| /* |
| * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/kvm_host.h> |
| #include <linux/preempt.h> |
| #include <linux/export.h> |
| #include <linux/sched.h> |
| #include <linux/spinlock.h> |
| #include <linux/bootmem.h> |
| #include <linux/init.h> |
| #include <linux/memblock.h> |
| #include <linux/sizes.h> |
| #include <linux/cma.h> |
| |
| #include <asm/cputable.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| |
| #define KVM_CMA_CHUNK_ORDER 18 |
| |
| /* |
| * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206) |
| * should be power of 2. |
| */ |
| #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */ |
| /* |
| * By default we reserve 5% of memory for hash pagetable allocation. |
| */ |
| static unsigned long kvm_cma_resv_ratio = 5; |
| /* |
| * We allocate RMAs (real mode areas) for KVM guests from the KVM CMA area. |
| * Each RMA has to be physically contiguous and of a size that the |
| * hardware supports. PPC970 and POWER7 support 64MB, 128MB and 256MB, |
| * and other larger sizes. Since we are unlikely to be allocate that |
| * much physically contiguous memory after the system is up and running, |
| * we preallocate a set of RMAs in early boot using CMA. |
| * should be power of 2. |
| */ |
| unsigned long kvm_rma_pages = (1 << 27) >> PAGE_SHIFT; /* 128MB */ |
| EXPORT_SYMBOL_GPL(kvm_rma_pages); |
| |
| static struct cma *kvm_cma; |
| |
| /* Work out RMLS (real mode limit selector) field value for a given RMA size. |
| Assumes POWER7 or PPC970. */ |
| static inline int lpcr_rmls(unsigned long rma_size) |
| { |
| switch (rma_size) { |
| case 32ul << 20: /* 32 MB */ |
| if (cpu_has_feature(CPU_FTR_ARCH_206)) |
| return 8; /* only supported on POWER7 */ |
| return -1; |
| case 64ul << 20: /* 64 MB */ |
| return 3; |
| case 128ul << 20: /* 128 MB */ |
| return 7; |
| case 256ul << 20: /* 256 MB */ |
| return 4; |
| case 1ul << 30: /* 1 GB */ |
| return 2; |
| case 16ul << 30: /* 16 GB */ |
| return 1; |
| case 256ul << 30: /* 256 GB */ |
| return 0; |
| default: |
| return -1; |
| } |
| } |
| |
| static int __init early_parse_rma_size(char *p) |
| { |
| unsigned long kvm_rma_size; |
| |
| pr_debug("%s(%s)\n", __func__, p); |
| if (!p) |
| return -EINVAL; |
| kvm_rma_size = memparse(p, &p); |
| /* |
| * Check that the requested size is one supported in hardware |
| */ |
| if (lpcr_rmls(kvm_rma_size) < 0) { |
| pr_err("RMA size of 0x%lx not supported\n", kvm_rma_size); |
| return -EINVAL; |
| } |
| kvm_rma_pages = kvm_rma_size >> PAGE_SHIFT; |
| return 0; |
| } |
| early_param("kvm_rma_size", early_parse_rma_size); |
| |
| struct kvm_rma_info *kvm_alloc_rma() |
| { |
| struct page *page; |
| struct kvm_rma_info *ri; |
| |
| ri = kmalloc(sizeof(struct kvm_rma_info), GFP_KERNEL); |
| if (!ri) |
| return NULL; |
| page = cma_alloc(kvm_cma, kvm_rma_pages, order_base_2(kvm_rma_pages)); |
| if (!page) |
| goto err_out; |
| atomic_set(&ri->use_count, 1); |
| ri->base_pfn = page_to_pfn(page); |
| return ri; |
| err_out: |
| kfree(ri); |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(kvm_alloc_rma); |
| |
| void kvm_release_rma(struct kvm_rma_info *ri) |
| { |
| if (atomic_dec_and_test(&ri->use_count)) { |
| cma_release(kvm_cma, pfn_to_page(ri->base_pfn), kvm_rma_pages); |
| kfree(ri); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_release_rma); |
| |
| static int __init early_parse_kvm_cma_resv(char *p) |
| { |
| pr_debug("%s(%s)\n", __func__, p); |
| if (!p) |
