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| struct drm_i915_private *dev_priv = to_i915(vm->dev); |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| gen8_pte_t scratch_pte, __iomem *gtt_base = |
| (gen8_pte_t __iomem *)ggtt->gsm + first_entry; |
| const int max_entries = ggtt_total_entries(ggtt) - first_entry; |
| int i; |
| int rpm_atomic_seq; |
| |
| rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv); |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, |
| use_scratch); |
| for (i = 0; i < num_entries; i++) |
| gen8_set_pte(>t_base[i], scratch_pte); |
| readl(gtt_base); |
| |
| assert_rpm_atomic_end(dev_priv, rpm_atomic_seq); |
| } |
| |
| static void gen6_ggtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| struct drm_i915_private *dev_priv = to_i915(vm->dev); |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| gen6_pte_t scratch_pte, __iomem *gtt_base = |
| (gen6_pte_t __iomem *)ggtt->gsm + first_entry; |
| const int max_entries = ggtt_total_entries(ggtt) - first_entry; |
| int i; |
| int rpm_atomic_seq; |
| |
| rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv); |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| scratch_pte = vm->pte_encode(vm->scratch_page.daddr, |
| I915_CACHE_LLC, use_scratch, 0); |
| |
| for (i = 0; i < num_entries; i++) |
| iowrite32(scratch_pte, >t_base[i]); |
| readl(gtt_base); |
| |
| assert_rpm_atomic_end(dev_priv, rpm_atomic_seq); |
| } |
| |
| static void i915_ggtt_insert_page(struct i915_address_space *vm, |
| dma_addr_t addr, |
| uint64_t offset, |
| enum i915_cache_level cache_level, |
| u32 unused) |
| { |
| struct drm_i915_private *dev_priv = to_i915(vm->dev); |
| unsigned int flags = (cache_level == I915_CACHE_NONE) ? |
| AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; |
| int rpm_atomic_seq; |
| |
| rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv); |
| |
| intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); |
| |
| assert_rpm_atomic_end(dev_priv, rpm_atomic_seq); |
| } |
| |
| static void i915_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| uint64_t start, |
| enum i915_cache_level cache_level, u32 unused) |
| { |
| struct drm_i915_private *dev_priv = to_i915(vm->dev); |
| unsigned int flags = (cache_level == I915_CACHE_NONE) ? |
| AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; |
| int rpm_atomic_seq; |
| |
| rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv); |
| |
| intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags); |
| |
| assert_rpm_atomic_end(dev_priv, rpm_atomic_seq); |
| |
| } |
| |
| static void i915_ggtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool unused) |
| { |
| struct drm_i915_private *dev_priv = to_i915(vm->dev); |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| int rpm_atomic_seq; |
| |
| rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv); |
| |
| intel_gtt_clear_range(first_entry, num_entries); |
| |
| assert_rpm_atomic_end(dev_priv, rpm_atomic_seq); |
| } |
| |
| static int ggtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| struct drm_i915_gem_object *obj = vma->obj; |
| u32 pte_flags = 0; |
| int ret; |
| |
| ret = i915_get_ggtt_vma_pages(vma); |
| if (ret) |
| return ret; |
| |
| /* Currently applicable only to VLV */ |
| if (obj->gt_ro) |
| pte_flags |= PTE_READ_ONLY; |
| |
| vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start, |
| cache_level, pte_flags); |
| |
| /* |
| * Without aliasing PPGTT there's no difference between |
| * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally |
| * upgrade to both bound if we bind either to avoid double-binding. |
| */ |
| vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; |
| |
| return 0; |
| } |
| |
| static int aliasing_gtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| u32 pte_flags; |
| int ret; |
| |
| ret = i915_get_ggtt_vma_pages(vma); |
| if (ret) |
| return ret; |
| |
| /* Currently applicable only to VLV */ |
| pte_flags = 0; |
| if (vma->obj->gt_ro) |
| pte_flags |= PTE_READ_ONLY; |
| |
| |
| if (flags & I915_VMA_GLOBAL_BIND) { |
| vma->vm->insert_entries(vma->vm, |
| vma->pages, vma->node.start, |
| cache_level, pte_flags); |
| } |
| |
| if (flags & I915_VMA_LOCAL_BIND) { |
| struct i915_hw_ppgtt *appgtt = |
| to_i915(vma->vm->dev)->mm.aliasing_ppgtt; |
| appgtt->base.insert_entries(&appgtt->base, |
| vma->pages, vma->node.start, |
| cache_level, pte_flags); |
| } |
| |
| return 0; |
| } |
| |
| static void ggtt_unbind_vma(struct i915_vma *vma) |
| { |
| struct i915_hw_ppgtt *appgtt = to_i915(vma->vm->dev)->mm.aliasing_ppgtt; |
| const u64 size = min(vma->size, vma->node.size); |
| |
| if (vma->flags & I915_VMA_GLOBAL_BIND) |
| vma->vm->clear_range(vma->vm, |
| vma->node.start, size, |
| true); |
| |
| if (vma->flags & I915_VMA_LOCAL_BIND && appgtt) |
| appgtt->base.clear_range(&appgtt->base, |
| vma->node.start, size, |
| true); |
| } |
| |
| void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| struct device *kdev = &dev_priv->drm.pdev->dev; |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| |
| if (unlikely(ggtt->do_idle_maps)) { |
| if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) { |
| DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); |
| /* Wait a bit, in hopes it avoids the hang */ |
| udelay(10); |
| } |
| } |
| |
| dma_unmap_sg(kdev, obj->pages->sgl, obj->pages->nents, |
| PCI_DMA_BIDIRECTIONAL); |
| } |
| |
| static void i915_gtt_color_adjust(struct drm_mm_node *node, |
| unsigned long color, |
| u64 *start, |
| u64 *end) |
| { |
| if (node->color != color) |
| *start += 4096; |
| |
| node = list_first_entry_or_null(&node->node_list, |
| struct drm_mm_node, |
| node_list); |
| if (node && node->allocated && node->color != color) |
| *end -= 4096; |
| } |
| |
| int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) |
| { |
| /* Let GEM Manage all of the aperture. |
| * |
| * However, leave one page at the end still bound to the scratch page. |
| * There are a number of places where the hardware apparently prefetches |
| * past the end of the object, and we've seen multiple hangs with the |
| * GPU head pointer stuck in a batchbuffer bound at the last page of the |
| * aperture. One page should be enough to keep any prefetching inside |
| * of the aperture. |
| */ |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| unsigned long hole_start, hole_end; |
| struct drm_mm_node *entry; |
| int ret; |
| |
| ret = intel_vgt_balloon(dev_priv); |
| if (ret) |
| return ret; |
| |
| /* Clear any non-preallocated blocks */ |
| drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) { |
| DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", |
| hole_start, hole_end); |
| ggtt->base.clear_range(&ggtt->base, hole_start, |
| hole_end - hole_start, true); |
| } |
| |
| /* And finally clear the reserved guard page */ |
| ggtt->base.clear_range(&ggtt->base, |
| ggtt->base.total - PAGE_SIZE, PAGE_SIZE, |
| true); |
| |
| if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) { |
| struct i915_hw_ppgtt *ppgtt; |
| |
| ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); |
| if (!ppgtt) |
| return -ENOMEM; |
| |
| ret = __hw_ppgtt_init(ppgtt, dev_priv); |
| if (ret) { |
| kfree(ppgtt); |
| return ret; |
| } |
| |
| if (ppgtt->base.allocate_va_range) |
| ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0, |
| ppgtt->base.total); |
| if (ret) { |
| ppgtt->base.cleanup(&ppgtt->base); |
| kfree(ppgtt); |
| return ret; |
| } |
| |
| ppgtt->base.clear_range(&ppgtt->base, |
| ppgtt->base.start, |
| ppgtt->base.total, |
| true); |
| |
| dev_priv->mm.aliasing_ppgtt = ppgtt; |
| WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma); |
| ggtt->base.bind_vma = aliasing_gtt_bind_vma; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization |
| * @dev_priv: i915 device |
| */ |
| void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| |
| if (dev_priv->mm.aliasing_ppgtt) { |
| struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; |
| ppgtt->base.cleanup(&ppgtt->base); |
| kfree(ppgtt); |
| } |
| |
| i915_gem_cleanup_stolen(&dev_priv->drm); |
| |
| if (drm_mm_initialized(&ggtt->base.mm)) { |
| intel_vgt_deballoon(dev_priv); |
| |
| drm_mm_takedown(&ggtt->base.mm); |
| list_del(&ggtt->base.global_link); |
| } |
| |
| ggtt->base.cleanup(&ggtt->base); |
| |
| arch_phys_wc_del(ggtt->mtrr); |
| io_mapping_fini(&ggtt->mappable); |
| } |
| |
| static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) |
| { |
| snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; |
| snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; |
| return snb_gmch_ctl << 20; |
| } |
| |
| static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) |
| { |
| bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; |
| bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; |
| if (bdw_gmch_ctl) |
| bdw_gmch_ctl = 1 << bdw_gmch_ctl; |
| |
| #ifdef CONFIG_X86_32 |
| /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */ |
| if (bdw_gmch_ctl > 4) |
| bdw_gmch_ctl = 4; |
| #endif |
| |
| return bdw_gmch_ctl << 20; |
| } |
| |
| static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) |
| { |
| gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; |
| gmch_ctrl &= SNB_GMCH_GGMS_MASK; |
| |
| if (gmch_ctrl) |
| return 1 << (20 + gmch_ctrl); |
| |
| return 0; |
| } |
| |
| static size_t gen6_get_stolen_size(u16 snb_gmch_ctl) |
| { |
| snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; |
| snb_gmch_ctl &= SNB_GMCH_GMS_MASK; |
| return snb_gmch_ctl << 25; /* 32 MB units */ |
| } |
| |
| static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) |
| { |
| bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; |
| bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; |
| return bdw_gmch_ctl << 25; /* 32 MB units */ |
| } |
| |
| static size_t chv_get_stolen_size(u16 gmch_ctrl) |
| { |
| gmch_ctrl >>= SNB_GMCH_GMS_SHIFT; |
| gmch_ctrl &= SNB_GMCH_GMS_MASK; |
| |
| /* |
| * 0x0 to 0x10: 32MB increments starting at 0MB |
| * 0x11 to 0x16: 4MB increments starting at 8MB |
| * 0x17 to 0x1d: 4MB increments start at 36MB |
| */ |
| if (gmch_ctrl < 0x11) |
| return gmch_ctrl << 25; |
| else if (gmch_ctrl < 0x17) |
| return (gmch_ctrl - 0x11 + 2) << 22; |
| else |
| return (gmch_ctrl - 0x17 + 9) << 22; |
| } |
| |
| static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl) |
| { |
| gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; |
| gen9_gmch_ctl &= BDW_GMCH_GMS_MASK; |
| |
| if (gen9_gmch_ctl < 0xf0) |
| return gen9_gmch_ctl << 25; /* 32 MB units */ |
| else |
| /* 4MB increments starting at 0xf0 for 4MB */ |
| return (gen9_gmch_ctl - 0xf0 + 1) << 22; |
| } |
| |
| static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) |
| { |
| struct pci_dev *pdev = ggtt->base.dev->pdev; |
| phys_addr_t phys_addr; |
| int ret; |
| |
| /* For Modern GENs the PTEs and register space are split in the BAR */ |
| phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; |
| |
| /* |
| * On BXT writes larger than 64 bit to the GTT pagetable range will be |
| * dropped. For WC mappings in general we have 64 byte burst writes |
| * when the WC buffer is flushed, so we can't use it, but have to |
| * resort to an uncached mapping. The WC issue is easily caught by the |
| * readback check when writing GTT PTE entries. |
| */ |
| if (IS_BROXTON(ggtt->base.dev)) |
| ggtt->gsm = ioremap_nocache(phys_addr, size); |
| else |
| ggtt->gsm = ioremap_wc(phys_addr, size); |
| if (!ggtt->gsm) { |
| DRM_ERROR("Failed to map the ggtt page table\n"); |
| return -ENOMEM; |
| } |
| |
| ret = setup_scratch_page(ggtt->base.dev, |
| &ggtt->base.scratch_page, |
| GFP_DMA32); |
| if (ret) { |
| DRM_ERROR("Scratch setup failed\n"); |
| /* iounmap will also get called at remove, but meh */ |
| iounmap(ggtt->gsm); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability |
| * bits. When using advanced contexts each context stores its own PAT, but |
| * writing this data shouldn't be harmful even in those cases. */ |
| static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv) |
| { |
| uint64_t pat; |
| |
| pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ |
| GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ |
| GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ |
| GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ |
| GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | |
| GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | |
| GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | |
| GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); |
| |
| if (!USES_PPGTT(dev_priv)) |
| /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, |
| * so RTL will always use the value corresponding to |
| * pat_sel = 000". |
| * So let's disable cache for GGTT to avoid screen corruptions. |