| return -EINVAL; |
| return kstrtoul(p, 0, &kvm_cma_resv_ratio); |
| } |
| early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv); |
| |
| struct page *kvm_alloc_hpt(unsigned long nr_pages) |
| { |
| unsigned long align_pages = HPT_ALIGN_PAGES; |
| |
| VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT); |
| |
| /* Old CPUs require HPT aligned on a multiple of its size */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_206)) |
| align_pages = nr_pages; |
| return cma_alloc(kvm_cma, nr_pages, order_base_2(align_pages)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_alloc_hpt); |
| |
| void kvm_release_hpt(struct page *page, unsigned long nr_pages) |
| { |
| cma_release(kvm_cma, page, nr_pages); |
| } |
| EXPORT_SYMBOL_GPL(kvm_release_hpt); |
| |
| /** |
| * kvm_cma_reserve() - reserve area for kvm hash pagetable |
| * |
| * This function reserves memory from early allocator. It should be |
| * called by arch specific code once the early allocator (memblock or bootmem) |
| * has been activated and all other subsystems have already allocated/reserved |
| * memory. |
| */ |
| void __init kvm_cma_reserve(void) |
| { |
| unsigned long align_size; |
| struct memblock_region *reg; |
| phys_addr_t selected_size = 0; |
| |
| /* |
| * We need CMA reservation only when we are in HV mode |
| */ |
| if (!cpu_has_feature(CPU_FTR_HVMODE)) |
| return; |
| /* |
| * We cannot use memblock_phys_mem_size() here, because |
| * memblock_analyze() has not been called yet. |
| */ |
| for_each_memblock(memory, reg) |
| selected_size += memblock_region_memory_end_pfn(reg) - |
| memblock_region_memory_base_pfn(reg); |
| |
| selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT; |
| if (selected_size) { |
| pr_debug("%s: reserving %ld MiB for global area\n", __func__, |
| (unsigned long)selected_size / SZ_1M); |
| /* |
| * Old CPUs require HPT aligned on a multiple of its size. So for them |
| * make the alignment as max size we could request. |
| */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_206)) |
| align_size = __rounddown_pow_of_two(selected_size); |
| else |
| align_size = HPT_ALIGN_PAGES << PAGE_SHIFT; |
| |
| align_size = max(kvm_rma_pages << PAGE_SHIFT, align_size); |
| cma_declare_contiguous(0, selected_size, 0, align_size, |
| KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma); |
| } |
| } |
| |
| /* |
| * When running HV mode KVM we need to block certain operations while KVM VMs |
| * exist in the system. We use a counter of VMs to track this. |
| * |
| * One of the operations we need to block is onlining of secondaries, so we |
| * protect hv_vm_count with get/put_online_cpus(). |
| */ |
| static atomic_t hv_vm_count; |
| |
| void kvm_hv_vm_activated(void) |
| { |
| get_online_cpus(); |
| atomic_inc(&hv_vm_count); |
| put_online_cpus(); |
| } |
| EXPORT_SYMBOL_GPL(kvm_hv_vm_activated); |
| |
| void kvm_hv_vm_deactivated(void) |
| { |
| get_online_cpus(); |
| atomic_dec(&hv_vm_count); |
| put_online_cpus(); |
| } |
| EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated); |
| |
| bool kvm_hv_mode_active(void) |
| { |
| return atomic_read(&hv_vm_count) != 0; |
| } |
| |
| extern int hcall_real_table[], hcall_real_table_end[]; |
| |
| int kvmppc_hcall_impl_hv_realmode(unsigned long cmd) |
| { |
| cmd /= 4; |
| if (cmd < hcall_real_table_end - hcall_real_table && |
| hcall_real_table[cmd]) |
| return 1; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode); |