| * MOCS still can be used though. |
| * - System agent ggtt writes (i.e. cpu gtt mmaps) already work |
| * before this patch, i.e. the same uncached + snooping access |
| * like on gen6/7 seems to be in effect. |
| * - So this just fixes blitter/render access. Again it looks |
| * like it's not just uncached access, but uncached + snooping. |
| * So we can still hold onto all our assumptions wrt cpu |
| * clflushing on LLC machines. |
| */ |
| pat = GEN8_PPAT(0, GEN8_PPAT_UC); |
| |
| /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b |
| * write would work. */ |
| I915_WRITE(GEN8_PRIVATE_PAT_LO, pat); |
| I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32); |
| } |
| |
| static void chv_setup_private_ppat(struct drm_i915_private *dev_priv) |
| { |
| uint64_t pat; |
| |
| /* |
| * Map WB on BDW to snooped on CHV. |
| * |
| * Only the snoop bit has meaning for CHV, the rest is |
| * ignored. |
| * |
| * The hardware will never snoop for certain types of accesses: |
| * - CPU GTT (GMADR->GGTT->no snoop->memory) |
| * - PPGTT page tables |
| * - some other special cycles |
| * |
| * As with BDW, we also need to consider the following for GT accesses: |
| * "For GGTT, there is NO pat_sel[2:0] from the entry, |
| * so RTL will always use the value corresponding to |
| * pat_sel = 000". |
| * Which means we must set the snoop bit in PAT entry 0 |
| * in order to keep the global status page working. |
| */ |
| pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(1, 0) | |
| GEN8_PPAT(2, 0) | |
| GEN8_PPAT(3, 0) | |
| GEN8_PPAT(4, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(5, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(6, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(7, CHV_PPAT_SNOOP); |
| |
| I915_WRITE(GEN8_PRIVATE_PAT_LO, pat); |
| I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32); |
| } |
| |
| static void gen6_gmch_remove(struct i915_address_space *vm) |
| { |
| struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); |
| |
| iounmap(ggtt->gsm); |
| cleanup_scratch_page(vm->dev, &vm->scratch_page); |
| } |
| |
| static int gen8_gmch_probe(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev); |
| struct pci_dev *pdev = dev_priv->drm.pdev; |
| unsigned int size; |
| u16 snb_gmch_ctl; |
| |
| /* TODO: We're not aware of mappable constraints on gen8 yet */ |
| ggtt->mappable_base = pci_resource_start(pdev, 2); |
| ggtt->mappable_end = pci_resource_len(pdev, 2); |
| |
| if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39))) |
| pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); |
| |
| pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| |
| if (INTEL_GEN(dev_priv) >= 9) { |
| ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl); |
| size = gen8_get_total_gtt_size(snb_gmch_ctl); |
| } else if (IS_CHERRYVIEW(dev_priv)) { |
| ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl); |
| size = chv_get_total_gtt_size(snb_gmch_ctl); |
| } else { |
| ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl); |
| size = gen8_get_total_gtt_size(snb_gmch_ctl); |
| } |
| |
| ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT; |
| |
| if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv)) |
| chv_setup_private_ppat(dev_priv); |
| else |
| bdw_setup_private_ppat(dev_priv); |
| |
| ggtt->base.cleanup = gen6_gmch_remove; |
| ggtt->base.bind_vma = ggtt_bind_vma; |
| ggtt->base.unbind_vma = ggtt_unbind_vma; |
| ggtt->base.insert_page = gen8_ggtt_insert_page; |
| ggtt->base.clear_range = nop_clear_range; |
| if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv)) |
| ggtt->base.clear_range = gen8_ggtt_clear_range; |
| |
| ggtt->base.insert_entries = gen8_ggtt_insert_entries; |
| if (IS_CHERRYVIEW(dev_priv)) |
| ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL; |
| |
| return ggtt_probe_common(ggtt, size); |
| } |
| |
| static int gen6_gmch_probe(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev); |
| struct pci_dev *pdev = dev_priv->drm.pdev; |
| unsigned int size; |
| u16 snb_gmch_ctl; |
| |
| ggtt->mappable_base = pci_resource_start(pdev, 2); |
| ggtt->mappable_end = pci_resource_len(pdev, 2); |
| |
| /* 64/512MB is the current min/max we actually know of, but this is just |
| * a coarse sanity check. |
| */ |
| if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { |
| DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end); |
| return -ENXIO; |
| } |
| |
| if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40))) |
| pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); |
| pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| |
| ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl); |
| |
| size = gen6_get_total_gtt_size(snb_gmch_ctl); |
| ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT; |
| |
| ggtt->base.clear_range = gen6_ggtt_clear_range; |
| ggtt->base.insert_page = gen6_ggtt_insert_page; |
| ggtt->base.insert_entries = gen6_ggtt_insert_entries; |
| ggtt->base.bind_vma = ggtt_bind_vma; |
| ggtt->base.unbind_vma = ggtt_unbind_vma; |
| ggtt->base.cleanup = gen6_gmch_remove; |
| |
| if (HAS_EDRAM(dev_priv)) |
| ggtt->base.pte_encode = iris_pte_encode; |
| else if (IS_HASWELL(dev_priv)) |
| ggtt->base.pte_encode = hsw_pte_encode; |
| else if (IS_VALLEYVIEW(dev_priv)) |
| ggtt->base.pte_encode = byt_pte_encode; |
| else if (INTEL_GEN(dev_priv) >= 7) |
| ggtt->base.pte_encode = ivb_pte_encode; |
| else |
| ggtt->base.pte_encode = snb_pte_encode; |
| |
| return ggtt_probe_common(ggtt, size); |
| } |
| |
| static void i915_gmch_remove(struct i915_address_space *vm) |
| { |
| intel_gmch_remove(); |
| } |
| |
| static int i915_gmch_probe(struct i915_ggtt *ggtt) |
| { |
| struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev); |
| int ret; |
| |
| ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); |
| if (!ret) { |
| DRM_ERROR("failed to set up gmch\n"); |
| return -EIO; |
| } |
| |
| intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size, |
| &ggtt->mappable_base, &ggtt->mappable_end); |
| |
| ggtt->do_idle_maps = needs_idle_maps(dev_priv); |
| ggtt->base.insert_page = i915_ggtt_insert_page; |
| ggtt->base.insert_entries = i915_ggtt_insert_entries; |
| ggtt->base.clear_range = i915_ggtt_clear_range; |
| ggtt->base.bind_vma = ggtt_bind_vma; |
| ggtt->base.unbind_vma = ggtt_unbind_vma; |
| ggtt->base.cleanup = i915_gmch_remove; |
| |
| if (unlikely(ggtt->do_idle_maps)) |
| DRM_INFO("applying Ironlake quirks for intel_iommu\n"); |
| |
| return 0; |
| } |
| |
| /** |
| * i915_ggtt_probe_hw - Probe GGTT hardware location |
| * @dev_priv: i915 device |
| */ |
| int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| int ret; |
| |
| ggtt->base.dev = &dev_priv->drm; |
| |
| if (INTEL_GEN(dev_priv) <= 5) |
| ret = i915_gmch_probe(ggtt); |
| else if (INTEL_GEN(dev_priv) < 8) |
| ret = gen6_gmch_probe(ggtt); |
| else |
| ret = gen8_gmch_probe(ggtt); |
| if (ret) |
| return ret; |
| |
| if ((ggtt->base.total - 1) >> 32) { |
| DRM_ERROR("We never expected a Global GTT with more than 32bits" |
| " of address space! Found %lldM!\n", |
| ggtt->base.total >> 20); |
| ggtt->base.total = 1ULL << 32; |
| ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total); |
| } |
| |
| if (ggtt->mappable_end > ggtt->base.total) { |
| DRM_ERROR("mappable aperture extends past end of GGTT," |
| " aperture=%llx, total=%llx\n", |
| ggtt->mappable_end, ggtt->base.total); |
| ggtt->mappable_end = ggtt->base.total; |
| } |
| |
| /* GMADR is the PCI mmio aperture into the global GTT. */ |
| DRM_INFO("Memory usable by graphics device = %lluM\n", |
| ggtt->base.total >> 20); |
| DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20); |
| DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20); |
| #ifdef CONFIG_INTEL_IOMMU |
| if (intel_iommu_gfx_mapped) |
| DRM_INFO("VT-d active for gfx access\n"); |
| #endif |
| |
| return 0; |
| } |
| |
| /** |
| * i915_ggtt_init_hw - Initialize GGTT hardware |
| * @dev_priv: i915 device |
| */ |
| int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) |
| { |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| int ret; |
| |
| INIT_LIST_HEAD(&dev_priv->vm_list); |
| |
| /* Subtract the guard page before address space initialization to |
| * shrink the range used by drm_mm. |
| */ |
| ggtt->base.total -= PAGE_SIZE; |
| i915_address_space_init(&ggtt->base, dev_priv); |
| ggtt->base.total += PAGE_SIZE; |
| if (!HAS_LLC(dev_priv)) |
| ggtt->base.mm.color_adjust = i915_gtt_color_adjust; |
| |
| if (!io_mapping_init_wc(&dev_priv->ggtt.mappable, |
| dev_priv->ggtt.mappable_base, |
| dev_priv->ggtt.mappable_end)) { |
| ret = -EIO; |
| goto out_gtt_cleanup; |
| } |
| |
| ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end); |
| |
| /* |
| * Initialise stolen early so that we may reserve preallocated |
| * objects for the BIOS to KMS transition. |
| */ |
| ret = i915_gem_init_stolen(&dev_priv->drm); |
| if (ret) |
| goto out_gtt_cleanup; |
| |
| return 0; |
| |
| out_gtt_cleanup: |
| ggtt->base.cleanup(&ggtt->base); |
| return ret; |
| } |
| |
| int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| void i915_gem_restore_gtt_mappings(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| struct drm_i915_gem_object *obj, *on; |
| |
| i915_check_and_clear_faults(dev_priv); |
| |
| /* First fill our portion of the GTT with scratch pages */ |
| ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total, |
| true); |
| |
| ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */ |
| |
| /* clflush objects bound into the GGTT and rebind them. */ |
| list_for_each_entry_safe(obj, on, |
| &dev_priv->mm.bound_list, global_list) { |
| bool ggtt_bound = false; |
| struct i915_vma *vma; |
| |
| list_for_each_entry(vma, &obj->vma_list, obj_link) { |
| if (vma->vm != &ggtt->base) |
| continue; |
| |
| if (!i915_vma_unbind(vma)) |
| continue; |
| |
| WARN_ON(i915_vma_bind(vma, obj->cache_level, |
| PIN_UPDATE)); |
| ggtt_bound = true; |
| } |
| |
| if (ggtt_bound) |
| WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); |
| } |
| |
| ggtt->base.closed = false; |
| |
| if (INTEL_INFO(dev)->gen >= 8) { |
| if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) |
| chv_setup_private_ppat(dev_priv); |
| else |
| bdw_setup_private_ppat(dev_priv); |
| |
| return; |
| } |
| |
| if (USES_PPGTT(dev)) { |
| struct i915_address_space *vm; |
| |
| list_for_each_entry(vm, &dev_priv->vm_list, global_link) { |
| /* TODO: Perhaps it shouldn't be gen6 specific */ |
| |
| struct i915_hw_ppgtt *ppgtt; |
| |
| if (i915_is_ggtt(vm)) |
| ppgtt = dev_priv->mm.aliasing_ppgtt; |
| else |
| ppgtt = i915_vm_to_ppgtt(vm); |
| |
| gen6_write_page_range(dev_priv, &ppgtt->pd, |
| 0, ppgtt->base.total); |
| } |
| } |
| |
| i915_ggtt_flush(dev_priv); |
| } |
| |
| static void |
| i915_vma_retire(struct i915_gem_active *active, |
| struct drm_i915_gem_request *rq) |
| { |
| const unsigned int idx = rq->engine->id; |
| struct i915_vma *vma = |
| container_of(active, struct i915_vma, last_read[idx]); |
| |
| GEM_BUG_ON(!i915_vma_has_active_engine(vma, idx)); |
| |
| i915_vma_clear_active(vma, idx); |
| if (i915_vma_is_active(vma)) |
| return; |
| |
| list_move_tail(&vma->vm_link, &vma->vm->inactive_list); |
| if (unlikely(i915_vma_is_closed(vma) && !i915_vma_is_pinned(vma))) |
| WARN_ON(i915_vma_unbind(vma)); |
| } |
| |
| void i915_vma_destroy(struct i915_vma *vma) |
| { |
| GEM_BUG_ON(vma->node.allocated); |
| GEM_BUG_ON(i915_vma_is_active(vma)); |
| GEM_BUG_ON(!i915_vma_is_closed(vma)); |
| GEM_BUG_ON(vma->fence); |
| |
| list_del(&vma->vm_link); |
| if (!i915_vma_is_ggtt(vma)) |
| i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm)); |
| |
| kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma); |
| } |
| |
| void i915_vma_close(struct i915_vma *vma) |
| { |
| GEM_BUG_ON(i915_vma_is_closed(vma)); |
| vma->flags |= I915_VMA_CLOSED; |
| |
| list_del_init(&vma->obj_link); |
| if (!i915_vma_is_active(vma) && !i915_vma_is_pinned(vma)) |
| WARN_ON(i915_vma_unbind(vma)); |
| } |
| |
| static struct i915_vma * |
| __i915_vma_create(struct drm_i915_gem_object *obj, |
| struct i915_address_space *vm, |
| const struct i915_ggtt_view *view) |
| { |
| struct i915_vma *vma; |
| int i; |
| |
| GEM_BUG_ON(vm->closed); |
| |
| vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL); |
| if (vma == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&vma->exec_list); |
| for (i = 0; i < ARRAY_SIZE(vma->last_read); i++) |
| init_request_active(&vma->last_read[i], i915_vma_retire); |
| init_request_active(&vma->last_fence, NULL); |
| list_add(&vma->vm_link, &vm->unbound_list); |
| vma->vm = vm; |
| vma->obj = obj; |
| vma->size = obj->base.size; |
| |
| if (view) { |
| vma->ggtt_view = *view; |
| if (view->type == I915_GGTT_VIEW_PARTIAL) { |
| vma->size = view->params.partial.size; |
| vma->size <<= PAGE_SHIFT; |
| } else if (view->type == I915_GGTT_VIEW_ROTATED) { |
| vma->size = |
| intel_rotation_info_size(&view->params.rotated); |
| vma->size <<= PAGE_SHIFT; |
| } |
| } |
| |
| if (i915_is_ggtt(vm)) { |
| vma->flags |= I915_VMA_GGTT; |
| } else { |
| i915_ppgtt_get(i915_vm_to_ppgtt(vm)); |
| } |
| |
| list_add_tail(&vma->obj_link, &obj->vma_list); |
| return vma; |
| } |
| |
| static inline bool vma_matches(struct i915_vma *vma, |
| struct i915_address_space *vm, |
| const struct i915_ggtt_view *view) |
| { |
| if (vma->vm != vm) |
| return false; |
| |
| if (!i915_vma_is_ggtt(vma)) |
| return true; |
| |
| if (!view) |
| return vma->ggtt_view.type == 0; |
| |
| if (vma->ggtt_view.type != view->type) |
| return false; |
| |
| return memcmp(&vma->ggtt_view.params, |
| &view->params, |
| sizeof(view->params)) == 0; |
| } |
| |
| struct i915_vma * |
| i915_vma_create(struct drm_i915_gem_object *obj, |
| struct i915_address_space *vm, |
| const struct i915_ggtt_view *view) |
| { |
| GEM_BUG_ON(view && !i915_is_ggtt(vm)); |
| GEM_BUG_ON(i915_gem_obj_to_vma(obj, vm, view)); |
| |
| return __i915_vma_create(obj, vm, view); |
| } |
| |
| struct i915_vma * |
| i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, |
| struct i915_address_space *vm, |
| const struct i915_ggtt_view *view) |
| { |
| struct i915_vma *vma; |
| |
| list_for_each_entry_reverse(vma, &obj->vma_list, obj_link) |
| if (vma_matches(vma, vm, view)) |
| return vma; |
| |
| return NULL; |
| } |
| |
| struct i915_vma * |
| i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, |
| struct i915_address_space *vm, |
| const struct i915_ggtt_view *view) |
| { |
| struct i915_vma *vma; |
| |
| GEM_BUG_ON(view && !i915_is_ggtt(vm)); |
| |
| vma = i915_gem_obj_to_vma(obj, vm, view); |
| if (!vma) |
| vma = __i915_vma_create(obj, vm, view); |
| |
| GEM_BUG_ON(i915_vma_is_closed(vma)); |
| return vma; |
| } |
| |
| static struct scatterlist * |
| rotate_pages(const dma_addr_t *in, unsigned int offset, |
| unsigned int width, unsigned int height, |
| unsigned int stride, |
| struct sg_table *st, struct scatterlist *sg) |
| { |
| unsigned int column, row; |
| unsigned int src_idx; |
| |
| for (column = 0; column < width; column++) { |
| src_idx = stride * (height - 1) + column; |
| for (row = 0; row < height; row++) { |
| st->nents++; |
| /* We don't need the pages, but need to initialize |
| * the entries so the sg list can be happily traversed. |
| * The only thing we need are DMA addresses. |
| */ |
| sg_set_page(sg, NULL, PAGE_SIZE, 0); |
| sg_dma_address(sg) = in[offset + src_idx]; |
| sg_dma_len(sg) = PAGE_SIZE; |
| sg = sg_next(sg); |
| src_idx -= stride; |
| } |
| } |
| |
| return sg; |
| } |
| |
| static struct sg_table * |
| intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info, |
| struct drm_i915_gem_object *obj) |
| { |
| const size_t n_pages = obj->base.size / PAGE_SIZE; |
| unsigned int size = intel_rotation_info_size(rot_info); |
| struct sgt_iter sgt_iter; |
| dma_addr_t dma_addr; |
| unsigned long i; |
| dma_addr_t *page_addr_list; |
| struct sg_table *st; |
| struct scatterlist *sg; |
| int ret = -ENOMEM; |
| |
| /* Allocate a temporary list of source pages for random access. */ |
| page_addr_list = drm_malloc_gfp(n_pages, |
| sizeof(dma_addr_t), |
| GFP_TEMPORARY); |
| if (!page_addr_list) |
| return ERR_PTR(ret); |
| |
| /* Allocate target SG list. */ |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (!st) |
| goto err_st_alloc; |
| |
| ret = sg_alloc_table(st, size, GFP_KERNEL); |
| if (ret) |
| goto err_sg_alloc; |
| |
| /* Populate source page list from the object. */ |
| i = 0; |
| for_each_sgt_dma(dma_addr, sgt_iter, obj->pages) |
| page_addr_list[i++] = dma_addr; |
| |
| GEM_BUG_ON(i != n_pages); |
| st->nents = 0; |
| sg = st->sgl; |
| |
| for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { |
| sg = rotate_pages(page_addr_list, rot_info->plane[i].offset, |
| rot_info->plane[i].width, rot_info->plane[i].height, |
| rot_info->plane[i].stride, st, sg); |
| } |
| |
| DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n", |
| obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); |
| |
| drm_free_large(page_addr_list); |
| |
| return st; |
| |
| err_sg_alloc: |
| kfree(st); |
| err_st_alloc: |
| drm_free_large(page_addr_list); |
| |
| DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", |
| obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static struct sg_table * |
| intel_partial_pages(const struct i915_ggtt_view *view, |
| struct drm_i915_gem_object *obj) |
| { |
| struct sg_table *st; |
| struct scatterlist *sg; |
| struct sg_page_iter obj_sg_iter; |
| int ret = -ENOMEM; |
| |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (!st) |
| goto err_st_alloc; |
| |
| ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL); |
| if (ret) |
| goto err_sg_alloc; |
| |
| sg = st->sgl; |
| st->nents = 0; |
| for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents, |
| view->params.partial.offset) |
| { |
| if (st->nents >= view->params.partial.size) |
| break; |
| |
| sg_set_page(sg, NULL, PAGE_SIZE, 0); |
| sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter); |
| sg_dma_len(sg) = PAGE_SIZE; |
| |
| sg = sg_next(sg); |
| st->nents++; |
| } |
| |
| return st; |
| |
| err_sg_alloc: |
| kfree(st); |
| err_st_alloc: |
| return ERR_PTR(ret); |
| } |
| |
| static int |
| i915_get_ggtt_vma_pages(struct i915_vma *vma) |
| { |
| int ret = 0; |
| |
| if (vma->pages) |
| return 0; |
| |
| if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) |
| vma->pages = vma->obj->pages; |
| else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED) |
| vma->pages = |
| intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj); |
| else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL) |
| vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); |
| else |
| WARN_ONCE(1, "GGTT view %u not implemented!\n", |
| vma->ggtt_view.type); |
| |
| if (!vma->pages) { |
| DRM_ERROR("Failed to get pages for GGTT view type %u!\n", |
| vma->ggtt_view.type); |
| ret = -EINVAL; |
| } else if (IS_ERR(vma->pages)) { |
| ret = PTR_ERR(vma->pages); |
| vma->pages = NULL; |
| DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", |
| vma->ggtt_view.type, ret); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. |
| * @vma: VMA to map |
| * @cache_level: mapping cache level |
| * @flags: flags like global or local mapping |
| * |
| * DMA addresses are taken from the scatter-gather table of this object (or of |
| * this VMA in case of non-default GGTT views) and PTE entries set up. |
| * Note that DMA addresses are also the only part of the SG table we care about. |
| */ |
| int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| u32 bind_flags; |
| u32 vma_flags; |
| int ret; |
| |
| if (WARN_ON(flags == 0)) |
| return -EINVAL; |
| |
| bind_flags = 0; |
| if (flags & PIN_GLOBAL) |
| bind_flags |= I915_VMA_GLOBAL_BIND; |
| if (flags & PIN_USER) |
| bind_flags |= I915_VMA_LOCAL_BIND; |
| |
| vma_flags = vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND); |
| if (flags & PIN_UPDATE) |
| bind_flags |= vma_flags; |
| else |
| bind_flags &= ~vma_flags; |
| if (bind_flags == 0) |
| return 0; |
| |
| if (vma_flags == 0 && vma->vm->allocate_va_range) { |
| trace_i915_va_alloc(vma); |
| ret = vma->vm->allocate_va_range(vma->vm, |
| vma->node.start, |
| vma->node.size); |
| if (ret) |
| return ret; |
| } |
| |
| ret = vma->vm->bind_vma(vma, cache_level, bind_flags); |
| if (ret) |
| return ret; |
| |
| vma->flags |= bind_flags; |
| return 0; |
| } |
| |
| void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) |
| { |
| void __iomem *ptr; |
| |
| /* Access through the GTT requires the device to be awake. */ |
| assert_rpm_wakelock_held(to_i915(vma->vm->dev)); |
| |
| lockdep_assert_held(&vma->vm->dev->struct_mutex); |
| if (WARN_ON(!i915_vma_is_map_and_fenceable(vma))) |
| return IO_ERR_PTR(-ENODEV); |
| |
| GEM_BUG_ON(!i915_vma_is_ggtt(vma)); |
| GEM_BUG_ON((vma->flags & I915_VMA_GLOBAL_BIND) == 0); |
| |
| ptr = vma->iomap; |
| if (ptr == NULL) { |
| ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->mappable, |
| vma->node.start, |
| vma->node.size); |
| if (ptr == NULL) |
| return IO_ERR_PTR(-ENOMEM); |
| |
| vma->iomap = ptr; |
| } |
| |
| __i915_vma_pin(vma); |
| return ptr; |
| } |
| |
| void i915_vma_unpin_and_release(struct i915_vma **p_vma) |
| { |
| struct i915_vma *vma; |
| |
| vma = fetch_and_zero(p_vma); |
| if (!vma) |
| return; |
| |
| i915_vma_unpin(vma); |
| i915_vma_put(vma); |
| } |